
1

Database Management Systems
CSEP 544

Lecture #1
March 31, 2009

2

Staff

Instructor: Prof. Dan Suciu:
•  Bell Labs, AT&T Labs, UW, MSR
•  Research interests:

–  Semi-structured data (XML): XML-QL, XMill (XML
compressor), XPath containment

–  Probabilistic Databases
–  Database Security and Privacy

•  CSE 662, suciu@cs.washington.edu, Office hours by
email appointments (any day OK except Tuesday)

TA: Bhushan Mandhani

3

Communications
•  Web page: http://www.cs.washington.edu/csep544/

–  Lectures are here
–  The homework assignments are here

•  Mailing list:
– Announcements, group discussions
– Please subscribe

4

Textbook(s)

Main textbook:
•  Database Management Systems,

Ramakrishnan and Gehrke

Second textbook:
•  Database Systems: The Complete Book,

Garcia-Molina, Ullman, Widom

Most important: COME TO CLASS ! ASK QUESTIONS !

5

Other Texts
•  Fundamentals of Database Systems, Elmasri, Navathe

•  XQuery from the Experts, Katz, Ed.

•  Foundations of Databases, Abiteboul, Hull, Vianu

•  Data on the Web, Abiteboul, Buneman, Suciu

6

Course Format

•  Lectures Tuesdays, 6:30-9:20

•  7 Homework Assignments

•  Final

7

Grading

•  Homework Assignments: 70%

•  Final: 30%

8

7 Homework Assignments

1.  SQL (already posted)
2.  Conceptual Design (already posted)
3.  SQL in Java
4.  Transactions
5.  Database tuning
6.  Query optimization
7.  XQuery

Due: Tuesdays, every week, by email to Bhushan

9

Final

•  Need to reschedule the official date (June 11)

•  Proposed date for the final:

TUESDAY, JUNE 9, 2009, 6:30-8:20pm

•  If you can’t make it, let me know by email;
I’d like to make the date official next week

10

Outline of Today’s Lecture

1.  Overview of DBMS

2.  Course content

3.  SQL

11

Database

What is a database ?

Give examples of databases

12

Database

What is a database ?
•  A collection of files storing related data

Give examples of databases
•  Accounts database; payroll database; UW’s

students database; Amazon’s products
database; airline reservation database

13

Database Management System

What is a DBMS ?

Give examples of DBMS

14

Database Management System

What is a DBMS ?
•  A big C program written by someone else that

allows us to manage efficiently a large database
and allows it to persist over long periods of time

Give examples of DBMS
•  DB2 (IBM), SQL Server (MS), Oracle, Sybase
•  MySQL, Postgres, …

15

Market Shares

From 2004 www.computerworld.com

•  IMB: 35% market with $2.5BN in sales

•  Oracle: 33% market with $2.3BN in sales

•  Microsoft: 19% market with $1.3BN in sales

16

An Example

The Internet Movie Database
http://www.imdb.com

•  Entities:
Actors (800k), Movies (400k), Directors, …

•  Relationships:
who played where, who directed what, …

17

Tables

Actor: Cast:

Movie:

id fName lName gender

195428 Tom Hanks M
645947 Amy Hanks F

. . .

id Name year

337166 Toy Story 1995

.

pid mid

195428 337166
. . .

18

SQL

SELECT *
FROM Actor

19

SQL

SELECT count(*)
FROM Actor

This is an aggregate query

20

SQL

SELECT *
FROM Actor
WHERE lName = ‘Hanks’

This is a selection query

21

SQL
SELECT *
FROM Actor, Cast, Movie
WHERE lname='Hanks' and Actor.id = Cast.pid
 and Cast.mid=Movie.id and Movie.year=1995

This query has selections and joins

22

How Can We Evaluate the Query ?

Actor: Cast: Movie:
id fName lName gender

. . . Hanks

. . .

id Name year

. . . 1995

. . .

pid mid

. . .

. . .

Plan 1: [in class]

Plan 2: [in class]

23

Evaluating Tom Hanks

Actor Cast Movie

σlName=‘Hanks’ σyear=1995

Actor Cast Movie

σlName=‘Hanks’ σyear=1995

What Functionality Should a
DBMS Support ?

