
1

CSEP544 Lecture 4:
Transactions

Tuesday, April 21, 2009

4/21/2009 csep 544

HW 3

•  Database 1 = IMDB on SQL Server

•  Database 2 = you create a CUSTOMER
db on postgres
– Customers
– Rentals
– Plans

2 4/21/2009 csep 544

Overview

Today:
•  Overview of transactions (R&G Chapter 16)
•  Recovery from crashes (Ullman’s book,

then R&G Chapter 18)
Next week
•  Concurrency control

3 4/21/2009 csep 544

4

Transactions
•  Problem: An application must perform

several writes and reads to the database,
as a unity

•  Solution: multiple actions of the application
are bundled into one unit called
Transaction

4/21/2009 csep 544

Turing Awards to Database
Researchers

•  Charles Bachman 1973 for CODASYL

•  Edgar Codd 1981 for relational
databases

•  Jim Gray 1998 for transactions

5 4/21/2009 csep 544

6

Inconsistent Read

/* Client 1: move gizmogadget */

UPDATE Products
SET quantity = quantity + 5
WHERE product = ‘gizmo’

UPDATE Products
SET quantity = quantity - 5
WHERE product = ‘gadget’

/* Client 2: inventory….*/

SELECT sum(quantity)
FROM Product

4/21/2009 csep 544

7

Dirty Reads
/* Client 1: transfer $100 acc1 acc2 */
X = Account1.balance
Account2.balance += 100

If (X>=100) Account1.balance -=100
else { /* rollback ! */
 account2.balance -= 100
 println(“Denied !”) /* Client 2: transfer $100 acc2  acc3 */

Y = Account2.balance
Account3.balance += 100

If (Y>=100) Account2.balance -=100
else { /* rollback ! */
 account3.balance -= 100
 println(“Denied !”) What’s wrong ?

4/21/2009 csep 544

8

Example: Lost Update

Client 1:
 UPDATE Customer
 SET rentals= rentals + 1
 WHERE cname= ‘Fred’

Two people attempt to rent two movies for Fred,
from two different terminals. What happens ?

Client 2:
 UPDATE Customer
 SET rentals= rentals + 1
 WHERE cname= ‘Fred’

4/21/2009 csep 544

9

Famous anomalies

•  Dirty read
–  T reads data written by T’ while T’ has not committed
–  What can go wrong: T’ writes more or aborts

–  Inconsistent read: T sees only some changes by T’

•  Lost update
–  Two tasks T and T’ both modify the same data
–  T and T’ both commit
–  Final state shows effects of only T, but not of T’

•  Many other anomalies exists, with or without name
–  E.g. write skew

4/21/2009 csep 544

10

Protection against crashes

What’s wrong ?

Client 1:

UPDATE Accounts
SET balance= balance - 500
WHERE name= ‘Fred’

UPDATE Accounts
SET balance = balance + 500
WHERE name= ‘Joe’

Crash !

4/21/2009

11

Definition of Transactions
•  A transaction = one or more operations,

which reflects a single real-world transition
–  Happens completely or not at all

•  Examples
–  Transfer money between accounts
–  Rent a movie; return a rented movie
–  Purchase a group of products
–  Register for a class (either waitlisted or allocated)

•  By using transactions, all previous problems
disappear

4/21/2009 csep 544

12

Transactions in Applications

START TRANSACTION

[SQL statements]

COMMIT or ROLLBACK (=ABORT)

May be omitted:
first SQL query

starts txn

4/21/2009 csep 544

Default: each statement = one transaction

Revised Code

13

/* Client 1: transfer $100 acc1 acc2 */
START TRANSACTION
X = Account1.balance; Account2.balance += 100

If (X>=100) { Account1.balance -=100; COMMIT }
else {println(“Denied !”; ROLLBACK)

/* Client 1: transfer $100 acc2 acc3 */
START TRANSACTION
X = Account2.balance; Account3.balance += 100

If (X>=100) { Account2.balance -=100; COMMIT }
else {println(“Denied !”; ROLLBACK)

Using Transactions
Very easy to use:
•  START TRANSACTION
•  COMMIT
•  ROLLBACK
What they mean:
•  Popular culture: ACID
•  Theory: serializability (next lecture)

14 4/21/2009 csep 544

15

ACID Properties

•  Atomicity: Either all changes performed by
transaction occur or none occurs

•  Consistency: A transaction as a whole does
not violate integrity constraints

•  Isolation: Transactions appear to execute one
after the other in sequence

•  Durability: If a transaction commits, its
changes will survive failures

4/21/2009 csep 544

16

What Could Go Wrong?

