Lecture 02: Conceptual Design, Normal Forms

Tuesday, April 7, 2009

1

Outline

- Chapter 2: Database design
- Chapter 19: Normal forms

Note: slides for Lecture 1 have been updated. Please reprint.

Database Design

- Requirements analysis
 Discussions with user groups
- Conceptual database design
 E/R model
- Logical Database design
 - Database normalization

Entity / Relationship Diagrams

Entities: Product
Attributes: address
Relationships: buys

Keys in E/R Diagrams

• Every entity set must have a key

What is a Relation ?

- A mathematical definition:
 - if A, B are sets, then a relation R is a subset of $A \times B$
- A={1,2,3}, B={a,b,c,d}, A × B = {(1,a),(1,b), ..., (3,d)} A= R = {(1,a), (1,c), (3,b)}

- makes is a subset of Product × Company:

Multiplicity of E/R Relations

one-one: а b C many-one а 2 b 3 С many-many 2 Note: "many-one" actually means "many-[zero-or-one]"

Notation in Class v.s. the Book

Multi-way Relationships

How do we model a purchase relationship between buyers, products and stores?

Arrows in Multiway Relationships

Q: what does the arrow mean ?

A: a given person buys a given product from at most one store

Arrows in Multiway Relationships

Q: what does the arrow mean ?

A: a given person buys a given product from at most one store AND every store sells to every person at most one product¹³

Arrows in Multiway Relationships

Q: How do we say that every person shops at at most one store ?

A: cannot. This is the best approximation. (Why only approximation ?)

3. Design Principles

Design Principles: What's Wrong?

Design Principles: What's Wrong?

From E/R Diagrams to Relational Schema

- Entity set \rightarrow relation
- Relationship \rightarrow relation

Entity Set to Relation

Product

Name	Category	Price
Gizmo	Gadgets	\$19.99

20

Relationships to Relations

Makes

ProdName	ProdCategory	CompanyName	StartYear
Gizmo	Gadgets	gizmoWorks	1963

(watch out for attribute name conflicts)

Relationships to Relations

No need for Makes. Modify Product:

Name	Category	Price	CompanyName	StartYear
Gizmo	Gadgets	\$19.99	gizmoWorks	1963

Modeling Subclasses

Some objects in a class may be special

- define a new class
- better: define a *subclass*

So --- we define subclasses in E/R

Understanding Subclasses

Think in terms of records:
 – Product

field1	
field2	
field2	

SoftwareProduct

- EducationalProduct

field2	field1
	field2
field3	field3

field1
field2
field4
field5

Subclasses to Relations

Product

Difference between OO and E/R inheritance

• OO: classes are disjoint (same for Java, C++)

Difference between OO and E/R inheritance

• E/R: entity sets overlap

No need for multiple inheritance in E/R

We have three entity sets, but four different kinds of objects.

Modeling UnionTypes With Subclasses

FurniturePiece

Say: each piece of furniture is owned either by a person, or by a company

Modeling Union Types with Subclasses

Say: each piece of furniture is owned either by a person, or by a company

Solution 1. Acceptable, imperfect (What's wrong ?)

Modeling Union Types with Subclasses

Solution 2: better, more laborious

Constraints in E/R Diagrams

- Key constraints
- Single value constraints
- Referential integrity constraints
- Cardinality constraints

Keys in E/R Diagrams

In E/R diagrams each entity set must have exactly one key (consisting of one or more attributes)

Single Value Constraints

Each product made by *exactly* one company.

Cardinality Constraints

What does this mean?

Weak Entity Sets

Weak entity set = entity where part of the key comes from another

Convert to a relational schema (in class)

Schema Refinements = Normal Forms

- 1st Normal Form = all tables are flat
- 2nd Normal Form = obsolete
- Boyce Codd Normal Form = will study
- 3rd Normal Form = see book

First Normal Form (1NF)

• A database schema is in First Normal Form if all tables are flat Student

Student

Name	GPA	Courses	
Alice	3.8	Math DB OS	
Bob	3.7	DB OS	
Carol	3.9	Math OS	May need to add keys

Name	GPA
Alice	3.8
Bob	3.7
Carol	3.9

	Takes	
	Student	Course
	Alice	Math
	Carol	Math
	Alice	DB
)	Bob	DB
,	Alice	OS
	Carol	OS

Course

Course
Math
DB
OS

Relational Schema Design

Data Anomalies

When a database is poorly designed we get anomalies:

Redundancy: data is repeated

Updated anomalies: need to change in several places

Delete anomalies: may lose data when we don't want

Relational Schema Design

Recall set attributes (persons with several phones):

Name	SSN	PhoneNumber	City
Fred	123-45-6789	206-555-1234	Seattle
Fred	123-45-6789	206-555-6543	Seattle
Joe	987-65-4321	908-555-2121	Westfield

One person may have multiple phones, but lives in only one city

Anomalies:

- Redundancy = repeat data
- Update anomalies = Fred moves to "Bellevue"
- Deletion anomalies = Joe deletes his phone number:

what is his city?