•  [in class]

24

What Functionality Should a
DBMS Support ?

1.  Data independence
2.  Efficient data access
3.  Data integrity and security
4.  Concurrent access
5.  Crash recovery

25

1. Data Independence

•  Separation between:
– Physical representation of the data
– Logical view of the data

•  The physical rep may change to improve
efficiency (add/drop index, etc)

•  Applications not affected: they see only the
logical view

26 Lectures 1,2

2. Efficient Data Access

•  Physical data storage: indexes, data
clustering

•  Query processing: efficient algorithms for
accessing/processing the data

•  Query optimization: choosing between
alternative, equivalent plans

27

Lectures 6, 7

3. Data Integrity and Security

•  Integrity: enforce application constraints
during database updates

•  Security: access control to the data

28

Lecture 3

4. Concurrency Control

29

X = Read(Account#1);
X.amount = X.amount - 100;
Write(Account#1, X);

Y = Read(Account#2);
Y.amount = Y.amount + 100;
Write(Account#2, Y);

X = Read(Account#2);
X.amount = X.amount - 30;
Write(Account#2, X);

Y = Read(Account#3);
Y.amount = Y.amount + 30;
Write(Account#3, Y);

User 1: User 2:

Lecture 4
What can go wrong ?

5. Recovery from Crashes

30

X = Read(Account#1);
X.amount = X.amount - 100;
Write(Account#1, X);

Y = Read(Account#2);
Y.amount = Y.amount + 100;
Write(Account#2, Y);

Lecture 5
What can go wrong ?

CRASH !

31

Data Management Beyond
DBMS

•  Other data formats:
–  Semistructured data: XML
–  XPath/XQuery

•  Large scale data processing
–  Stream processing
–  Advanced hashing techniques (min-hashes, LSH)
–  Sampling

Lectures 8, 9, 10

32

(An Example)

Quiz:
•  Alice sends Bob in random order all the numbers

1, 2, 3, …, 100000000000000000000
•  She does not repeat any number
•  But she misses exactly one number !
•  Help Bob find out which one is missing !
Solved it ? Try this:
•  As above, but Alice misses exactly ten numbers !

33

Lectures

1.  SQL (today)
2.  Database design, Normal Forms
3.  Constraints, Views, Security
4.  Transactions (recovery)
5.  Transactions (concurrency control)
6.  Data storage, indexes, physical tuning
7.  Query execution and optimization
8.  XML/Xpah/Xquery
9.  -- 10. Advanced topics

Homeworks
1.  SQL [SQL Server] 4/14
2. Conceptual Design 4/21
3.  SQL App [SQL Server + Postgres] 4/28
4. Transactions 5/5
5.  Database Tuning [Postgres] 5/19
6. Optimizations 5/26
7.  XQuery [Galax] 6/2

34

programming

theory

35

Accessing SQL Server
SQL Server Management Studio
•  Server Type = Database Engine
•  Server Name = IPROJSRV
•  Authentication = SQL Server Authentication

–  Login = your UW email address (not the CSE email)
–  Password = [login]_P544 Change it !

[See tunneling, MSDNAA]
Then play with IMDB, start working on HW 1

36

Today: SQL !

•  Datatypes in SQL
•  Simple Queries in SQL
•  Joins
•  Subqueries
•  Aggregates
•  Nulls
•  Outer joins

37

SQL

•  Data Definition Language (DDL)
– Create/alter/delete tables and their attributes
– Following lectures...

