
1

Lecture 02:
Conceptual Design,

Normal Forms
Tuesday, April 7, 2009

2

Outline

•  Chapter 2: Database design

•  Chapter 19: Normal forms

Note: slides for Lecture 1 have been updated.
Please reprint.

Database Design

•  Requirements analysis
– Discussions with user groups

•  Conceptual database design
– E/R model

•  Logical Database design
– Database normalization

3

Entity / Relationship Diagrams

•  Entities:

•  Attributes:

•  Relationships:

4

Product

address

buys

5

Person

Company
Product

buys

makes

employs

name category

price

address name ssn

stockprice

name

6

Keys in E/R Diagrams

•  Every entity set must have a key

Product

name category

price

7

What is a Relation ?
•  A mathematical definition:

–  if A, B are sets, then a relation R is a subset of
A × B

•  A={1,2,3}, B={a,b,c,d},
A × B = {(1,a),(1,b), . . ., (3,d)}
R = {(1,a), (1,c), (3,b)}

- makes is a subset of Product × Company:

1

2

3

a

b

c

d

A=

B=

makes Company
Product

8

Multiplicity of E/R Relations

•  one-one:

•  many-one

•  many-many

1
2
3

a
b
c
d

1
2
3

a
b
c
d

1
2
3

a
b
c
d

Note: “many-one” actually means “many-[zero-or-one]”

Notation in Class v.s. the Book

9

makes Company Product

makes Company Product

In class:

In the book:

10 address name ssn

Person

buys

makes

employs

Company
Product

name category

stockprice

name

price

What does
this say ?

11

Multi-way Relationships
How do we model a purchase relationship between buyers,
products and stores?

Purchase

Product

Person

Store

12

Q: what does the arrow mean ?

Arrows in Multiway
Relationships

A: a given person buys a given product from at most one store

Purchase

Product

Person

Store

13

Q: what does the arrow mean ?

Arrows in Multiway
Relationships

A: a given person buys a given product from at most one store
AND every store sells to every person at most one product

Purchase

Product

Person

Store

14

Q: How do we say that every person shops at at most one store ?

Arrows in Multiway
Relationships

A: cannot. This is the best approximation.
(Why only approximation ?)

Purchase

Product

Person

Store

15

Reification:
Multi-way to Binary

Purchase

Person

Store

Product

StoreOf

ProductOf

BuyerOf

date

16

3. Design Principles

Purchase Product Person

What’s wrong?

President Person Country

Moral: be faithful!

17

Design Principles:
What’s Wrong?

Purchase

Product

Store

date

personName personAddr

Moral: pick the right
 kind of entities.

18

Design Principles:
What’s Wrong?

Purchase

Product

Person

Store

date Dates

Moral: don’t
 complicate life more
 than it already is.

19

From E/R Diagrams
to Relational Schema

•  Entity set  relation
•  Relationship  relation

20

Entity Set to Relation

Product

name category

price

Product

Name Category Price
Gizmo Gadgets $19.99

21

Relationships to Relations

makes Company
Product

name category

Stock price

name

Makes

Start Year
price

 (watch out for attribute name conflicts)

ProdName ProdCategory CompanyName StartYear
Gizmo Gadgets gizmoWorks 1963

22

Relationships to Relations

makes Company
Product

name category

Stock price

name

No need for Makes. Modify Product:

Start Year
price

Name Category Price CompanyName StartYear
Gizmo Gadgets $19.99 gizmoWorks 1963

23

Multi-way Relationships to
Relations

Purchase

Product

Person

Store name price

ssn name

name address

Purchase(productName,
 ssn,

 storeName)

24

Modeling Subclasses

Some objects in a class may be special
•  define a new class
•  better: define a subclass