Relation Decomposition

Break the relation into two:

	Name	SSN	PhoneNumber	City
	Fred	123-45-6789	206-555-1234	Seattle
/	Fred	123-45-6789	206-555-6543	Seattle
	Joe	987-65-4321	908-555-2121	Westfield

Name	<u>SSN</u>	City
Fred	123-45-6789	Seattle
Joe	987-65-4321	Westfield

<u>SSN</u>	PhoneNumber
123-45-6789	206-555-1234
123-45-6789	206-555-6543
987-65-4321	908-555-2121

Anomalies have gone:

- No more repeated data
- Easy to move Fred to "Bellevue" (how ?)
- Easy to delete all Joe's phone number (how ?)

Relational Schema Design (or Logical Design)

Main idea:

- Start with some relational schema
- Find out its *functional dependencies*
- Use them to design a better relational schema

Functional Dependencies

• A form of constraint

– hence, part of the schema

- Finding them is part of the database design
- Also used in normalizing the relations

Functional Dependencies

Definition:

If two tuples agree on the attributes

$$A_1, A_2, \dots, A_n$$

then they must also agree on the attributes

$$B_1, B_2, ..., B_m$$

Formally:

$$A_1, A_2, \dots, A_n \rightarrow B_1, B_2, \dots, B_m$$

When Does an FD Hold

Definition: $A_1, ..., A_m \rightarrow B_1, ..., B_n$ holds in R if:

$$\forall t, t' \in \mathbb{R}, (t.A_1 = t'.A_1 \land \dots \land t.A_m = t'.A_m \Rightarrow t.B_1 = t'.B_1 \land \dots \land t.B_n = t'.B_n)$$

50

An FD <u>holds</u>, or <u>does not hold</u> on an instance:

EmpID	Name	Phone	Position
E0045	Smith	1234	Clerk
E3542	Mike	9876	Salesrep
E1111	Smith	9876	Salesrep
E9999	Mary	1234	Lawyer

EmpID \rightarrow Name, Phone, Position

Position \rightarrow Phone

but not Phone \rightarrow Position

EmpID	Name	Phone	Position
E0045	Smith	1234	Clerk
E3542	Mike	9876 ←	Salesrep
E1111	Smith	9876 ←	Salesrep
E9999	Mary	1234	Lawyer

Position \rightarrow Phone

EmpID	Name	Phone	Position
E0045	Smith	1234 →	Clerk
E3542	Mike	9876	Salesrep
E1111	Smith	9876	Salesrep
E9999	Mary	1234 →	Lawyer

but not Phone \rightarrow Position

FD's are constraints:

- On some instances they hold
- On others they don't

name \rightarrow color category \rightarrow department color, category \rightarrow price

name	category	color	department	price
Gizmo	Gadget	Green	Toys	49
Tweaker	Gadget	Green	Toys	99

Does this instance satisfy all the FDs?

name \rightarrow colorcategory \rightarrow departmentcolor, category \rightarrow price

name	category	color	department	price
Gizmo	Gadget	Green	Toys	49
Tweaker	Gadget	Black	Toys	99
Gizmo	Stationary	Green	Office-supp.	59

What about this one ? (At home...)

An Interesting Observation

If all these FDs are true:

name \rightarrow color category \rightarrow department color, category \rightarrow price

Then this FD also holds:

name, category \rightarrow price

Why ??

Goal: Find ALL Functional Dependencies

- Anomalies occur when certain "bad" FDs hold
- We know some of the FDs
- Need to find *all* FDs, then look for the bad ones

Armstrong's Rules (1/3)

$$A_1, A_2, ..., A_n \rightarrow B_1, B_2, ..., B_m$$

Is equivalent to

Splitting rule and Combing rule

$$\begin{array}{c} A_1, A_2, \dots, A_n \rightarrow B_1 \\ A_1, A_2, \dots, A_n \rightarrow B_2 \\ \dots \\ A_1, A_2, \dots, A_n \rightarrow B_m \end{array}$$

A1	 Am	B1	 Bm	

Armstrong's Rules (2/3)

$$A_1, A_2, ..., A_n \rightarrow A_i$$

Trivial Rule

Why?