•  Concurrent operations
– Will discuss next time

•  Failures can occur at any time
– Will discuss today

•  Transactions are intimately connected
to the buffer manager (will discuss next)

4/21/2009 csep 544

The Mechanics of Disk
Mechanical characteristics:
•  Rotation speed (5400RPM)
•  Number of platters (1-30)
•  Number of tracks (<=10000)
•  Number of bytes/track(105)

Platters

Spindle
Disk head

Arm movement

Arm assembly

Tracks

Sector

Cylinder

Unit of read or write:
 disk block
Once in memory:
 page
Typically: 4k or 8k or 16k

4/21/2009 17

Disk Access Characteristics
•  Disk latency = time between when command is issued

and when data is in memory

•  Disk latency = seek time + rotational latency
–  Seek time = time for the head to reach cylinder

•  10ms – 40ms
–  Rotational latency = time for the sector to rotate

•  Rotation time = 10ms
•  Average latency = 10ms/2

•  Transfer time = typically 40MB/s
•  Disks read/write one block at a time

4/21/2009 18 csep 544

RAID
Several disks that work in parallel
•  Redundancy: use parity to recover from disk failure
•  Speed: read from several disks at once

Various configurations (called levels):
•  RAID 1 = mirror
•  RAID 4 = n disks + 1 parity disk
•  RAID 5 = n+1 disks, assign parity blocks round robin
•  RAID 6 = “Hamming codes”

4/21/2009 19 csep 544

Design Question

•  Consider the following query:

•  How can the DBMS execute this query given
–  1 GB of memory
–  100 GB TempSensor and 10 GB PressureSensor

SELECT S1.temp, S2.pressure
FROM TempSensor S1, PressureSensor S2
WHERE S1.location = S2.location
AND S1.time = S2.time

4/21/2009 20 csep 544

Buffer Manager

Disk

Main
memory

Page requests from higher-level code

Buffer pool

Disk page

Free frame

1 page corresponds
to 1 disk block

Disk = collection
of blocks

Disk space manager

Buffer pool manager
Files and access methods

21

READ
WRITE

INPUT
OUTUPT

choice of frame dictated
by replacement policy

•  Data must be in RAM for DBMS to operate on it!
•  Buffer pool = table of <frame#, pageid> pairs

Buffer Manager

•  Enables higher layers of the DBMS to
assume that needed data is in main memory

•  Needs to decide on page replacement policy
–  LRU, clock algorithm, or other

•  Both work well in OS, but not always in DB

4/21/2009 22 csep 544

Least Recently Used (LRU)

•  Order pages by the time of last accessed
•  Always replace the least recently accessed

P5, P2, P8, P4, P1, P9, P6, P3, P7

Access P6

P6, P5, P2, P8, P4, P1, P9, P3, P7

LRU is expensive (why ?); the clock algorithm is good approx 23

Buffer Manager

•  Why not use the OS for the task??
•  Reason 1: Correctness

–  DBMS needs fine grained control for transactions
–  Needs to force pages to disk for recovery purposes

•  Reason 2: Performance
–  DBMS may be able to anticipate access patterns
–  Hence, may also be able to perform prefetching
–  May select better page replacement policy

4/21/2009 24 csep 544

Transaction Management and
the Buffer Manager

Transaction manager operates on buffer
pool

•  Recovery: ‘log-file write-ahead’, then
careful policy about which pages to
force to disk

•  Concurrency control: locks at the
page level, multiversion concurrency
control

4/21/2009 25 csep 544

Connection to ACID

•  Recovery from crashes: ACID
– Will discuss today

•  Concurrency control: ACID
– Will discuss next week

4/21/2009 26 csep 544

Recovery

From which events below can DBMS
recover ?