Products

Software
products

Educational
products

So --- we define subclasses in E/R

25

Product

name category

price

isa isa

Educational Product Software Product

Age Group platforms

Subclasses

26

Understanding Subclasses

•  Think in terms of records:
– Product

– SoftwareProduct

– EducationalProduct

field1
field2

field1
field2

field1
field2

field3

field4
field5

27

Subclasses to Relations

Product

name category

price

isa isa

Educational Product Software Product

Age Group platforms

Name Price Category

Gizmo 99 gadget

Camera 49 photo

Toy 39 gadget

Name platforms

Gizmo unix

Name Age Group

Gizmo todler

Toy retired

Product

Sw.Product

Ed.Product

28

•  OO: classes are disjoint (same for Java, C++)

p1 p2
p3

sp1

sp2

ep1

ep2

ep3

Difference between OO and E/R
inheritance

Product

SoftwareProduct
EducationalProduct

29

•  E/R: entity sets overlap

Difference between OO and E/R
inheritance

SoftwareProduct

EducationalProduct

p1 p2
p3

sp1

sp2

ep1

ep2

ep3

Product

30

No need for multiple inheritance in E/R

SoftwareProduct

EducationalProduct

p1 p2
p3

sp1

sp2

ep1

ep2

ep3

Product

esp1 esp2

We have three entity sets, but four different kinds of
objects.

31

Modeling UnionTypes With
Subclasses

FurniturePiece

Person Company

Say: each piece of furniture is owned either
by a person, or by a company

32

Modeling Union Types with
Subclasses

Say: each piece of furniture is owned either by a
person, or by a company

Solution 1. Acceptable, imperfect (What’s wrong ?)
FurniturePiece Person Company

ownedByPerson ownedByPerson

33

Modeling Union Types with
Subclasses

Solution 2: better, more laborious

isa

FurniturePiece

Person Company
ownedBy

Owner

isa

Use THIS solution
in homework 2 !

Constraints in E/R Diagrams

•  Key constraints

•  Single value constraints

•  Referential integrity constraints

•  Cardinality constraints
34

35

 Keys in E/R Diagrams

Product

name category

price

In E/R diagrams
each entity set must
have exactly one key
(consisting of one
or more attributes)

36

Single Value Constraints

makes

makes

v. s.

37

Referential Integrity Constraints

Company Product makes

Company Product makes

Each product made by at most one company.
Some products made by no company

Each product made by exactly one company.

38

Cardinality Constraints

Company Product makes
<100

What does this mean ?

39

Weak Entity Sets
Weak entity set = entity where part of the key comes from another

number

sport

name

Convert to a relational schema (in class)

affiliation Team University

40

What Are the Keys of R ?

R

A

B

S

T

V

Q

U W

V

Z

C

D
E G

K

H

F L

41

Schema Refinements = Normal
Forms

•  1st Normal Form = all tables are flat
•  2nd Normal Form = obsolete
•  Boyce Codd Normal Form = will study
•  3rd Normal Form = see book

42

First Normal Form (1NF)
•  A database schema is in First Normal Form

if all tables are flat

Name GPA Courses

Alice 3.8

Bob 3.7

Carol 3.9

Math

DB

OS

DB

OS

Math

OS

Student Name GPA

Alice 3.8

Bob 3.7

Carol 3.9

Student

Course

Math

DB

OS

Student Course

Alice Math

Carol Math

Alice DB

Bob DB

Alice OS

Carol OS

Takes Course

May need
to add keys

43

Relational Schema Design
Person buys Product

name

price name ssn

Conceptual Model:

Relational Model:
plus FD’s

Normalization:
Eliminates anomalies

44

Data Anomalies

When a database is poorly designed we get anomalies:

Redundancy: data is repeated

Updated anomalies: need to change in several places

Delete anomalies: may lose data when we don’t want

45

Relational Schema Design

Anomalies:
•  Redundancy = repeat data
•  Update anomalies = Fred moves to “Bellevue”
•  Deletion anomalies = Joe deletes his phone number:

 what is his city ?

Recall set attributes (persons with several phones):
Name SSN PhoneNumber City
Fred 123-45-6789 206-555-1234 Seattle
Fred 123-45-6789 206-555-6543 Seattle
Joe 987-65-4321 908-555-2121 Westfield

One person may have multiple phones, but lives in only one city

46

Relation Decomposition
Break the relation into two:

Name SSN City
Fred 123-45-6789 Seattle
Joe 987-65-4321 Westfield

SSN PhoneNumber
123-45-6789 206-555-1234
123-45-6789 206-555-6543
987-65-4321 908-555-2121 Anomalies have gone:

•  No more repeated data
•  Easy to move Fred to “Bellevue” (how ?)
•  Easy to delete all Joe’s phone number (how ?)