•  Data Manipulation Language (DML)
– Query one or more tables – discussed next !
–  Insert/delete/modify tuples in tables

38

Tables in SQL

PName Price Category Manufacturer

Gizmo $19.99 Gadgets GizmoWorks

Powergizmo $29.99 Gadgets GizmoWorks

SingleTouch $149.99 Photography Canon

MultiTouch $203.99 Household Hitachi

Product

Attribute names Table name

Tuples or rows

Key

39

Data Types in SQL

•  Atomic types:
– Characters: CHAR(20), VARCHAR(50)
– Numbers: INT, BIGINT, SMALLINT, FLOAT
– Others: MONEY, DATETIME, …

•  Record (aka tuple)
– Has atomic attributes

•  Table (relation)
– A set of tuples

40

Simple SQL Query
PName Price Category Manufacturer

Gizmo $19.99 Gadgets GizmoWorks

Powergizmo $29.99 Gadgets GizmoWorks

SingleTouch $149.99 Photography Canon

MultiTouch $203.99 Household Hitachi

SELECT *
FROM Product
WHERE category=‘Gadgets’

Product

PName Price Category Manufacturer

Gizmo $19.99 Gadgets GizmoWorks

Powergizmo $29.99 Gadgets GizmoWorks “selection”

41

Simple SQL Query
PName Price Category Manufacturer

Gizmo $19.99 Gadgets GizmoWorks

Powergizmo $29.99 Gadgets GizmoWorks

SingleTouch $149.99 Photography Canon

MultiTouch $203.99 Household Hitachi

SELECT PName, Price, Manufacturer
FROM Product
WHERE Price > 100

Product

PName Price Manufacturer

SingleTouch $149.99 Canon

MultiTouch $203.99 Hitachi
“selection” and

“projection”

42

Details

•  Case insensitive:
– SELECT = Select = select
– Product = product
– BUT: ‘Seattle’ ≠ ‘seattle’

•  Constants:
–  ‘abc’ - yes
–  “abc” - no

43

Eliminating Duplicates

SELECT DISTINCT category
FROM Product

Compare to:

SELECT category
FROM Product

Category

Gadgets

Gadgets

Photography

Household

Category

Gadgets

Photography

Household

44

Ordering the Results

SELECT pname, price, manufacturer
FROM Product
WHERE category=‘gizmo’ AND price > 50
ORDER BY price, pname

Ties are broken by the second attribute on the ORDER BY list, etc.

Ordering is ascending, unless you specify the DESC keyword.

45

SELECT Category
FROM Product
ORDER BY PName

PName Price Category Manufacturer

Gizmo $19.99 Gadgets GizmoWorks

Powergizmo $29.99 Gadgets GizmoWorks

SingleTouch $149.99 Photography Canon

MultiTouch $203.99 Household Hitachi

?
SELECT DISTINCT category
FROM Product
ORDER BY category

SELECT DISTINCT category
FROM Product
ORDER BY PName

?
?

46

Keys and Foreign Keys

PName Price Category Manufacturer
Gizmo $19.99 Gadgets GizmoWorks

Powergizmo $29.99 Gadgets GizmoWorks
SingleTouch $149.99 Photography Canon
MultiTouch $203.99 Household Hitachi

Product

Company

CName StockPrice Country

GizmoWorks 25 USA

Canon 65 Japan

Hitachi 15 Japan

Key

Foreign
key

47

Joins
Product (pname, price, category, manufacturer)
Company (cname, stockPrice, country)

Find all products over $100 manufactured in Japan;
return their names and prices.

SELECT PName, Price
FROM Product, Company
WHERE Manufacturer=CName AND Country=‘Japan’
 AND Price >= 100

Join
between Product

and Company

48

Joins

PName Price Category Manufacturer

Gizmo $19.99 Gadgets GizmoWorks

Powergizmo $29.99 Gadgets GizmoWorks

SingleTouch $149.99 Photography Canon

MultiTouch $203.99 Household Hitachi

Product Company

Cname StockPrice Country

GizmoWorks 25 USA

Canon 65 Japan

Hitachi 15 Japan

PName Price

SingleTouch $149.99

SELECT PName, Price
FROM Product, Company
WHERE Manufacturer=CName AND Country=‘Japan’
 AND Price >= 100

49

In Class
Product (pname, price, category, cname)
Company (cname, stockPrice, country)

Find all Chinese companies that manufacture products in
the ‘toy’ category

SELECT cname

FROM

WHERE

50

In Class
Product (pname, price, category, cname)
Company (cname, stockPrice, country)

Find all Chinese companies that manufacture products
both in the ‘electronic’ and ‘toy’ categories

