
1

Lecture 03
Views, Constraints

Tuesday, April 14, 2009

Announcements

•  Homework 1 was due a few minutes ago…

•  Homework 2: due next week

•  Homework 3: to be posted by tomorrow, due in
two weeks

2

3

Outline

•  Database modifications, Integrity
constraints, triggers (Chapter 5)

•  Views: (Chapters 3.6, 25.8, 25.9)
– Some material discussed today is not in the

book

4

Modifying the Database

Three kinds of modifications
•  Insertions
•  Deletions
•  Updates

Sometimes they are all called “updates”

5

Inserting One Record
General form:

Missing attribute → NULL.

 INSERT INTO R(A1,…., An) VALUES (v1,…., vn)

INSERT INTO Purchase(buyer, seller, product, store)
 VALUES (‘Joe’, ‘Fred’, ‘wakeup-clock-espresso-machine’,
 ‘The Sharper Image’)

Example: Insert a new purchase to the database:

6

Bulk Insertions

INSERT INTO Producct(name)

 SELECT DISTINCT Purchase.product
 FROM Purchase
 WHERE Purchase.store = ‘Joe’

Purchase(buyer, seller, product, store)
Product(name, price)

7

Deletions

DELETE FROM Purchase
WHERE seller = ‘Joe’ AND
 product = ‘Brooklyn Bridge’

SQL Fact: there is no way to delete only a single
occurrence of a tuple that appears twice in a relation.

Purchase(buyer, seller, product, store)
Product(name, price)

8

Updates

UPDATE Product
SET price = price/2
WHERE name IN
 (SELECT product
 FROM Purchase
 WHERE store=‘Joe’);

UPDATE Product
SET price = 29.95
WHERE name = ‘gizmo’

Purchase(buyer, seller, product, store)
Product(name, price)

Data Definition in SQL

•  Data Manipulation Language: DML
– Query and modify the database
– What we have seen so far

•  Data Definition Language: DDL
– Create, delete, modify tables
– Constraints

9

10

Creating Tables
CREATE TABLE Purchase(
 buyer VARCHAR(50),
 seller VARCHAR(50),
 product CHAR(20),
 store VARCHAR(30)
);

Purchase(buyer, seller, product, store)
Product(name, price)

CREATE TABLE Product(
 name CHAR(20),
 price INT
);

INT, SHORTINT, BIT(1), BIT(5), DATETIME, etc, etc

11

Deleting or Modifying a Table

 ALTER TABLE Product
 ADD category VARCHAR(30);

 ALTER TABLE Purchase
 DROP seller;

DROP Product; Exercise with care !!

This changes the
database schema.
What happens to
 the data ?

12

Default Values
Specifying default values:

The default of defaults: NULL

CREATE TABLE Purchase(
 buyer VARCHAR(50),
 seller VARCHAR(50) DEFAULT ‘Johnny’,
 product CHAR(20),
 store VARCHAR(30) DEFAULT ‘Wal-Mart’
);

13

Indexes
REALLY important to speed up query processing time.

SELECT *
FROM Person
WHERE name = 'Smith'

CREATE INDEX myindex05 ON Person(name)

Person (name, age, city)

May take too long to scan the entire Person table

Now, when we rerun the query it will be much faster

B+ Tree Index

14

Adam Betty Charles …. Smith ….

We will discuss them in detail in a later lecture.

15

Creating Indexes
Indexes can be created on more than one attribute:

SELECT *
FROM Person
WHERE age = 55 AND city = 'Seattle'

Helps in:

SELECT *
FROM Person
WHERE city = 'Seattle'

But not in:

CREATE INDEX doubleindex ON
 Person (age, city) Example:

SELECT *
FROM Person
WHERE age = 55

and even in:

16

Constraints in SQL

•  A constraint = a property that we’d like our
database to hold

•  The system will enforce the constraint by
taking some actions:
–  forbid an update
–  or perform compensating updates

17

Constraints in SQL

Constraints in SQL:
•  Keys, foreign keys
•  Attribute-level constraints
•  Tuple-level constraints
•  Global constraints: assertions

The more complex the constraint, the harder it is to check and
to enforce

simplest

Most
complex

18

Keys

OR:

CREATE TABLE Product (
 name CHAR(30) PRIMARY KEY,
 price INT)

CREATE TABLE Product (
 name CHAR(30),
 price INT,

PRIMARY KEY (name))