Name SSN PhoneNumber City
Fred 123-45-6789 206-555-1234 Seattle
Fred 123-45-6789 206-555-6543 Seattle
Joe 987-65-4321 908-555-2121 Westfield

47

Relational Schema Design
(or Logical Design)

Main idea:
•  Start with some relational schema
•  Find out its functional dependencies
•  Use them to design a better relational

schema

48

Functional Dependencies

•  A form of constraint
–  hence, part of the schema

•  Finding them is part of the database design
•  Also used in normalizing the relations

49

Functional Dependencies
Definition:

 If two tuples agree on the attributes

 then they must also agree on the attributes

Formally:

A1, A2, …, An  B1, B2, …, Bm

A1, A2, …, An

B1, B2, …, Bm

50

When Does an FD Hold

Definition: A1, ..., Am  B1, ..., Bn holds in R if:

∀t, t’ ∈ R, (t.A1=t’.A1 ∧ ... ∧ t.Am=t’.Am ⇒ t.B1=t’.B1 ∧ ... ∧ t.Bn=t’.Bn)

A1 ... Am B1 ... nm

if t, t’ agree here then t, t’ agree here

t

t’

R

51

Examples

EmpID  Name, Phone, Position
Position  Phone
but not Phone  Position

An FD holds, or does not hold on an instance:

EmpID Name Phone Position
E0045 Smith 1234 Clerk
E3542 Mike 9876 Salesrep
E1111 Smith 9876 Salesrep
E9999 Mary 1234 Lawyer

52

Example

Position  Phone

EmpID Name Phone Position
E0045 Smith 1234 Clerk
E3542 Mike 9876 ← Salesrep
E1111 Smith 9876 ← Salesrep
E9999 Mary 1234 Lawyer

53

Example

EmpID Name Phone Position
E0045 Smith 1234 → Clerk
E3542 Mike 9876 Salesrep
E1111 Smith 9876 Salesrep
E9999 Mary 1234 → Lawyer

 but not Phone  Position

54

Example
FD’s are constraints:
•  On some instances they hold
•  On others they don’t

name category color department price

Gizmo Gadget Green Toys 49

Tweaker Gadget Green Toys 99

Does this instance satisfy all the FDs ?

name  color
category  department
color, category  price

55

Example

name category color department price

Gizmo Gadget Green Toys 49

Tweaker Gadget Black Toys 99

Gizmo Stationary Green Office-supp. 59

What about this one ? (At home…)

name  color
category  department
color, category  price

56

An Interesting Observation

If all these FDs are true:
name  color
category  department
color, category  price

Then this FD also holds: name, category  price

Why ??

57

Goal: Find ALL Functional
Dependencies

•  Anomalies occur when certain “bad” FDs
hold

•  We know some of the FDs

•  Need to find all FDs, then look for the bad
ones

58

Armstrong’s Rules (1/3)

Is equivalent to

Splitting rule
 and
Combing rule

A1 ... Am B1 ... Bm

A1, A2, …, An  B1, B2, …, Bm

A1, A2, …, An  B1
A1, A2, …, An  B2

A1, A2, …, An  Bm

59

Armstrong’s Rules (2/3)

Trivial Rule

Why ?
A1 … Am

where i = 1, 2, ..., n

A1, A2, …, An  Ai

60

Armstrong’s Rules (3/3)

Transitive Closure Rule

If

and

then

Why ?

A1, A2, …, An  B1, B2, …, Bm

B1, B2, …, Bm  C1, C2, …, Cp

A1, A2, …, An  C1, C2, …, Cp

61

A1 … Am B1 … Bm C1 ... Cp

62

Example (continued)

Start from the following FDs:

Infer the following FDs:

1. name  color
2. category  department
3. color, category  price

Inferred FD Which Rule
did we apply ?

4. name, category  name
5. name, category  color
6. name, category  category
7. name, category  color, category
8. name, category  price

63

Example (continued)

Answers:

Inferred FD Which Rule
did we apply ?

