Lecture 02:
 Conceptual Design,
 Normal Forms

Tuesday, April 7, 2009

Outline

- Chapter 2: Database design
- Chapter 19: Normal forms

Note: slides for Lecture 1 have been updated. Please reprint.

Database Design

- Requirements analysis
- Discussions with user groups
- Conceptual database design
- E/R model
- Logical Database design
- Database normalization

Entity / Relationship Diagrams

- Entities:

Product

- Attributes:

- Relationships:

Keys in E/R Diagrams

- Every entity set must have a key

What is a Relation?

- A mathematical definition:
- if A, B are sets, then a relation R is a subset of $\mathrm{A} \times \mathrm{B}$
- $\mathrm{A}=\{1,2,3\}, \mathrm{B}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}$,

$$
\begin{aligned}
& \mathrm{A} \times \mathrm{B}=\{(1, \mathrm{a}),(1, \mathrm{~b}), \ldots,(3, \mathrm{~d})\} \mathrm{A}= \\
& \mathrm{R}=\{(1, \mathrm{a}),(1, \mathrm{c}),(3, \mathrm{~b})\}
\end{aligned}
$$

- makes is a subset of Product \times Company:

Multiplicity of E / R Relations

- one-one:
- many-one

- many-many

Note: "many-one" actually means "many-[zero-or-one]"

Notation in Class v.s. the Book

In class:

In the book:

Multi-way Relationships

How do we model a purchase relationship between buyers, products and stores?

Arrows in Multiway Relationships

Q: what does the arrow mean ?

A: a given person buys a given product from at most one store

Arrows in Multiway Relationships

Q: what does the arrow mean?

A: a given person buys a given product from at most one store AND every store sells to every person at most one product

Arrows in Multiway Relationships

Q: How do we say that every person shops at at most one store?

A: cannot. This is the best approximation. (Why only approximation ?)

Reification: Multi-way to Binary

3. Design Principles

What's wrong?

Design Principles: What's Wrong?

Design Principles: What's Wrong?

From E/R Diagrams to Relational Schema

- Entity set \rightarrow relation
- Relationship \rightarrow relation

Entity Set to Relation

Product

Name	Category	Price
Gizmo	Gadgets	$\$ 19.99$

Relationships to Relations

Makes

ProdName	ProdCategory	CompanyName	StartYear
Gizmo	Gadgets	gizmoWorks	1963

(watch out for attribute name conflicts)

Relationships to Relations

No need for Makes. Modify Product:

Name	Category	Price	CompanyName	StartYear
Gizmo	Gadgets	$\$ 19.99$	gizmoWorks	1963

Multi-way Relationships to Relations

Modeling Subclasses

Some objects in a class may be special

- define a new class
- better: define a subclass

So --- we define subclasses in E / R

Subclasses

Understanding Subclasses

- Think in terms of records:
- Product

field1
field2

- SoftwareProduct
- EducationalProduct
field1
field2
field3

field1
field2
field4
field5

Subclasses to Relations

Difference between OO and E/R inheritance

- OO: classes are disjoint (same for Java, C++)

Difference between OO and E/R inheritance

- E/R: entity sets overlap

No need for multiple inheritance in E / R

We have three entity sets, but four different kinds of objects.

Modeling UnionTypes With Subclasses

FurniturePiece

```
Person
```

Company

Say: each piece of furniture is owned either by a person, or by a company

Modeling Union Types with Subclasses

Say: each piece of furniture is owned either by a person, or by a company
Solution 1. Acceptable, imperfect (What's wrong ?)

Modeling Union Types with Subclasses

Solution 2: better, more laborious
 in homework 2 !

Constraints in E/R Diagrams

- Key constraints
- Single value constraints
- Referential integrity constraints
- Cardinality constraints

Keys in E/R Diagrams

In E / R diagrams each entity set must have exactly one key (consisting of one or more attributes)

Single Value Constraints

V. S.

Referential Integrity Constraints

Each product made by at most one company.
Some products made by no company

Each product made by exactly one company.

Cardinality Constraints

What does this mean?

Weak Entity Sets

Weak entity set = entity where part of the key comes from another

Convert to a relational schema (in class)

What Are the Keys of R ?