•  Wrong data entry
•  Disk failure
•  Fire / earthquake / bankruptcy / ….
•  System failure, transaction failure:

– Power failure
– Rollback

4/21/2009 27 csep 544

Recovery

Type of Crash Prevention

Wrong data entry Constraints and
Data cleaning

Disk crashes Redundancy:
e.g. RAID, archive

Fire, theft,
bankruptcy…

Buy insurance,
Change jobs…

System/transaction
failures

DATABASE
RECOVERY

Most
frequent

28

System Failures

•  Each transaction has internal state

•  When system crashes, internal state is lost
–  Don’t know which parts executed and which didn’t
–  Need ability to undo and redo

•  Remedy: use a log
–  File that records every single action of each transaction

4/21/2009 29 csep 544

30

Problem Illustration
Client 1:

 START TRANSACTION
 INSERT INTO SmallProduct(name, price)
 SELECT pname, price
 FROM Product
 WHERE price <= 0.99

 DELETE Product
 WHERE price <=0.99
 COMMIT

What do we do now?

Crash !

4/21/2009 csep 544

Transactions

•  Assumption: db composed of elements
– Usually 1 element = 1 block
– Can be smaller (=1 record) or larger (=1

relation)

•  Assumption: each transaction reads/
writes some elements

4/21/2009 31 csep 544

Primitive Operations of
Transactions

•  READ(X,t)
–  copy element X to transaction local variable t

•  WRITE(X,t)
–  copy transaction local variable t to element X

•  INPUT(X)
–  read element X to memory buffer

•  OUTPUT(X)
–  write element X to disk

4/21/2009 32 csep 544

Example
START TRANSACTION
READ(A,t);
t := t*2;
WRITE(A,t);
READ(B,t);
t := t*2;
WRITE(B,t);
COMMIT;

Atomicity:
BOTH A and B
are multiplied by 2

4/21/2009 33 csep 544

34

Action t Mem A Mem B Disk A Disk B

INPUT(A) 8 8

READ(A,t)

t:=t*2

WRITE(A,t)

INPUT(B)

READ(B,t)

t:=t*2

WRITE(B,t)

OUTPUT(A)

OUTPUT(B)

Buffer pool Disk Transaction

READ(A,t); t := t*2; WRITE(A,t);
READ(B,t); t := t*2; WRITE(B,t);

35

Action t Mem A Mem B Disk A Disk B

INPUT(A) 8 8 8

READ(A,t)

t:=t*2

WRITE(A,t)

INPUT(B)

READ(B,t)

t:=t*2

WRITE(B,t)

OUTPUT(A)

OUTPUT(B)

Buffer pool Disk Transaction

READ(A,t); t := t*2; WRITE(A,t);
READ(B,t); t := t*2; WRITE(B,t);

36

Action t Mem A Mem B Disk A Disk B

INPUT(A) 8 8 8

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t)

INPUT(B)

READ(B,t)

t:=t*2

WRITE(B,t)

OUTPUT(A)

OUTPUT(B)

Buffer pool Disk Transaction

READ(A,t); t := t*2; WRITE(A,t);
READ(B,t); t := t*2; WRITE(B,t);

37

Action t Mem A Mem B Disk A Disk B

INPUT(A) 8 8 8

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8

INPUT(B)

READ(B,t)

t:=t*2

WRITE(B,t)

OUTPUT(A)

OUTPUT(B)

Buffer pool Disk Transaction

READ(A,t); t := t*2; WRITE(A,t);
READ(B,t); t := t*2; WRITE(B,t);

38

Action t Mem A Mem B Disk A Disk B

INPUT(A) 8 8 8

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8

INPUT(B) 16 16 8 8 8

READ(B,t)

t:=t*2

WRITE(B,t)

OUTPUT(A)

OUTPUT(B)