SELECT cname

FROM

WHERE

51

In Class
Product (pname, price, category, cname)
Company (cname, stockPrice, country)

Find all Chinese companies that manufacture products
both in the ‘electronic’ and ‘toy’ categories

SELECT z.cname

FROM Product x, Product y, Company z
WHERE x.cname=z.cname and y.cname=z.cname and
 x.category=‘electronic’ and y.category=‘toy’

Tuple
variables

52

Meaning (Semantics) of SQL
Queries

SELECT a1, a2, …, ak
FROM R1 AS x1, R2 AS x2, …, Rn AS xn
WHERE Conditions

Answer = {}
for x1 in R1 do
 for x2 in R2 do
 …..
 for xn in Rn do
 if Conditions
 then Answer = Answer ∪ {(a1,…,ak)}
return Answer

53

SELECT DISTINCT R.A
FROM R, S, T
WHERE R.A=S.A OR R.A=T.A

Using the Formal Semantics

Returns R ∩ (S ∪ T)
if S ≠ φ and T ≠ φ

What do these queries compute ?

SELECT DISTINCT R.A
FROM R, S
WHERE R.A=S.A

Returns R ∩ S

54

Subqueries

A subquery (aka nested query) may occur in:
1.  A SELECT clause
2.  A FROM clause
3.  A WHERE clause

Rule of thumb: avoid nested queries when
possible; sometimes cannot avoid them

55

1. Subqueries in SELECT

Product (pname, price, company)
Company(cname, city)

For each product return the city where it is manufactured

SELECT X.pname, (SELECT Y.city
 FROM Company Y
 WHERE Y.cname=X.company)
FROM Product X

What happens if the subquery returns more than one city ?

56

1. Subqueries in SELECT

Product (pname, price, company)
Company(cname, city)

Whenever possible, don’t use a nested queries:

SELECT pname, (SELECT city FROM Company WHERE cname=company)
FROM Product

SELECT pname, city
FROM Product, Company
WHERE cname=company

= We have
“unnested”
the query

57

1. Subqueries in SELECT

Product (pname, price, company)
Company(cname, city)

Compute the number of products made in each city

SELECT DISTINCT city, (SELECT count(*)
 FROM Product
 WHERE cname=company)
FROM Company

Better: we can unnest by using a GROUP BY (later)

58

2. Subqueries in FROM

Product (pname, price, company)
Company(cname, city)

Find all products whose prices is > 20 and < 30

SELECT x.city
FROM (SELECT * FROM Product WHERE price > 20) AS x
WHERE x.price < 30

Unnest this query !

59

3. Subqueries in WHERE

Product (pname, price, company)
Company(cname, city)

Find all cities that make some products with price < 100

SELECT DISTINCT Company.city
FROM Company
WHERE EXISTS (SELECT *
 FROM Product
 WHERE company = cname and Produc.price < 100)

Existential quantifiers

Using EXISTS:

60

3. Subqueries in WHERE

Product (pname, price, company)
Company(cname, city)

Find all cities that make some products with price < 100

SELECT DISTINCT Company.city
FROM Company
WHERE Company.cname IN (SELECT Product.company
 FROM Product
 WHERE Produc.price < 100)

Existential quantifiers

Using IN

61

3. Subqueries in WHERE

Product (pname, price, company)
Company(cname, city)

Find all cities that make some products with price < 100

SELECT DISTINCT Company.city
FROM Company
WHERE 100 > ANY (SELECT price
 FROM Product
 WHERE company = cname)

Existential quantifiers

Using ANY:

62

3. Subqueries in WHERE

Product (pname, price, company)
Company(cname, city)

Find all cities that make some products with price < 100

SELECT DISTINCT Company.cname
FROM Company, Product
WHERE Company.cname = Product.company and Product.price < 100

Existential quantifiers are easy !

Existential quantifiers

Now let’s unnest it:

63

3. Subqueries in WHERE

Product (pname, price, company)
Company(cname, city)

Find all cities with companies where all products have price < 100

Universal quantifiers are hard !