Product(name, price)

19

Keys with Multiple Attributes

CREATE TABLE Product (
 name CHAR(30),
 category VARCHAR(20),
 price INT,

 PRIMARY KEY (name, category))

Name Category Price

Gizmo Gadget 10

Camera Photo 20

Gizmo Photo 30

Gizmo Gadget 40

Product(name, category, price)

20

Other Keys

CREATE TABLE Product (
 productID CHAR(10),

 name CHAR(30),
 category VARCHAR(20),
 price INT,

 PRIMARY KEY (productID),
 UNIQUE (name, category))

There is at most one PRIMARY KEY;
there can be many UNIQUE

21

Foreign Key Constraints

CREATE TABLE Purchase (
 buyer CHAR(30),
 seller CHAR(30),
 product CHAR(30) REFERENCES Product(name),
 store VARCHAR(30))

Foreign key

Purchase(buyer, seller, product, store)
Product(name, price)

22

Name Category

Gizmo gadget

Camera Photo

OneClick Photo

ProdName Store

Gizmo Wiz

Camera Ritz

Camera Wiz

Product Purchase

Foreign Key Constraints

23

Purchase(buyer, seller, product, category, store)
Product(name, category, price)

CREATE TABLE Purchase(
 buyer VARCHAR(50),
 seller VARCHAR(50),
 product CHAR(20),
 category VAVRCHAR(20),
 store VARCHAR(30),
 FOREIGN KEY (product, category)
 REFERENCES Product(name, category)
);

24

Name Category

Gizmo gadget

Camera Photo

OneClick Photo

Product Store

Gizmo Wiz

Camera Ritz

Camera Wiz

Product Purchase

What happens during updates ?

Types of updates:
•  In Purchase: insert/update
•  In Product: delete/update

25

What happens during updates ?

•  SQL has three policies for maintaining
referential integrity:

•  Reject violating modifications (default)
•  Cascade: after a delete/update do a delete/

update
•  Set-null set foreign-key field to NULL

Constraints on Attributes and
Tuples

26

CREATE TABLE Purchase (. . .
 store VARCHAR(30) NOT NULL, . . .)

CREATE TABLE Product (. . .
 price INT CHECK (price >0 and price < 999))

Attribute level constraints:

Tuple level constraints:

. . . CHECK (price * quantity < 10000) . . .

27

Comments on Constraints

•  Can give them names, and alter later

•  We need to understand exactly when they
are checked

•  We need to understand exactly what actions
are taken if they fail

Semantic Optimization using
Constraints

28

SELECT Purchase.store
FROM Product, Purchase
WHERE Product.name=Purchase.product

Purchase(buyer, seller, product, store)
Product(name, price)

SELECT Purchase.store
FROM Product

Why ?

29

Triggers

Trigger = a procedure invoked by the DBMS
in response to an update to the database

Trigger = Event + Condition + Action

30

Triggers in SQL

•  Event = INSERT, DELETE, UPDATE

•  Condition = any WHERE condition
– Refers to the old and the new values

•  Action = more inserts, deletes, updates
– May result in cascading effects !

31

Example: Row Level Trigger
CREATE TRIGGER InsertPromotions AFTER UPDATE OF price ON Product

REFERENCING
 OLD AS x
 NEW AS y

FOR EACH ROW
WHEN (x.price > y.price)
INSERT INTO Promotions(name, discount)
VALUES x.name,
 (x.price-y.price)*100/x.price

Event

Condition

Action

32

EVENTS

INSERT, DELETE, UPDATE

•  Trigger can be:
– AFTER event
–  INSTEAD of event

33

Scope

•  FOR EACH ROW = trigger executed for every
row affected by update
–  OLD ROW
–  NEW ROW

•  FOR EACH STATEMENT = trigger executed
once for the entire statement
–  OLD TABLE
–  NEW TABLE

34

Statement Level Trigger

CREATE TRIGGER avg-price INSTEAD OF UPDATE OF price ON Product

REFERENCING
 OLD_TABLE AS OldStuff
 NEW_TABLE AS NewStuff

FOR EACH STATEMENT
WHEN (1000 < (SELECT AVG (price)
 FROM ((Product EXCEPT OldStuff) UNION NewStuff))
DELETE FROM Product
 WHERE (name, price, company) IN OldStuff;
INSERT INTO Product
 (SELECT * FROM NewStuff)