Buffer pool Disk Transaction

READ(A,t); t := t*2; WRITE(A,t);
READ(B,t); t := t*2; WRITE(B,t);

39

Action t Mem A Mem B Disk A Disk B

INPUT(A) 8 8 8

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8

INPUT(B) 16 16 8 8 8

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t)

OUTPUT(A)

OUTPUT(B)

Buffer pool Disk Transaction

READ(A,t); t := t*2; WRITE(A,t);
READ(B,t); t := t*2; WRITE(B,t);

40

Action t Mem A Mem B Disk A Disk B

INPUT(A) 8 8 8

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8

INPUT(B) 16 16 8 8 8

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8

OUTPUT(A)

OUTPUT(B)

Buffer pool Disk Transaction

READ(A,t); t := t*2; WRITE(A,t);
READ(B,t); t := t*2; WRITE(B,t);

41

Action t Mem A Mem B Disk A Disk B

INPUT(A) 8 8 8

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8

INPUT(B) 16 16 8 8 8

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8

OUTPUT(A) 16 16 16 16 8

OUTPUT(B)

Buffer pool Disk Transaction

READ(A,t); t := t*2; WRITE(A,t);
READ(B,t); t := t*2; WRITE(B,t);

42

Action t Mem A Mem B Disk A Disk B

INPUT(A) 8 8 8

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8

INPUT(B) 16 16 8 8 8

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

Buffer pool Disk Transaction

READ(A,t); t := t*2; WRITE(A,t);
READ(B,t); t := t*2; WRITE(B,t);

Action t Mem A Mem B Disk A Disk B

INPUT(A) 8 8 8

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8

INPUT(B) 16 16 8 8 8

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16
Crash !

Crash occurs after OUTPUT(A), before OUTPUT(B)
We lose atomicity 43

44

Buffer Manager Policies
•  STEAL or NO-STEAL

–  Can an update made by an uncommitted transaction overwrite the
most recent committed value of a data item on disk?

•  FORCE or NO-FORCE
–  Should all updates of a transaction be forced to disk before the

transaction commits?

•  Easiest for recovery: NO-STEAL/FORCE

•  Highest performance: STEAL/NO-FORCE

4/21/2009 csep 544

45

Solution: Use a Log
•  Log: append-only file containing log records
•  Enables the use of STEAL and NO-FORCE
•  For every update, commit, or abort operation

–  Write physical, logical, or physiological log record
–  Note: multiple transactions run concurrently, log

records are interleaved

•  After a system crash, use log to:
–  Redo some transaction that did commit
–  Undo other transactions that didn’t commit

4/21/2009 csep 544

46

Write-Ahead Log
•  Rule 1: (WAL Rule) All log records pertaining to a

page are written to disk before the page is overwritten
on disk

•  Rule 2: All log records for transaction are written to
disk before the transaction is considered committed
–  Why is this faster than FORCE policy?

•  Committed transaction: transactions whose commit
log record has been written to disk

4/21/2009 csep 544

Undo Logging
Log records
•  <START T>

– Transaction T has begun
•  <COMMIT T>

–  T has committed
•  <ABORT T>

–  T has aborted
•  <T,X,v> -- Update record

–  T has updated element X, and its old value was v

4/21/2009 47 csep 544

Action T Mem A Mem B Disk A Disk B Log

<START T>

INPUT(A) 8 8 8

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8 <T,A,8>

INPUT(B) 16 16 8 8 8

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8 <T,B,8>

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

COMMIT <COMMIT T>
4/21/2009 48 csep 544

Action T Mem A Mem B Disk A Disk B Log

<START T>

INPUT(A) 8 8 8

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8 <T,A,8>

INPUT(B) 16 16 8 8 8

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8 <T,B,8>

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

COMMIT <COMMIT T>

Crash !