Find all cities with companies
 that make only products with price < 100

same as:

Universal quantifiers

64

3. Subqueries in WHERE

2. Now, find all companies s.t. all their products have price < 100

1. Find the other companies: i.e. s.t. some product ≥ 100

SELECT DISTINCT Company.city
FROM Company
WHERE Company.cname IN (SELECT Product.company
 FROM Product
 WHERE Produc.price >= 100

SELECT DISTINCT Company.city
FROM Company
WHERE Company.cname NOT IN (SELECT Product.company
 FROM Product
 WHERE Produc.price >= 100

65

3. Subqueries in WHERE

Product (pname, price, company)
Company(cname, city)

Find all cities with companies
 that make only products with price < 100

SELECT DISTINCT Company.city
FROM Company
WHERE NOT EXISTS (SELECT *
 FROM Product
 WHERE company = cname and Produc.price >= 100)

Universal quantifiers

Using EXISTS:

66

3. Subqueries in WHERE

Product (pname, price, company)
Company(cname, city)

Find all cities that make some products with price < 100

SELECT DISTINCT Company.city
FROM Company
WHERE 100 > ALL (SELECT price
 FROM Product
 WHERE company = cname)

Universal quantifiers

Using ALL:

67

Question for Database Fans
and their Friends

•  Can we unnest the universal quantifier query ?

68

Monotone Queries

•  A query Q is monotone if:
–  Whenever we add tuples to one or more of the tables…
–  … the answer to the query cannot contain fewer tuples

•  Fact: all unnested queries are monotone
–  Proof: using the “nested for loops” semantics

•  Fact: A query a universal quantifier is not monotone

Rule of Thumb

69

Non-monotone queries cannot be
unnested. In particular, queries
with universal cannot be unnested

70

The drinkers-bars-beers example
Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

Find drinkers that frequent some bar that serves some beer they like.

Find drinkers that frequent only bars that serves some beer they like.

Find drinkers that frequent only bars that serves only beer they like.

x: ∃y. ∃z. Frequents(x, y)∧Serves(y,z)∧Likes(x,z)

x: ∀y. Frequents(x, y)⇒ (∃z. Serves(y,z)∧Likes(x,z))

x: ∀y. Frequents(x, y)⇒ ∀z.(Serves(y,z) ⇒ Likes(x,z))

Challenge: write these in SQL

Find drinkers that frequent some bar that serves only beers they like.
x: ∃y. Frequents(x, y)∧∀z.(Serves(y,z) ⇒ Likes(x,z))

71

Aggregation
SELECT count(*)
FROM Product
WHERE year > 1995

Except count, all aggregations apply to a single attribute

SELECT avg(price)
FROM Product
WHERE maker=‘Toyota’

SQL supports several aggregation operations:

sum, count, min, max, avg

72

COUNT applies to duplicates, unless otherwise stated:

SELECT Count(category)
FROM Product
WHERE year > 1995

Almost the same as Count(*):
•  count(category) does
 not count any category = NULL

We probably want:

SELECT Count(DISTINCT category)
FROM Product
WHERE year > 1995

Aggregation: Count

73

Grouping and Aggregation
Purchase(product, price, quantity)

SELECT product, Sum(quantity) AS TotalSales
FROM Purchase
WHERE price > 1
GROUP BY product

Let’s see what this means…

Find total quantities for all sales over $1, by product.

74

Grouping and Aggregation

1. Compute the FROM and WHERE clauses.

2. Group by the attributes in the GROUPBY

3. Compute the SELECT clause: grouped attributes and aggregates.

75

1&2. FROM-WHERE-GROUPBY

Product Price Quantity
Bagel 3 20
Bagel 1.50 20

Banana 0.5 50
Banana 2 10
Banana 4 10

76

3. SELECT

SELECT product, Sum(quantity) AS TotalSales
FROM Purchase
WHERE price > 1
GROUP BY product

Product TotalSales

Bagel 40

Banana 20

Product Price Quantity
Bagel 3 20
Bagel 1.50 20

Banana 0.5 50
Banana 2 10
Banana 4 10

77

GROUP BY v.s. Nested Quereis

SELECT product, Sum(quantity) AS TotalSales
FROM Purchase
WHERE price > 1
GROUP BY product

SELECT DISTINCT x.product, (SELECT Sum(y.quantity)
 FROM Purchase y
 WHERE x.product = y.product
 AND y.price > 1)
 AS TotalSales
FROM Purchase x
WHERE x.price > 1

Why twice ?