35

Trigers v.s. Integrity Constraints

Active database = a database with triggers

•  Triggers can be used to enforce ICs
•  Triggers are more general: alerts, log events
•  But hard to understand: recursive triggers
•  Syntax is vendor specific, and may vary

significantly
–  Postgres has rules in addition to triggers

Views

•  A view = a relation computed from other
relations using a query

•  May be stored (materialized), or computed
on demand (virtual)

•  Views have many kinds of applications

36

37

CREATE VIEW CustomerPrice AS
 SELECT x.customer, y.price
 FROM Purchase x, Product y
 WHERE x.product = y.pname

Example
Purchase(customer, product, store)
Product(pname, price)

CustomerPrice(customer, price) “virtual table”

38

SELECT u.customer, v.store
FROM CustomerPrice u, Purchase v
WHERE u.customer = v.customer AND
 u.price > 100

We can later use the view:

Purchase(customer, product, store)
Product(pname, price)
CustomerPrice(customer, price)

39

Types of Views

•  Virtual views:
– Used in databases
– Computed only on-demand – slow at runtime
– Always up to date

•  Materialized views
– Used in data warehouses
– Pre-computed offline – fast at runtime
– May have stale data
–  Indexes are materialized views (read book)

40

Querying Virtual Views

•  Have views V1, V2, …, Vn

•  Query Q refers to these views

•  Need to inline view definitions in the query

•  Then need to simplify the expression

41

Queries Over Virtual Views

SELECT u.customer, v.store
FROM CustomerPrice u, Purchase v
WHERE u.customer = v.customer AND
 u.price > 100

Query:

Purchase(customer, product, store)
Product(pname, price)
CustomerPrice(customer, price)

42

Queries Over Virtual Views

SELECT u.customer, v.store
FROM (SELECT x.customer, y.price
 FROM Purchase x, Product y
 WHERE x.product = y.pname) u, Purchase v
WHERE u.customer = v.customer AND
 u.price > 100

Modified query:

Purchase(customer, product, store)
Product(pname, price)
CustomerPrice(customer, price)

43

Queries Over Virtual Views

SELECT x.customer, v.store
FROM Purchase x, Product y, Purchase v,
WHERE x.customer = v.customer AND
 y.price > 100 AND
 x.product = y.pname

Modified and unnested query:

Purchase(customer, product, store)
Product(pname, price)
CustomerPrice(customer, price)

44

Another Example

SELECT DISTINCT u.customer, v.store
FROM CustomerPrice u, Purchase v
WHERE u.customer = v.customer AND
 u.price > 100

??

Purchase(customer, product, store)
Product(pname, price)
CustomerPrice(customer, price)

45

Answer

SELECT DISTINCT x.customer, v.store
FROM Purchase x, Product y, Purchase v,
WHERE x.customer = v.customer AND
 y.price > 100 AND
 x.product = y.pname

Purchase(customer, product, store)
Product(pname, price)
CustomerPrice(customer, price)

46

Set v.s. Bag Semantics

SELECT DISTINCT a,b,c
FROM R, S, T
WHERE . . .

SELECT a,b,c
FROM R, S, T
WHERE . . .

Set semantics

Bag semantics

47

Inlining Queries: Sets/Sets

SELECT DISTINCT a,b,c
FROM (SELECT DISTINCT u,v
 FROM R,S
 WHERE …), T
WHERE . . .

SELECT DISTINCT a,b,c
FROM R, S, T
WHERE . . .

48

Inlining Queries: Sets/Bags

SELECT DISTINCT a,b,c
FROM (SELECT u,v
 FROM R,S
 WHERE …), T
WHERE . . .

SELECT DISTINCT a,b,c
FROM R, S, T
WHERE . . .

49

Inlining Queries: Bags/Bags

SELECT a,b,c
FROM (SELECT u,v
 FROM R,S
 WHERE …), T
WHERE . . .

SELECT a,b,c
FROM R, S, T
WHERE . . .

50

Inlining Queries: Bags/Sets

SELECT a,b,c
FROM (SELECT DISTINCT u,v
 FROM R,S
 WHERE …), T
WHERE . . .