WHAT DO WE DO ? 4/21/2009 49 csep 544

Action T Mem A Mem B Disk A Disk B Log

<START T>

INPUT(A) 8 8 8

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8 <T,A,8>

INPUT(B) 16 16 8 8 8

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8 <T,B,8>

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

COMMIT <COMMIT T>

Crash !
WHAT DO WE DO ? 4/21/2009 50 csep 544

After Crash
•  In the first example:

–  We UNDO both changes: A=8, B=8
–  The transaction is atomic, since none of its actions has been

executed

•  In the second example
–  We don’t undo anything
–  The transaction is atomic, since both it’s actions have been

executed

4/21/2009 51 csep 544

Undo-Logging Rules

Undo-logging Rule: If T commits, then
OUTPUT(X) must be written to disk
before <COMMIT T>

•  Hence: OUTPUTs are done early,
before the transaction commits

4/21/2009 52 csep 544

Action T Mem A Mem B Disk A Disk B Log

<START T>

INPUT(A) 8 8 8

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8 <T,A,8>

INPUT(B) 16 16 8 8 8

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8 <T,B,8>

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

COMMIT <COMMIT T>
4/21/2009 53 csep 544

Recovery with Undo Log

After system’s crash, run recovery manager

•  Idea 1. Decide for each transaction T whether
it is completed or not
–  <START T>….<COMMIT T>…. = yes
–  <START T>….<ABORT T>……. = yes
–  <START T>……………………… = no

•  Idea 2. Undo all modifications by incomplete
transactions

4/21/2009 54 csep 544

Recovery with Undo Log

Recovery manager:
•  Read log from the end; cases:

<COMMIT T>: mark T as completed
<ABORT T>: mark T as completed
<T,X,v>: if T is not completed

 then write X=v to disk
 else ignore

<START T>: ignore

4/21/2009 55 csep 544

Recovery with Undo Log
…
…
<T6,X6,v6>
…
…
<START T5>
<START T4>
<T1,X1,v1>
<T5,X5,v5>
<T4,X4,v4>
<COMMIT T5>
<T3,X3,v3>
<T2,X2,v2>

Question1 in class:
Which updates are
undone ?

Question 2 in class:
How far back
do we need to
read in the log ?

crash 4/21/2009 56 csep 544

Recovery with Undo Log

•  Note: all undo commands are
idempotent
–  If we perform them a second time, no harm

done
– E.g. if there is a system crash during

recovery, simply restart recovery from
scratch

4/21/2009 57 csep 544

Recovery with Undo Log

When do we stop reading the log ?
•  We cannot stop until we reach the

beginning of the log file
•  This is impractical

Instead: use checkpointing

4/21/2009 58 csep 544

Checkpointing

Checkpoint the database periodically
•  Stop accepting new transactions
•  Wait until all current transactions

complete
•  Flush log to disk
•  Write a <CKPT> log record, flush
•  Resume transactions
4/21/2009 59 csep 544

Undo Recovery with
Checkpointing

…
…
<T9,X9,v9>
…
…
(all completed)
<CKPT>
<START T2>
<START T3
<START T5>
<START T4>
<T1,X1,v1>
<T5,X5,v5>
<T4,X4,v4>
<COMMIT T5>
<T3,X3,v3>
<T2,X2,v2>

During recovery,
Can stop at first
<CKPT>

 transactions T2,T3,T4,T5

 other transactions

4/21/2009 60

Nonquiescent Checkpointing

•  Problem with checkpointing: database
freezes during checkpoint

•  Would like to checkpoint while database
is operational

•  Idea: nonquiescent checkpointing

Quiescent = being quiet, still, or at rest; inactive
Non-quiescent = allowing transactions to be active

4/21/2009 61 csep 544

Nonquiescent Checkpointing

•  Write a <START CKPT(T1,…,Tk)>
where T1,…,Tk are all active
transactions. Flush log to disk