Purchase(product, price, quantity)

78

Rule of Thumb

Every group in a GROUP BY is non-empty !
If we want to include empty groups in the
output, then we need either a subquery, or
a left outer join (see later)

SELECT R.A, count(*)
FROM R
WHERE R.B < 55
GROUP BY R.A

Always > 0
(Why ?)

79

HAVING Clause

SELECT product, Sum(quantity)
FROM Purchase
WHERE price > 1
GROUP BY product
HAVING Sum(quantity) > 30

Same query, except that we consider only products that had
at least 100 buyers.

HAVING clause contains conditions on aggregates.

80

General form of Grouping and
Aggregation

SELECT S
FROM R1,…,Rn
WHERE C1
GROUP BY a1,…,ak
HAVING C2

S = may contain attributes a1,…,ak and/or any aggregates but
NO OTHER ATTRIBUTES

C1 = is any condition on the attributes in R1,…,Rn
C2 = is any condition on aggregate expressions

Why ?

81

General form of Grouping and
Aggregation

Evaluation steps:
Evaluate FROM-WHERE, apply condition C1
Group by the attributes a1,…,ak
Apply condition C2 to each group (may have aggregates)
Compute aggregates in S and return the result

SELECT S
FROM R1,…,Rn
WHERE C1
GROUP BY a1,…,ak
HAVING C2

82

Advanced SQLizing

1.  INTERSECT and EXCEPT

2.  Unnesting Aggregates

3.  Finding witnesses

83

INTERSECT and EXCEPT:

(SELECT R.A, R.B
FROM R)
 INTERSECT
(SELECT S.A, S.B
FROM S)

SELECT R.A, R.B
FROM R
WHERE
 EXISTS(SELECT *
 FROM S
 WHERE R.A=S.A and R.B=S.B)

(SELECT R.A, R.B
FROM R)
 EXCEPT
(SELECT S.A, S.B
FROM S)

SELECT R.A, R.B
FROM R
WHERE
 NOT EXISTS(SELECT *
 FROM S
 WHERE R.A=S.A and R.B=S.B)

Can unnest.
How ?

INTERSECT and EXCEPT: not in some DBMS

=

=

84

Unnesting Aggregates

Product (pname, price, company)
Company(cname, city)

Find the number of companies in each city

SELECT DISTINCT city, (SELECT count(*)
 FROM Company Y
 WHERE X.city = Y.city)
FROM Company X

SELECT city, count(*)
FROM Company
GROUP BY cname, city

Equivalent queries

Note: no need for DISTINCT
(DISTINCT is the same as GROUP BY)

85

Unnesting Aggregates

Product (pname, price, company)
Company(cname, city)

Find the number of products made in each city

SELECT DISTINCT X.city, (SELECT count(*)
 FROM Product Y, Company Z
 WHERE Y.cname=X.company
 AND Z.city = X.city)
FROM Company X

SELECT X.city, count(*)
FROM Company X, Product Y
WHERE X.cname=Y.company
GROUP BY X.city

They are NOT
equivalent !

(WHY?)

86

More Unnesting

•  Find authors who wrote ≥ 10 documents:
•  Attempt 1: with nested queries

SELECT DISTINCT Author.name
FROM Author
WHERE (SELECT count(Wrote.url)
 FROM Wrote
 WHERE Author.login=Wrote.login)
 > 10

This is
SQL by
a novice

Author(login,name)
Wrote(login,url)

87

More Unnesting

•  Find all authors who wrote at least 10
documents:

•  Attempt 2: SQL style (with GROUP BY)

SELECT Author.name
FROM Author, Wrote
WHERE Author.login=Wrote.login
GROUP BY Author.name
HAVING count(wrote.url) > 10

This is
SQL by
an expert

88

Finding Witnesses

Store(sid, sname)
Product(pid, pname, price, sid)