NO

51

Applications of Virtual Views

•  Physical data independence
– Vertical data partitioning
– Horizontal data partitioning

•  Security
– The view reveals only what the users are

allowed to know
•  Materialized views for query speedup

–  Indexes, denormalization, semantic caching

52

Vertical Partitioning
SSN Name Address Resume Picture
234234 Mary Huston Clob1… Blob1…
345345 Sue Seattle Clob2… Blob2…
345343 Joan Seattle Clob3… Blob3…
234234 Ann Portland Clob4… Blob4…

Resumes

SSN Name Address
234234 Mary Huston
345345 Sue Seattle
 . . .

SSN Resume
234234 Clob1…
345345 Clob2…

SSN Picture
234234 Blob1…
345345 Blob2…

T1 T2 T3

53

Vertical Partitioning

CREATE VIEW Resumes AS
 SELECT T1.ssn, T1.name, T1.address,
 T2.resume, T3.picture
 FROM T1,T2,T3
 WHERE T1.ssn=T2.ssn and T2.ssn=T3.ssn

When do we use vertical partitioning ?

54

Vertical Partitioning

SELECT address
FROM Resumes
WHERE name = ‘Sue’

Which of the tables T1, T2, T3 will
be queried by the system ?

55

Vertical Partitioning

When to do this:
•  When some fields are large, and rarely accessed

–  E.g. Picture
•  In distributed databases

–  Customer personal info at one site, customer profile at
another

•  In data integration
–  T1 comes from one source
–  T2 comes from a different source

56

Horizontal Partitioning

SSN Name City Country
234234 Mary Huston USA
345345 Sue Seattle USA
345343 Joan Seattle USA
234234 Ann Portland USA
-- Frank Calgary Canada

-- Jean Montreal Canada

Customers

SSN Name City Country
234234 Mary Huston USA

CustomersInHuston

SSN Name City Country
345345 Sue Seattle USA

345343 Joan Seattle USA

CustomersInSeattle

SSN Name City Country
-- Frank Calgary Canada

-- Jean Montreal Canada

CustomersInCanada

57

Horizontal Partitioning

CREATE VIEW Customers AS
 CustomersInHuston
 UNION ALL
 CustomersInSeattle
 UNION ALL
 . . .

58

Horizontal Partitioning

SELECT name
FROM Cusotmers
WHERE city = ‘Seattle’

Which tables are inspected by the system ?

WHY ???

59

Horizontal Partitioning

CREATE VIEW Customers AS
 (SELECT * FROM CustomersInHuston
 WHERE city = ‘Huston’)
 UNION ALL
 (SELECT * FROM CustomersInSeattle
 WHERE city = ‘Seattle’)
 UNION ALL
 . . .

Better:

60

Horizontal Partitioning

SELECT name
FROM Cusotmers
WHERE city = ‘Seattle’

SELECT name
FROM CusotmersInSeattle

61

Horizontal Partitioning

Applications:
•  Optimizations:

– E.g. archived applications and active
applications

•  Distributed databases
•  Data integration

62

Views and Security

CREATE VIEW PublicCustomers

 SELECT Name, Address

 FROM Customers

Name Address Balance
Mary Huston 450.99
Sue Seattle -240
Joan Seattle 333.25
Ann Portland -520

Fred is
allowed to

see this

Customers:
Fred is not
allowed to

see this

63

Views and Security

Name Address Balance
Mary Huston 450.99
Sue Seattle -240
Joan Seattle 333.25
Ann Portland -520

CREATE VIEW BadCreditCustomers

 SELECT *

 FROM Customers

 WHERE Balance < 0

Customers: John is
not allowed

to see balances
>0

64

Materialized Views for Query
Speedup

Examples:
•  Indexes

– Rule of thumb: an index is a view !

•  Denormalization
– E.g. Join indexes

65

CREATE INDEX W ON Product(weight)
CREATE INDEX P ON Product(price)

Indexes are Materialized Views

SELECT weight, price
FROM Product
WHERE weight > 10
 and price < 100

Product(pid, name, weight, price, …) (big)

(smaller)
W(pid, weight)
P(pid, price)

SELECT x.weight, y.price
FROM W x, P y
WHERE x.weight > 10
 and y.price < 100
 and x.pid = y.pid

Denormalization

66

Application(id, name, school)
GRE(id, score, year)

CREATE VIEW AppWithGRE AS
 SELECT x.id,x.name, x.school, y.score, y.year
 FROM Application x, GRE y
 WHERE x.id=y.id

SELECT x.id, max(y.score)
FROM Application x, GRE y
WHERE x.id=y.id
GROUP BY x.id

Real example from Graduate Admissions

Common query VERY SLOW !