59

Armstrong's Rules (3/3)

Transitive Closure Rule

If
$$A_1, A_2, ..., A_n \rightarrow B_1, B_2, ..., B_m$$

and
$$B_1, B_2, ..., B_m \rightarrow C_1, C_2, ..., C_p$$

then $A_1, A_2, ..., A_n \rightarrow C_1, C_2, ..., C_p$

Why?

60

A ₁	 A _m	B ₁	•••	B _m	C ₁	 C _p	

Example (continued)

Start from the following FDs:

1. name \rightarrow color

2. category \rightarrow department

3. color, category \rightarrow price

Infer the following FDs:

Inferred FD	Which Rule did we apply ?
4. name, category \rightarrow name	
5. name, category \rightarrow color	
6. name, category \rightarrow category	
7. name, category \rightarrow color, category	
8. name, category \rightarrow price	

Example (continued)

Answers:

1. name \rightarrow color

2. category \rightarrow department

3. color, category \rightarrow price

Inferred FD	Which Rule did we apply ?			
4. name, category \rightarrow name	Trivial rule			
5. name, category \rightarrow color	Transitivity on 4, 1			
6. name, category \rightarrow category	Trivial rule			
7. name, category \rightarrow color, category	Split/combine on 5, 6			
8. name, category \rightarrow price	Transitivity on 3, 7			

THIS IS TOO HARD ! Let's see an easier way.

Closure of a set of Attributes Given a set of attributes $A_1, ..., A_n$ The closure, $\{A_1, ..., A_n\}^+$ = the set of attributes B s.t. $A_1, ..., A_n \rightarrow B$

Example: name \rightarrow color category \rightarrow department color, category \rightarrow price Closures:

name⁺ = {name, color} {name, category}⁺ = {name, category, color, department, price} $color^{+} = {color}$ 64

Closure Algorithm

X={A1, ..., An}. **Repeat until** X doesn't change **do**: **if** $B_1, ..., B_n \rightarrow C$ is a FD **and** $B_1, ..., B_n$ are all in X **then** add C to X.

Example:

name \rightarrow color category \rightarrow department color, category \rightarrow price

{name, category}⁺ =
{ name, category, color, department, price }

Hence: | name, category \rightarrow color, department, price

In class:

R(A,B,C,D,E,F)

$$\begin{array}{c} A, B \rightarrow C \\ A, D \rightarrow E \\ B \rightarrow D \\ A, F \rightarrow B \end{array}$$

Compute $\{A,B\}^+$ $X = \{A, B, \}^+$ Compute $\{A,F\}^+$ $X = \{A,F,\}^+$

}

Why Do We Need Closure

- With closure we can find all FD's easily
- To check if $X \rightarrow A$
 - Compute X⁺
 - Check if $A \in X^+$

Using Closure to Infer ALL FDs

Example:

 $\begin{array}{ccc} A, B \rightarrow C \\ A, D \rightarrow B \\ B \rightarrow D \end{array}$

Step 1: Compute X⁺, for every X:

A+=A, B+=BD, C+=C, D+=D AB+=ABCD, AC+=AC, AD+=ABCD, BC+=BCD, BD+=BD, CD+=CD ABC+=ABD+=ACD⁺=ABCD (no need to compute– why ?) BCD⁺=BCD, ABCD+=ABCD

Step 2: Enumerate all FD's $X \rightarrow Y$, s.t. $Y \subseteq X^+$ and $X \cap Y = \emptyset$: $AB \rightarrow CD, AD \rightarrow BC, BC \rightarrow D$ ⁶⁸

Another Example

Enrollment(student, major, course, room, time)
 student → major
 major, course → room
 course → time

What else can we infer ? [in class, or at home]

Keys

- A superkey is a set of attributes $A_1, ..., A_n$ s.t. for any other attribute B, we have $A_1, ..., A_n \rightarrow B$
- A key is a minimal superkey
 - I.e. set of attributes which is a superkey and for which no subset is a superkey

Computing (Super)Keys

- Compute X⁺ for all sets X
- If X^+ = all attributes, then X is a key
- List only the minimal X's

Product(name, price, category, color)

name, category \rightarrow price category \rightarrow color

What is the key?
Product(name, price, category, color)

name, category \rightarrow price category \rightarrow color

What is the key?