4. name, category  name Trivial rule
5. name, category  color Transitivity on 4, 1
6. name, category  category Trivial rule
7. name, category  color, category Split/combine on 5, 6
8. name, category  price Transitivity on 3, 7

1. name  color
2. category  department
3. color, category  price

THIS IS TOO HARD ! Let’s see an easier way.

64

Closure of a set of Attributes
Given a set of attributes A1, …, An

The closure, {A1, …, An}+ = the set of attributes B
 s.t. A1, …, An  B

name  color
category  department
color, category  price

Example:

Closures:
 name+ = {name, color}
 {name, category}+ = {name, category, color, department, price}
 color+ = {color}

65

Closure Algorithm
X={A1, …, An}.

Repeat until X doesn’t change do:

 if B1, …, Bn  C is a FD and
 B1, …, Bn are all in X
 then add C to X.

{name, category}+ =
 { }

name  color
category  department
color, category  price

Example:

name, category, color, department, price

Hence: name, category  color, department, price

66

Example

Compute {A,B}+ X = {A, B, }

Compute {A, F}+ X = {A, F, }

R(A,B,C,D,E,F) A, B  C
A, D  E
B  D
A, F  B

In class:

67

Why Do We Need Closure

•  With closure we can find all FD’s easily

•  To check if X → A
– Compute X+
– Check if A ∈ X+

68

Using Closure to Infer ALL FDs

A, B  C
A, D  B
B  D

Example:

Step 1: Compute X+, for every X:

A+ = A, B+ = BD, C+ = C, D+ = D
AB+ =ABCD, AC+=AC, AD+=ABCD,
 BC+=BCD, BD+=BD, CD+=CD
ABC+ = ABD+ = ACD+ = ABCD (no need to compute– why ?)
BCD+ = BCD, ABCD+ = ABCD

Step 2: Enumerate all FD’s X  Y, s.t. Y ⊆ X+ and X∩Y = ∅:
AB  CD, ADBC, BCD

69

Another Example

•  Enrollment(student, major, course, room, time)
student  major
major, course  room
course  time

What else can we infer ? [in class, or at home]

70

Keys

•  A superkey is a set of attributes A1, ..., An s.t. for
any other attribute B, we have A1, ..., An  B

•  A key is a minimal superkey
–  I.e. set of attributes which is a superkey and for which

no subset is a superkey

71

Computing (Super)Keys

•  Compute X+ for all sets X
•  If X+ = all attributes, then X is a key
•  List only the minimal X’s

72

Example

Product(name, price, category, color)

name, category  price
category  color

What is the key ?

73

Example

Product(name, price, category, color)

name, category  price
category  color

What is the key ?

(name, category) + = name, category, price, color

Hence (name, category) is a key

74

Examples of Keys

Enrollment(student, address, course, room, time)

student  address
room, time  course
student, course  room, time

(find keys at home)

75

Eliminating Anomalies

Main idea:

•  X → A is OK if X is a (super)key

•  X → A is not OK otherwise

76

Example

What the key?
 {SSN, PhoneNumber}

Name SSN PhoneNumber City
Fred 123-45-6789 206-555-1234 Seattle
Fred 123-45-6789 206-555-6543 Seattle
Joe 987-65-4321 908-555-2121 Westfield
Joe 987-65-4321 908-555-1234 Westfield

SSN  Name, City

Hence SSN  Name, City
is a “bad” dependency

77

Key or Keys ?

Can we have more than one key ?

Given R(A,B,C) define FD’s s.t. there are two
or more keys

78

Key or Keys ?

Can we have more than one key ?

Given R(A,B,C) define FD’s s.t. there are two
or more keys

ABC
BCA

ABC
BAC or

what are the keys here ?
Can you design FDs such that there are three keys ?