Schema Refinements $=$ Normal Forms

- 1st Normal Form = all tables are flat
- 2nd Normal Form = obsolete
- Boyce Codd Normal Form = will study
- 3rd Normal Form = see book

First Normal Form (1NF)

- A database schema is in First Normal Form if all tables are flat

Student

Name	GPA	Courses
Alice	3.8	Math DB os Bob 3.7 Carol 3.9 os
Math		

Student

Name	GPA
Alice	3.8
Bob	3.7
Carol	3.9

Takes

Student	Course		
Alice	Course		
Carol	Math		
Alice	DB		
Bob	DB		
Alice	OS		
Carol	OS	\quad	Course
:---			
Math			
DB			
OS			

Relational Schema Design

Conceptual Model:

Relational Model: plus FD's

Normalization: Eliminates anomalies

Data Anomalies

When a database is poorly designed we get anomalies:

Redundancy: data is repeated

Updated anomalies: need to change in several places

Delete anomalies: may lose data when we don't want

Relational Schema Design

Recall set attributes (persons with several phones):

Name	SSN	PhoneNumber	City
Fred	$123-45-6789$	$206-555-1234$	Seattle
Fred	$123-45-6789$	$206-555-6543$	Seattle
Joe	$987-65-4321$	$908-555-2121$	Westfield

One person may have multiple phones, but lives in only one city

Anomalies:

- Redundancy = repeat data
- Update anomalies = Fred moves to "Bellevue"
- Deletion anomalies $=$ Joe deletes his phone number: what is his city?

Relation Decomposition

Break the relation into two:

	Name Fred Fred Joe	SSN
		123-45-6789
		123-45-6789
		987-65-4321
Name	SSN	City
Fred	123-45-6789	Seattle
Joe	987-65-4321	Westfield

Anomalies have gone:

SSN	$\underline{\text { PhoneNumber }}$
$123-45-6789$	$206-555-1234$
$123-45-6789$	$206-555-6543$
$987-65-4321$	$908-555-2121$

- No more repeated data
- Easy to move Fred to "Bellevue" (how ?)
- Easy to delete all Joe's phone number (how?)

Relational Schema Design (or Logical Design)

Main idea:

- Start with some relational schema
- Find out its functional dependencies
- Use them to design a better relational schema

Functional Dependencies

- A form of constraint
- hence, part of the schema
- Finding them is part of the database design
- Also used in normalizing the relations

Functional Dependencies

Definition:

If two tuples agree on the attributes

$$
\mathrm{A}_{1}, \mathrm{~A}_{2}, \ldots, \mathrm{~A}_{\mathrm{n}}
$$

then they must also agree on the attributes

$$
\mathrm{B}_{1}, \mathrm{~B}_{2}, \ldots, \mathrm{~B}_{\mathrm{m}}
$$

Formally:

$$
\mathrm{A}_{1}, \mathrm{~A}_{2}, \ldots, \mathrm{~A}_{\mathrm{n}} \rightarrow \mathrm{~B}_{1}, \mathrm{~B}_{2}, \ldots, \mathrm{~B}_{\mathrm{m}}
$$

When Does an FD Hold

Definition: $\quad A_{1}, \ldots, A_{m} \rightarrow B_{1}, \ldots, B_{n}$ holds in R if:
$\forall \mathrm{t}, \mathrm{t}^{\prime} \in \mathrm{R},\left(\mathrm{t} . \mathrm{A}_{1}=\mathrm{t}^{\prime} . \mathrm{A}_{1} \wedge \ldots \wedge \mathrm{t} . \mathrm{A}_{\mathrm{m}}=\mathrm{t}^{\prime} . \mathrm{A}_{\mathrm{m}} \Rightarrow \mathrm{t} . \mathrm{B}_{1}=\mathrm{t}^{\prime} . \mathrm{B}_{1} \wedge \ldots \wedge \mathrm{t} . \mathrm{B}_{\mathrm{n}}=\mathrm{t}^{\prime} . \mathrm{B}_{\mathrm{n}}\right)$

if t, t ' agree here then t, t agree here

Examples

An FD holds, or does not hold on an instance:

EmpID	Name	Phone	Position
E0045	Smith	1234	Clerk
E3542	Mike	9876	Salesrep
E1111	Smith	9876	Salesrep
E9999	Mary	1234	Lawyer

EmpID \rightarrow Name, Phone, Position
Position \rightarrow Phone
but not Phone \rightarrow Position

Example

EmpID	Name	Phone	Position
E0045	Smith	1234	Clerk
E3542	Mike	$9876 \leftarrow$	Salesrep
E1111	Smith	$9876 \leftarrow$	Salesrep
E9999	Mary	1234	Lawyer

Position \rightarrow Phone

Example

EmpID	Name	Phone	Position
E0045	Smith	$1234 \rightarrow$	Clerk
E3542	Mike	9876	Salesrep
E1111	Smith	9876	Salesrep
E9999	Mary	$1234 \rightarrow$	Lawyer

but not Phone \rightarrow Position

Example

FD's are constraints:

- On some instances they hold
- On others they don't

name	category	color	department	price
Gizmo	Gadget	Green	Toys	49
Tweaker	Gadget	Green	Toys	99

Does this instance satisfy all the FDs ?

Example

name \rightarrow color category \rightarrow department color, category \rightarrow price

name	category	color	department	price
Gizmo	Gadget	Green	Toys	49
Tweaker	Gadget	Black	Toys	99
Gizmo	Stationary	Green	Office-supp.	59

What about this one? (At home...)

An Interesting Observation

If all these FDs are true:
name \rightarrow color
category \rightarrow department
color, category \rightarrow price

Then this FD also holds:

$$
\text { name, category } \rightarrow \text { price }
$$

Goal: Find ALL Functional Dependencies

- Anomalies occur when certain "bad" FDs hold
- We know some of the FDs
- Need to find all FDs, then look for the bad ones

Armstrong's Rules (1/3)

$$
\mathrm{A}_{1}, \mathrm{~A}_{2}, \ldots, \mathrm{~A}_{\mathrm{n}} \rightarrow \mathrm{~B}_{1}, \mathrm{~B}_{2}, \ldots, \mathrm{~B}_{\mathrm{m}}
$$

Is equivalent to
Splitting rule
and
Combing rule

$$
\begin{gathered}
\mathrm{A}_{1}, \mathrm{~A}_{2}, \ldots, \mathrm{~A}_{\mathrm{n}} \rightarrow \mathrm{~B}_{1} \\
\mathrm{~A}_{1}, \mathrm{~A}_{2}, \ldots, \mathrm{~A}_{\mathrm{n}} \rightarrow \mathrm{~B}_{2} \\
\ldots \ldots \\
\mathrm{~A}_{1}, \mathrm{~A}_{2}, \ldots, \mathrm{~A}_{\mathrm{n}} \rightarrow \mathrm{~B}_{\mathrm{m}}
\end{gathered}
$$

Armstrong's Rules (2/3)

$$
\mathrm{A}_{1}, \mathrm{~A}_{2}, \ldots, \mathrm{~A}_{\mathrm{n}} \rightarrow \mathrm{~A}_{\mathrm{i}}
$$

Trivial Rule
where $\mathrm{i}=1,2, \ldots, \mathrm{n}$

Why ?

Armstrong's Rules (3/3)

Transitive Closure Rule

If

$$
\mathrm{A}_{1}, \mathrm{~A}_{2}, \ldots, \mathrm{~A}_{\mathrm{n}} \rightarrow \mathrm{~B}_{1}, \mathrm{~B}_{2}, \ldots, \mathrm{~B}_{\mathrm{m}}
$$

and

$$
\mathrm{B}_{1}, \mathrm{~B}_{2}, \ldots, \mathrm{~B}_{\mathrm{m}} \rightarrow \mathrm{C}_{1}, \mathrm{C}_{2}, \ldots, \mathrm{C}_{\mathrm{p}}
$$

then

$$
\mathrm{A}_{1}, \mathrm{~A}_{2}, \ldots, \mathrm{~A}_{\mathrm{n}} \rightarrow \mathrm{C}_{1}, \mathrm{C}_{2}, \ldots, \mathrm{C}_{\mathrm{p}}
$$

Why?