Synchronize
once per night

67

Semantic Caching

•  Queries Q1, Q2, … have been executed, and
their results are stored in main memory

•  Now we need to compute a new query Q
•  Sometimes we can use the prior results in

answering Q
•  This, too, is a form of query rewriting using

views (why ?)

Technical Challenges in
Managing Views

•  Updating views
•  Simplifying queries over virtual views
•  Synchronizing materialized views
•  Query answering using views

68

69

CREATE VIEW Expensive-Product AS
 SELECT pname
 FROM Product
 WHERE price > 100

Updating Views

INSERT
INTO Expensive-Product
VALUES(‘Gizmo’)

INSERT
INTO Product
VALUES(‘Gizmo’, NULL)

Purchase(customer, product, store)
Product(pname, price)

Updateable
view

70

CREATE VIEW AcmePurchase AS
 SELECT customer, product
 FROM Purchase
 WHERE store = ‘AcmeStore’

Updating Views

INSERT
INTO Toy-Product
VALUES(‘Joe’, ‘Gizmo’)

INSERT
INTO Product
VALUES(‘Joe’,’Gizmo’,NULL)

Note
this

Purchase(customer, product, store)
Product(pname, price)

Updateable
view

71

Updating Views

INSERT INTO CustomerPrice
VALUES(‘Joe’, 200)

? ? ? ? ?

Non-updateable
view

Most views are
non-updateable

CREATE VIEW CustomerPrice AS
 SELECT x.customer, y.price
 FROM Purchase x, Product y
 WHERE x.product = y.pname

Purchase(customer, product, store)
Product(pname, price)

Simplifying Queries over Virtual
Views

•  After the views are expanded in the query’s
body, the resulting expression is often
redundant and inefficient

•  Query minimization = the problem of
rewriting a query into an equivalent query
that is smaller (and, hence, more efficient)

72

73

Query Minimization

CREATE VIEW CheapOrders AS
 SELECT x.cid,x.pid,x.date,y.name,y.price
 FROM Order x, Product y
 WHERE x.pid = y.pid and y.price < 99

CREATE VIEW LightOrders AS
 SELECT a.cid,a.pid,a.date,b.name,b.price
 FROM Order a, Product b
 WHERE a.pid = b.pid and b.weight < 15

Order(cid, pid, date)
Product(pid, name, weight, price)

SELECT u.cid
FROM CheapOrders u,
 LightOrders v
WHERE u.pid = v.pid
 and u.cid = v.cid

Customers
who ordered a

cheap, lightweight
product

74

Query Minimization

CREATE VIEW CheapOrders AS
 SELECT x.cid,x.pid,x.date,y.name,y.price
 FROM Order x, Product y
 WHERE x.pid = y.pid and y.price < 99

CREATE VIEW LightOrders AS
 SELECT a.cid,a.pid,a.date,b.name,b.price
 FROM Order a, Product b
 WHERE a.pid = b.pid and b.weight < 15

Order(cid, pid, date)
Product(pid, name, weight, price)

SELECT u.cid
FROM CheapOrders u,
 LightOrders v
WHERE u.pid = v.pid
 and u.cid = v.cid

SELECT a.cid
FROM Order x, Product y
 Order a, Product b
WHERE

Redundant Orders and Products

75

Query Minimization under Bag
Semantics

Rule 1: If x, y are tuple variables over the
same table and x.id = y.id, then combine x,
y into a single variable

Rule 2: If x ranges over S, y ranges over T,
the only condition on y is x.fk = y.key, and
y is not used anywhere else, then remove T
(and y) from the query

76

SELECT a.cid
FROM Order x, Product y, Order a, Product b
WHERE x.pid = y.pid and a.pid = b.pid
 and y.price < 99 and b.weight < 15
 and x.cid = a.cid and x.pid = a.pid

SELECT a.cid
FROM Order x, Product y, Product b
WHERE x.pid = y.pid and x.pid = b.pid
 and y.price < 99 and b.weight < 15

x = a

SELECT a.cid
FROM Order x, Product y
WHERE x.pid = y.pid and
 y.price < 99 and x.weight < 15

y = b

77

Query Minimization under Set
Semantics

SELECT DISTINCT x.pid
FROM Product x, Product y, Product z
WHERE x.category = y.category and y.price > 100
 and x.category = z.category and z.price > 500
 and z.weight > 10

SELECT DISTINCT x.pid
FROM Product x, Product z
WHERE x.category = z.category and z.price > 500
 and z.weight > 10

Same as:

78

Query Minimization under Set
Semantics

Rule 3: Let Q’ be the query obtained by
removing the tuple variable x from Q. If
there exists a homomorphism from Q to Q’
and both Q, Q’ have set semantics, then Q’
is equivalent to Q. Hence one can safely
remove x.