•  Continue normal operation

•  When all of T1,…,Tk have completed,
write <END CKPT>. Flush log to disk

4/21/2009 62 csep 544

Undo Recovery with
Nonquiescent Checkpointing

…
…
…
…
…
…
<START CKPT T4, T5, T6>
…
…
…
…
<END CKPT>
…
…
…

During recovery,
Can stop at first
<CKPT>

 T4, T5, T6, plus
 later transactions

 earlier transactions plus
 T4, T5, T6

 later transactions
Q: do we need
<END CKPT> ? 63 csep 544

Implementing ROLLBACK

•  Recall: a transaction can end in
COMMIT or ROLLBACK

•  Idea: use the undo-log to implement
ROLLBCACK

•  How ?
•  LSN = Log Seqence Number
•  Log entries for the same transaction are

linked, using the LSN’s
4/21/2009 64 csep 544

Redo Logging

Log records
•  <START T> = transaction T has begun
•  <COMMIT T> = T has committed
•  <ABORT T>= T has aborted
•  <T,X,v>= T has updated element X, and

its new value is v

4/21/2009 65 csep 544

Action T Mem A Mem B Disk A Disk B Log

<START T>

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8 <T,A,16>

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8 <T,B,16>

<COMMIT T>

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

4/21/2009 66 csep 544

Redo-Logging Rules

Redo-logging Rule: If T modifies X, then
both <T,X,v> and <COMMIT T> must
be written to disk before OUTPUT(X)

•  Hence: OUTPUTs are done late

4/21/2009 67 csep 544

Action T Mem A Mem B Disk A Disk B Log

<START T>

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8 <T,A,16>

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8 <T,B,16>

<COMMIT T>

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

4/21/2009 68 csep 544

Recovery with Redo Log

After system’s crash, run recovery manager
•  Step 1. Decide for each transaction T whether

it is completed or not
–  <START T>….<COMMIT T>…. = yes
–  <START T>….<ABORT T>……. = yes
–  <START T>……………………… = no

•  Step 2. Read log from the beginning, redo all
updates of committed transactions

4/21/2009 69 csep 544

Recovery with Redo Log
<START T1>
<T1,X1,v1>
<START T2>
<T2, X2, v2>
<START T3>
<T1,X3,v3>
<COMMIT T2>
<T3,X4,v4>
<T1,X5,v5>
…
…

4/21/2009 70 csep 544

Nonquiescent Checkpointing

•  Write a <START CKPT(T1,…,Tk)>
where T1,…,Tk are all active
transactions

•  Flush to disk all blocks of committed
transactions (dirty blocks), while
continuing normal operation

•  When all blocks have been written, write
<END CKPT>

4/21/2009 71 csep 544

Redo Recovery with
Nonquiescent Checkpointing

…
<START T1>
…
<COMMIT T1>
…a
<START T4>
…
<START CKPT T4, T5, T6>
…
…
…
…
<END CKPT>
…
…
…
<START CKPT T9, T10>
…

Step 1: look for
The last
<END CKPT>

Step 2: redo
from the
earliest
start of
T4, T5, T6
ignoring
transactions
committed
earlier

All OUTPUTs
of T1 are
known to be on disk

Cannot
use 4/21/2009 72 csep 544

Nonquiescent Checkpointing

•  This checkpointing methods is only for
the simple redo-log

•  We will discuss later the checkpointing
method for ARIES, which differs
significantly

•  The book describes ARIES only

73 4/21/2009 csep 544

Comparison Undo/Redo
•  Undo logging:

–  OUTPUT must be done early
–  If <COMMIT T> is seen, T definitely has written all its data to

disk (hence, don’t need to redo) – inefficient
•  Redo logging

–  OUTPUT must be done late
–  If <COMMIT T> is not seen, T definitely has not written any

of its data to disk (hence there is not dirty data on disk, no
need to undo) – inflexible

•  Would like more flexibility on when to OUTPUT:
undo/redo logging (next)

Steal/Force

No-Steal/No-Force

Steal/No-Force

4/21/2009 74 csep 544

Undo/Redo Logging

Log records, only one change
•  <T,X,u,v>= T has updated element X,

its old value was u, and its new value is
v

4/21/2009 75 csep 544

Action T Mem A Mem B Disk A Disk B Log

<START T>

REAT(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8 <T,A,8,16>

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8 <T,B,8,16>

OUTPUT(A) 16 16 16 16 8

<COMMIT T>

OUTPUT(B) 16 16 16 16 16

Can OUTPUT whenever we want: before/after COMMIT

Recovery with Undo/Redo Log

After system’s crash, run recovery manager
•  Redo all committed transaction, top-down
•  Undo all uncommitted transactions, bottom-up