Example (continued)

Start from the following FDs:

1. name \rightarrow color
2. category \rightarrow department
3. color, category \rightarrow price

Infer the following FDs:

Inferred FD	Which Rule did we apply ?
4. name, category \rightarrow name	
5. name, category \rightarrow color	
6. name, category \rightarrow category	
7. name, category \rightarrow color, category	
8. name, category \rightarrow price	

Example (continued)

Answers:

Inferred FD	Which Rule did we apply ?
4. name, category \rightarrow name	Trivial rule
5. name, category \rightarrow color	Transitivity on 4, 1
6. name, category \rightarrow category	Trivial rule
7. name, category \rightarrow color, category	Split/combine on 5, 6
8. name, category \rightarrow price	Transitivity on 3, 7

THIS IS TOO HARD! Let's see an easier way.

Closure of a set of Attributes

Given a set of attributes A_{1}, \ldots, A_{n}
The closure, $\left\{\mathrm{A}_{1}, \ldots, \mathrm{~A}_{\mathrm{n}}\right\}^{+}=$the set of attributes B

$$
\text { s.t. } A_{1}, \ldots, A_{n} \rightarrow B
$$

Example:

Closures:

$$
\begin{aligned}
& \text { name } \rightarrow \text { color } \\
& \text { category } \rightarrow \text { department } \\
& \text { color, category } \rightarrow \text { price } \\
& \hline
\end{aligned}
$$

$$
\begin{aligned}
& \text { name }^{+}=\{\text {name, color }\} \\
& \{\text { name, category }\}^{+}=\{\text {name, category, color, department, price }\} \\
& \text { color }^{+}=\{\text {color }\}
\end{aligned}
$$

Closure Algorithm

$X=\{A 1, \ldots, A n\}$.
Repeat until X doesn't change do:
if $B_{1}, \ldots, B_{n} \rightarrow C$ is a FD and $\mathrm{B}_{1}, \ldots, \mathrm{~B}_{\mathrm{n}}$ are all in X then add C to X .

Example:

```
name }->\mathrm{ color
category }->\mathrm{ department color, category \(\rightarrow\) price
```

$\{\text { name, category }\}^{+}=$
\{ name, category, color, department, price \}
Hence: name, category \rightarrow color, department, price

Example

In class:
R(A,B,C,D,E,F)

$$
\begin{array}{|lll|}
\hline \mathrm{A}, \mathrm{~B} & \rightarrow & \mathrm{C} \\
\mathrm{~A}, \mathrm{D} & \rightarrow & \mathrm{E} \\
\mathrm{~B} & \rightarrow & \mathrm{D} \\
\mathrm{~A}, \mathrm{~F} & \rightarrow & \mathrm{~B} \\
\hline
\end{array}
$$

Compute $\{\mathrm{A}, \mathrm{B}\}^{+} \quad \mathrm{X}=\{\mathrm{A}, \mathrm{B}$,
Compute $\{\mathrm{A}, \mathrm{F}\}^{+} \quad \mathrm{X}=\{\mathrm{A}, \mathrm{F}$,

Why Do We Need Closure

- With closure we can find all FD's easily
- To check if $\mathrm{X} \rightarrow \mathrm{A}$
- Compute X^{+}
- Check if $\mathrm{A} \in \mathrm{X}^{+}$

Using Closure to Infer ALL FDs

Example:

$$
\begin{array}{|lll|}
\hline \mathrm{A}, \mathrm{~B} & \rightarrow & \mathrm{C} \\
\mathrm{~A}, \mathrm{D} & \rightarrow & \mathrm{~B} \\
\mathrm{~B} & \rightarrow & \mathrm{D} \\
\hline
\end{array}
$$

Step 1: Compute X^{+}, for every X :

$$
\begin{aligned}
& \mathrm{A}+=\mathrm{A}, \mathrm{~B}+=\mathrm{BD}, \mathrm{C}+=\mathrm{C}, \mathrm{D}+=\mathrm{D} \\
& \mathrm{AB}+=\mathrm{ABCD}, \mathrm{AC}+=\mathrm{AC}, \mathrm{AD}+=\mathrm{ABCD}, \\
& \mathrm{BC}+=\mathrm{BCD}, \mathrm{BD}+=\mathrm{BD}, \mathrm{CD}+=\mathrm{CD} \\
& \mathrm{ABC}+=\mathrm{ABD}+=\mathrm{ACD}^{+}=\mathrm{ABCD} \text { (no need to compute}- \text { why } ? \text {) } \\
& \mathrm{BCD}^{+}=\mathrm{BCD}, \mathrm{ABCD}+=\mathrm{ABCD}
\end{aligned}
$$