Definition of a Homomorphism

79

A homomorphism from Q to Q’ is
mapping h from the tuple variables of
Q to the tuple variables of Q’ such that:

For every predicate P in the
WHERE clause of Q, the predicate
h(P) is logically implied by the
WHERE clause of Q’

Theorem If there exists a homomorphism from Q’ to Q,
then Q is contained in Q’.
If there exists homomorphisms both from Q’ to Q and from
Q to Q’, then Q and Q’ are logically equivalent.

80

Homomorphism

SELECT DISTINCT x.pid
FROM Product x, Product y, Product z
WHERE x.category = y.category and y.price > 100
 and x.category = z.category and z.price > 500
 and z.weight > 10

SELECT DISTINCT x’.pid
FROM Product x’, Product z’
WHERE x’.category = z’.category and z’.price > 500
 and z’.weight > 10

Q

Q’

H(x) = x’, H(y) = H(z) = z’

81

Synchronizing Materialized Views

•  Immediate synchronization = after each
update

•  Deferred synchronization
– Lazy = at query time
– Periodic
– Forced = manual

Which one is best for: indexes, data warehouses, replication ?

82

CREATE VIEW FullOrder AS
 SELECT x.cid,x.pid,x.date,y.name,y.price
 FROM Order x, Product y
 WHERE x.pid = y.pid

Incremental View Update

UPDATE Product
SET price = price / 2
WHERE pid = ‘12345’

Order(cid, pid, date)
Product(pid, name, price)

UPDATE FullOrder
SET price = price / 2
WHERE pid = ‘12345’

No need to recompute the entire view !

83

CREATE VIEW Categories AS
 SELECT DISTINCT category
 FROM Product

Incremental View Update

DELETE Product
WHERE pid = ‘12345’

Product(pid, name, category, price)

DELETE Categories
WHERE category in
 (SELECT category
 FROM Product
 WHERE pid = ‘12345’)

It doesn’t work ! Why ? How can we fix it ?

84

Answering Queries Using Views

•  We have several materialized views:
– V1, V2, …, Vn

•  Given a query Q
– Answer it by using views instead of base tables

•  Variation: Query rewriting using views
– Answer it by rewriting it to another query first

•  Example: if the views are indexes, then we
rewrite the query to use indexes

Query Rewriting Using Views

85

Purchase(buyer, seller, product, store)
Person(pname, city)

CREATE VIEW SeattleView AS
 SELECT y.buyer, y.seller, y.product, y.store
 FROM Person x, Purchase y
 WHERE x.city = ‘Seattle’ AND
 x.pname = y.buyer

SELECT y.buyer, y.seller
FROM Person x, Purchase y
WHERE x.city = ‘Seattle’ AND
 x..pname = y.buyer AND
 y.product=‘gizmo’

Goal: rewrite this query
in terms of the view

Have this
materialized
view:

Query Rewriting Using Views

86

SELECT y.buyer, y.seller
FROM Person x, Purchase y
WHERE x.city = ‘Seattle’ AND
 x..pname = y.buyer AND
 y.product=‘gizmo’

SELECT buyer, seller
FROM SeattleView
WHERE product= ‘gizmo’

Rewriting is not always possible

87

CREATE VIEW DifferentView AS
 SELECT y.buyer, y.seller, y.product, y.store
 FROM Person x, Purchase y, Product z
 WHERE x.city = ‘Seattle’ AND
 x.pname = y.buyer AND
 y.product = z.name AND
 z.price < 100

SELECT y.buyer, y.seller
FROM Person x, Purchase y
WHERE x.city = ‘Seattle’ AND
 x..pname = y.buyer AND
 y.product=‘gizmo’ SELECT buyer, seller

FROM DifferentView
WHERE product= ‘gizmo’

“Maximally
contained
rewriting”