For each store,
find its most expensive products

89

Finding Witnesses

SELECT Store.sid, max(Product.price)
FROM Store, Product
WHERE Store.sid = Product.sid
GROUP BY Store.sid

Finding the maximum price is easy…

But we need the witnesses, i.e. the products with max price

90

Finding Witnesses

SELECT Store.sname, Product.pname
FROM Store, Product,
 (SELECT Store.sid AS sid, max(Product.price) AS p
 FROM Store, Product
 WHERE Store.sid = Product.sid
 GROUP BY Store.sid) X
WHERE Store.sid = Product.sid
 and Store.sid = X.sid and Product.price = X.p

To find the witnesses, compute the maximum price
in a subquery

91

Finding Witnesses
There is a more concise solution here:

SELECT Store.sname, x.pname
FROM Store, Product x
WHERE Store.sid = x.sid and
 x.price >=
 ALL (SELECT y.price
 FROM Product y
 WHERE Store.sid = y.sid)

92

NULLS in SQL

•  Whenever we don’t have a value, we can put a NULL
•  Can mean many things:

–  Value does not exists
–  Value exists but is unknown
–  Value not applicable
–  Etc.

•  The schema specifies for each attribute if can be null
(nullable attribute) or not

•  How does SQL cope with tables that have NULLs ?

93

Null Values

•  If x= NULL then 4*(3-x)/7 is still NULL

•  If x= NULL then x=‘Joe’ is UNKNOWN
•  In SQL there are three boolean values:

FALSE = 0
UNKNOWN = 0.5
TRUE = 1

94

Null Values
C1 AND C2 = min(C1, C2)
C1 OR C2 = max(C1, C2)
NOT C1 = 1 – C1

Rule in SQL: include only tuples that yield TRUE

SELECT *
FROM Person
WHERE (age < 25) AND
 (height > 6 OR weight > 190)

E.g.
age=20
heigth=NULL
weight=200

95

Null Values
Unexpected behavior:

Some Persons are not included !

SELECT *
FROM Person
WHERE age < 25 OR age >= 25

96

Null Values
Can test for NULL explicitly:

x IS NULL
x IS NOT NULL

Now it includes all Persons

SELECT *
FROM Person
WHERE age < 25 OR age >= 25 OR age IS NULL

Outerjoins

97

SELECT Product.name, Purchase.store
FROM Product JOIN Purchase ON
 Product.name = Purchase.prodName

SELECT Product.name, Purchase.store
FROM Product, Purchase
WHERE Product.name = Purchase.prodName

Same as:

But Products that never sold will be lost !

Product(name, category)
Purchase(prodName, store)

An “inner join”:

Outerjoins

98

 SELECT Product.name, Purchase.store
 FROM Product LEFT OUTER JOIN Purchase ON
 Product.name = Purchase.prodName

Product(name, category)
Purchase(prodName, store)

If we want the never-sold products, need an “outerjoin”:

99

Name Category

Gizmo gadget

Camera Photo

OneClick Photo

ProdName Store

Gizmo Wiz

Camera Ritz

Camera Wiz

Name Store

Gizmo Wiz

Camera Ritz

Camera Wiz

OneClick NULL

Product Purchase

100

Application
Compute, for each product, the total number of sales in ‘September’

 Product(name, category)
 Purchase(prodName, month, store)

 SELECT Product.name, count(*)
 FROM Product, Purchase
 WHERE Product.name = Purchase.prodName
 and Purchase.month = ‘September’
 GROUP BY Product.name

What’s wrong ?

101

Application
Compute, for each product, the total number of sales in ‘September’

 Product(name, category)
 Purchase(prodName, month, store)

 SELECT Product.name, count(store)
 FROM Product LEFT OUTER JOIN Purchase ON
 Product.name = Purchase.prodName
 and Purchase.month = ‘September’
 GROUP BY Product.name

Now we also get the products who sold in 0 quantity

Need to use
attribute to
get correct
zero count

102

Outer Joins

•  Left outer join:
–  Include the left tuple even if there’s no match

•  Right outer join:
–  Include the right tuple even if there’s no match

•  Full outer join:
–  Include the both left and right tuples even if there’s no

match