Step 2: Enumerate all FD's $\mathrm{X} \rightarrow \mathrm{Y}$, s.t. $\mathrm{Y} \subseteq \mathrm{X}^{+}$and $\mathrm{X} \cap \mathrm{Y}=\varnothing$:

$$
\mathrm{AB} \rightarrow \mathrm{CD}, \mathrm{AD} \rightarrow \mathrm{BC}, \mathrm{BC} \rightarrow \mathrm{D}
$$

Another Example

- Enrollment(student, major, course, room, time) student \rightarrow major
major, course \rightarrow room
course \rightarrow time

What else can we infer ? [in class, or at home]

Keys

- A superkey is a set of attributes A_{1}, \ldots, A_{n} s.t. for any other attribute B, we have $A_{1}, \ldots, A_{n} \rightarrow B$
- A key is a minimal superkey
- I.e. set of attributes which is a superkey and for which no subset is a superkey

Computing (Super)Keys

- Compute X^{+}for all sets X
- If $\mathrm{X}^{+}=$all attributes, then X is a key
- List only the minimal X's

Example

Product(name, price, category, color)

$$
\begin{array}{|l|}
\hline \text { name, category } \rightarrow \text { price } \\
\text { category } \rightarrow \text { color } \\
\hline
\end{array}
$$

What is the key?

Example

Product(name, price, category, color)

name, category \rightarrow price category \rightarrow color

What is the key?
(name, category) $+=$ name, category, price, color
Hence (name, category) is a key

Examples of Keys

Enrollment(student, address, course, room, time)

student \rightarrow address
room, time \rightarrow course
student, course \rightarrow room, time

(find keys at home)

Eliminating Anomalies

Main idea:

- $\mathrm{X} \rightarrow \mathrm{A}$ is OK if X is a (super)key
- $\mathrm{X} \rightarrow \mathrm{A}$ is not OK otherwise

Example

Name	SSN	PhoneNumber	City
Fred	$123-45-6789$	$206-555-1234$	Seattle
Fred	$123-45-6789$	$206-555-6543$	Seattle
Joe	$987-65-4321$	$908-555-2121$	Westfield
Joe	$987-65-4321$	$908-555-1234$	Westfield

SSN \rightarrow Name, City

What the key?
\{SSN, PhoneNumber\}
Hence SSN \rightarrow Name, City is a "bad" dependency

Key or Keys ?

Can we have more than one key?

Given $R(A, B, C)$ define FD's s.t. there are two or more keys

Key or Keys ?

Can we have more than one key?

Given $R(A, B, C)$ define FD's s.t. there are two or more keys
$\mathrm{AB} \rightarrow \mathrm{C}$
$\mathrm{BC} \rightarrow \mathrm{A}$

what are the keys here?
Can you design FDs such that there are three keys?

Boyce-Codd Normal Form

A simple condition for removing anomalies from relations:

A relation R is in BCNF if:

If $A_{1}, \ldots, A_{n} \rightarrow B$ is a non-trivial dependency
in R, then $\left\{A_{1}, \ldots, A_{n}\right\}$ is a superkey for R

In other words: there are no "bad" FDs

Equivalently:
$\forall \mathrm{X}$, either $\left(\mathrm{X}^{+}=\mathrm{X}\right) \quad$ or $\quad\left(\mathrm{X}^{+}=\right.$all attributes $)$

BCNF Decomposition Algorithm

repeat

choose $A_{1}, \ldots, A_{m} \rightarrow B_{1}, \ldots, B_{n}$ that violates BNCF
split R into $R_{1}\left(A_{1}, \ldots, A_{m}, B_{1}, \ldots, B_{n}\right)$ and $R_{2}\left(A_{1}, \ldots, A_{m}\right.$, [others]) continue with both R_{1} and R_{2}
until no more violations

Is there a
 2-attribute
 relation that is not in BCNF?