(name, category) + = name, category, price, color Hence (name, category) is a key

Examples of Keys

Enrollment(student, address, course, room, time)

student \rightarrow address room, time \rightarrow course student, course \rightarrow room, time

(find keys at home)

Eliminating Anomalies

Main idea:

- $X \rightarrow A$ is OK if X is a (super)key
- $X \rightarrow A$ is not OK otherwise

Name	SSN	PhoneNumber	City
Fred	123-45-6789	206-555-1234	Seattle
Fred	123-45-6789	206-555-6543	Seattle
Joe	987-65-4321	908-555-2121	Westfield
Joe	987-65-4321	908-555-1234	Westfield

SSN \rightarrow Name, City

What the key?

{SSN, PhoneNumber}

Hence SSN \rightarrow Name, City is a "bad" dependency 76

Key or Keys?

Can we have more than one key?

Given R(A,B,C) define FD's s.t. there are two or more keys

Key or Keys?

Can we have more than one key?

Given R(A,B,C) define FD's s.t. there are two or more keys

$AB \rightarrow C$ $BC \rightarrow A$	or	A→BC B→AC
---------------------------------------	----	--------------

what are the keys here ?

Can you design FDs such that there are *three* keys?⁷⁸

Boyce-Codd Normal Form

A simple condition for removing anomalies from relations:

A relation R is in BCNF if: If $A_1, ..., A_n \rightarrow B$ is a non-trivial dependency in R, then $\{A_1, ..., A_n\}$ is a superkey for R

In other words: there are no "bad" FDs

Equivalently: $\forall X$, either $(X^+ = X)$ or $(X^+ = all attributes)$

BCNF Decomposition Algorithm

<u>repeat</u>

choose $A_1, ..., A_m \rightarrow B_1, ..., B_n$ that violates BNCF split R into $R_1(A_1, ..., A_m, B_1, ..., B_n)$ and $R_2(A_1, ..., A_m, [others])$ continue with both R_1 and R_2 <u>until</u> no more violations

Is there a 2-attribute relation that is not in BCNF ?

In practice, we have a better algorithm (coming⁸⁰up)

Name	SSN	PhoneNumber	City
Fred	123-45-6789	206-555-1234	Seattle
Fred	123-45-6789	206-555-6543	Seattle
Joe	987-65-4321	908-555-2121	Westfield
Joe	987-65-4321	908-555-1234	Westfield

 $SSN \rightarrow Name, City$

What the key?

{SSN, PhoneNumber}

use SSN \rightarrow Name, City to split ⁸¹

Name	<u>SSN</u>	City
Fred	123-45-6789	Seattle
Joe	987-65-4321	Westfield

SSN \rightarrow Name, City

<u>SSN</u>	PhoneNumber
123-45-6789	206-555-1234
123-45-6789	206-555-6543
987-65-4321	908-555-2121
987-65-4321	908-555-1234

Let's check anomalies:

- Redundancy ?
- Update ?
- Delete ?

BCNF Decomposition Algorithm

BCNF_Decompose(R)

```
find X s.t.: X \neq X^+ \neq [all attributes]
```

```
<u>if</u> (not found) <u>then</u> "R is in BCNF"
```

```
<u>let</u> Y = X^+ - X

<u>let</u></u> Z = [all attributes] - X^+

decompose R into R1(X \cup Y) and R2(X \cup Z)

continue to decompose recursively R1 and R2</u></u>
```

Find X s.t.: $X \neq X^+ \neq$ [all attributes]

Example BCNF Decomposition

Person(name, SSN, age, hairColor, phoneNumber) SSN → name, age age → hairColor

In class....

Find X s.t.: $X \neq X^+ \neq$ [all attributes]

Example BCNF Decomposition

Person(name, SSN, age, hairColor, phoneNumber) SSN → name, age

age \rightarrow hairColor

Iteration 1: Person SSN+ = SSN, name, age, hairColor Decompose into: P(<u>SSN</u>, name, age, hairColor) Phone(SSN, phoneNumber)

```
Iteration 2: P
age+ = age, hairColor
Decompose: People(<u>SSN</u>, name, age)
Hair(<u>age</u>, hairColor)
Phone(SSN, phoneNumber)
```


What happens if in R we first pick B^+ ? Or AB^+ ?

 $R_1 = \text{projection of } R \text{ on } A_1, \dots, A_n, B_1, \dots, B_m$ $R_2 = \text{projection of } R \text{ on } A_1, \dots, A_n, C_1, \dots, C_p$

Theory of Decomposition

• Sometimes it is correct:

Lossless decomposition

Incorrect Decomposition

• Sometimes it is not:

Lossy decomposition