4/21/2009 77 csep 544

Recovery with Undo/Redo Log
<START T1>
<T1,X1,v1>
<START T2>
<T2, X2, v2>
<START T3>
<T1,X3,v3>
<COMMIT T2>
<T3,X4,v4>
<T1,X5,v5>
…
…

4/21/2009 78 csep 544

79

ARIES Method
•  Read R&K Chapter 18

•  Three pass algorithm
–  Analysis pass

•  Figure out what was going on at time of crash
•  List of dirty pages and active transactions

–  Redo pass (repeating history principle)
•  Redo all operations, even for transactions that will not commit
•  Get back to state at the moment of the crash

–  Undo pass
•  Remove effects of all uncommitted transactions
•  Log changes during undo in case of another crash during undo

4/21/2009 csep 544

80

ARIES Method Illustration

[Figure 3 from Franklin97]

4/21/2009 csep 544

81

ARIES Method Elements
•  Each page contains a pageLSN

–  Log Sequence Number of log record for latest update
to that page

–  Will serve to determine if an update needs to be redone

•  Physiological logging
–  page-oriented REDO

•  Possible because will always redo all operations in order

–  logical UNDO
•  Needed because will only undo some operations

4/21/2009 csep 544

82

ARIES Data Structures
•  Transaction table

–  Lists all running transactions (active transactions)
–  For each txn: lastLSN = most recent update by transaction

•  Dirty page table
–  Lists all dirty pages
–  For each dirty page: recoveryLSN = first LSN that caused

page to become dirty
•  Write ahead log contains log records

–  LSN, prevLSN = previous LSN for same transaction
–  other attributes

4/21/2009 csep 544

ARIES Data Structures

83

pageID recLSN
P5 2
P6 3
P7 1

LSN prevLSN transID pageID Log entry
1 T100 P7
2 T200 P5
3 T200 P6
4 T100 P5

Dirty pages Log

transID lastLSN
T100 4
T200 3

Active transactions

4/21/2009 csep 544

84

ARIES Method Details

•  Steps under normal operations
– Add log record
– Update transactions table
– Update dirty page table
– Update pageLSN

4/21/2009 csep 544

85

Checkpoints

•  Write into the log
– Contents of transactions table
– Contents of dirty page table

•  Enables REDO phase to restart from
earliest recoveryLSN in dirty page table
– Shortens REDO phase

4/21/2009 csep 544

86

Analysis Phase
•  Goal

–  Determine point in log where to start REDO
–  Determine set of dirty pages when crashed

•  Conservative estimate of dirty pages
–  Identify active transactions when crashed

•  Approach
–  Rebuild transactions table and dirty pages table
–  Reprocess the log from the beginning (or checkpoint)

•  Only update the two data structures
–  Find oldest recoveryLSN (firstLSN) in dirty pages tables

4/21/2009 csep 544

87

Redo Phase

•  Goal: redo all updates since firstLSN

•  For each log record
–  If affected page is not in Dirty Page Table then do

not update
–  If affected page is in Dirty Page Table but

recoveryLSN > LSN of record, then no update
–  Else if pageLSN > LSN, then no update

•  Note: only condition that requires reading page from disk
–  Otherwise perform update

4/21/2009 csep 544

88

Undo Phase
•  Goal: undo effects of aborted transactions

•  Identifies all loser transactions in trans. table

•  Scan log backwards
–  Undo all operations of loser transactions
–  Undo each operation unconditionally
–  All ops. logged with compensation log records (CLR)
–  Never undo a CLR

•  Look-up the UndoNextLSN and continue from there

4/21/2009 csep 544

89

Handling Crashes during
Undo

[Figure 4 from Franklin97]

4/21/2009 csep 544

90

Summary

•  Transactions are a useful abstraction

•  They simplify application development

•  DBMS must maintain ACID properties in
face of
– Concurrency
– Failures

4/21/2009 csep 544