In practice, we have a better algorithm (coming ${ }^{80}$ up)

Example

Name	SSN	PhoneNumber	City
Fred	$123-45-6789$	$206-555-1234$	Seattle
Fred	$123-45-6789$	$206-555-6543$	Seattle
Joe	$987-65-4321$	$908-555-2121$	Westfield
Joe	$987-65-4321$	$908-555-1234$	Westfield

SSN \rightarrow Name, City

What the key?
\{SSN, PhoneNumber\} use SSN \rightarrow Name, City to split

Example

Name	SSN	City
SSN \rightarrow Name, City		
	$123-45-6789$	Seattle
Joe	$987-65-4321$	Westfield

SSN	PhoneNumber
$123-45-6789$	$206-555-1234$
$123-45-6789$	$206-555-6543$
$987-65-4321$	$908-555-2121$
$987-65-4321$	$908-555-1234$

Let's check anomalies:

- Redundancy?
- Update?
-Delete ?

BCNF Decomposition Algorithm

BCNF_Decompose(R)
find X s.t.: $\mathrm{X} \neq \mathrm{X}^{+} \neq[$all attributes $]$
if (not found) then " R is in BCNF"
let $\mathrm{Y}=\mathrm{X}^{+}-\mathrm{X}$
let $\mathrm{Z}=$ [all attributes $]-\mathrm{X}^{+}$
decompose R into $\mathrm{R} 1(\mathrm{X} \cup \mathrm{Y})$ and $\mathrm{R} 2(\mathrm{X} \cup \mathrm{Z})$ continue to decompose recursively R1 and R2

Find X s.t.: $\mathrm{X} \neq \mathrm{X}^{+} \neq[$all attributes $]$

Example BCNF Decomposition

Person(name, SSN, age, hairColor, phoneNumber)
SSN \rightarrow name, age
age \rightarrow hairColor

In class....

Find X s.t.: $\mathrm{X} \neq \mathrm{X}^{+} \neq[$all attributes $]$

Example BCNF Decomposition

```
    SSN }->\mathrm{ name, age
    age }->\mathrm{ hairColor
```

Person(name, SSN, age, hairColor, phoneNumber)
Iteration 1: Person
SSN+ = SSN, name, age, hairColor
Decompose into: P(SSN, name, age, hairColor)
Phone(SSN, phoneNumber)

Iteration 2: P
age $+=$ age, hairColor
Decompose: People(SSN, name, age) Hair(age, hairColor) Phone(SSN, phoneNumber)

What are the keys?

R(A,B,C,D)

Example

$$
\begin{aligned}
& \mathrm{A} \rightarrow \mathrm{~B} \\
& \mathrm{~B} \rightarrow \mathrm{C}
\end{aligned}
$$

What happens if in R we first pick B^{+}? Or AB^{+}?

Decompositions in General

$\mathrm{R}_{1}=$ projection of R on $\mathrm{A}_{1}, \ldots, \mathrm{~A}_{\mathrm{n}}, \mathrm{B}_{1}, \ldots, \mathrm{~B}_{\mathrm{m}}$
$\mathrm{R}_{2}=$ projection of R on $\mathrm{A}_{1}, \ldots, \mathrm{~A}_{\mathrm{n}}, \mathrm{C}_{1}, \ldots, \mathrm{C}_{\mathrm{p}}$

Theory of Decomposition

- Sometimes it is correct:

Name	Price	Category
Gizmo	19.99	Gadget
OneClick	24.99	Camera
Gizmo	19.99	Camera

Lossless decomposition

Incorrect Decomposition

- Sometimes it is not:

Decompositions in General

$$
\text { If } \mathrm{A}_{1}, \ldots, \mathrm{~A}_{\mathrm{n}} \rightarrow \mathrm{~B}_{1}, \ldots, \mathrm{~B}_{\mathrm{m}}
$$

Then the decomposition is lossless
Note: don't need $\mathrm{A}_{1}, \ldots, \mathrm{~A}_{\mathrm{n}} \rightarrow \mathrm{C}_{1}, \ldots, \mathrm{C}_{\mathrm{p}}$