79

Boyce-Codd Normal Form
A simple condition for removing anomalies from relations:

In other words: there are no “bad” FDs

A relation R is in BCNF if:

 If A1, ..., An  B is a non-trivial dependency

 in R , then {A1, ..., An} is a superkey for R

Equivalently:
 ∀ X, either (X+ = X) or (X+ = all attributes)

80

BCNF Decomposition Algorithm

A’s Others B’s

R1

Is there a
2-attribute
relation that is
not in BCNF ?

repeat
 choose A1, …, Am  B1, …, Bn that violates BNCF
 split R into R1(A1, …, Am, B1, …, Bn) and R2(A1, …, Am, [others])
 continue with both R1 and R2
until no more violations

R2
In practice, we have
a better algorithm (coming up)

81

Example

What the key?
 {SSN, PhoneNumber}

Name SSN PhoneNumber City
Fred 123-45-6789 206-555-1234 Seattle
Fred 123-45-6789 206-555-6543 Seattle
Joe 987-65-4321 908-555-2121 Westfield
Joe 987-65-4321 908-555-1234 Westfield

SSN  Name, City

use SSN  Name, City
to split

82

Example

Name SSN City
Fred 123-45-6789 Seattle
Joe 987-65-4321 Westfield

SSN PhoneNumber
123-45-6789 206-555-1234
123-45-6789 206-555-6543
987-65-4321 908-555-2121
987-65-4321 908-555-1234

SSN  Name, City

Let’s check anomalies:
•  Redundancy ?
•  Update ?
•  Delete ?

83

BCNF Decomposition Algorithm
BCNF_Decompose(R)

 find X s.t.: X ≠X+ ≠ [all attributes]

 if (not found) then “R is in BCNF”

 let Y = X+ - X
 let Z = [all attributes] - X+
 decompose R into R1(X ∪ Y) and R2(X ∪ Z)
 continue to decompose recursively R1 and R2

84

Example BCNF Decomposition
Person(name, SSN, age, hairColor, phoneNumber)

 SSN  name, age
 age  hairColor

Find X s.t.: X ≠X+ ≠ [all attributes]

In class….

85

Example BCNF Decomposition
Person(name, SSN, age, hairColor, phoneNumber)

 SSN  name, age
 age  hairColor

Iteration 1: Person
SSN+ = SSN, name, age, hairColor
Decompose into: P(SSN, name, age, hairColor)
 Phone(SSN, phoneNumber)

Iteration 2: P
age+ = age, hairColor
Decompose: People(SSN, name, age)
 Hair(age, hairColor)
 Phone(SSN, phoneNumber)

Find X s.t.: X ≠X+ ≠ [all attributes]

What are
the keys ?

86

Example

What are
the keys ?

A  B
B  C

R(A,B,C,D)
 A+ = ABC ≠ ABCD

R(A,B,C,D)

What happens if in R we first pick B+ ? Or AB+ ?

R1(A,B,C)
 B+ = BC ≠ ABC

R2(A,D)

R11(B,C) R12(A,B)

87

Decompositions in General

R1 = projection of R on A1, ..., An, B1, ..., Bm
R2 = projection of R on A1, ..., An, C1, ..., Cp

R(A1, ..., An, B1, ..., Bm, C1, ..., Cp)

R1(A1, ..., An, B1, ..., Bm) R2(A1, ..., An, C1, ..., Cp)

88

Theory of Decomposition

•  Sometimes it is correct:
Name Price Category

Gizmo 19.99 Gadget

OneClick 24.99 Camera

Gizmo 19.99 Camera

Name Price

Gizmo 19.99

OneClick 24.99

Gizmo 19.99

Name Category

Gizmo Gadget

OneClick Camera

Gizmo Camera

Lossless decomposition

89

Incorrect Decomposition

•  Sometimes it is not:

Name Price Category

Gizmo 19.99 Gadget

OneClick 24.99 Camera

Gizmo 19.99 Camera

Name Category

Gizmo Gadget

OneClick Camera

Gizmo Camera

Price Category

19.99 Gadget

24.99 Camera

19.99 Camera

What’s
incorrect ??

Lossy decomposition

90

Decompositions in General
R(A1, ..., An, B1, ..., Bm, C1, ..., Cp)

If A1, ..., An  B1, ..., Bm
Then the decomposition is lossless

R1(A1, ..., An, B1, ..., Bm) R2(A1, ..., An, C1, ..., Cp)

BCNF decomposition is always lossless. WHY ?

Note: don’t need A1, ..., An  C1, ..., Cp

