CSEP544 | ecture 4:
Transactions

Tuesday, April 21, 2009

4/21/2009 csep 544

HW 3

« Database 1 = IMDB on SQL Server

» Database 2 = you create a CUSTOMER
db on postgres
— Customers
— Rentals
— Plans

4/21/2009 csep 544 2

Overview

Today:
* Overview of transactions (R&G Chapter 16)

» Recovery from crashes (Ullman’s book,
then R&G Chapter 18)

Next week
» Concurrency control

4/21/2009 csep 544 3

Transactions

* Problem: An application must perform
several writes and reads to the database,
as a unity

« Solution: multiple actions of the application
are bundled into one unit called
Transaction

4/21/2009 csep 544 4

Turing Awards to Database
Researchers

 Charles Bachman 1973 for CODASYL

* Edgar Codd 1981 for relational
databases

« Jim Gray 1998 for transactions

4/21/2009 csep 544

Inconsistent Read

/* Client 1: move gizmo->gadget */

UPDATE Products
SET quantity = quantity + 5

WHERE product = ‘gizmo’ /* Client 2: inventory....*/

SELECT sum(quantity)
FROM Product

UPDATE Products
SET quantity = quantity - 5
WHERE product = ‘gadget’

4/21/2009 csep 544 6

Dirty Reads

/* Client 1: transfer $100 acc1-> acc2 */

X = Account1.balance
Account2.balance += 100

If (X>=100) Account1.balance -=100

else { /* rollback ! */
account2.balance -= 100
printin(“Denied ")

What's wrong “?

4/21/2009

/* Client 2: transfer $100 acc2 - acc3 */
Y = Account2.balance
Account3.balance += 100

If (Y>=100) Account2.balance -=100

else { /* rollback ! */
account3.balance -= 100
printin("Denied ")

csep 544 7

Example: Lost Update

Client 1: Client 2:
UPDATE Customer UPDATE Customer
SET rentals= rentals + 1 SET rentals= rentals + 1
WHERE cname= ‘Fred’ WHERE cname= ‘Fred’

Two people attempt to rent two movies for Fred,
from two different terminals. What happens ?

4/21/2009 csep 544 8

Famous anomalies

* Dirty read
— T reads data written by T" while T’ has not committed
— What can go wrong: T" writes more or aborts

— Inconsistent read: T sees only some changes by T

* Lost update
— Two tasks T and T’ both modify the same data
— T and T’ both commit
— Final state shows effects of only T, but not of T’

* Many other anomalies exists, with or without name

— E.g. write skew
4/21/2009 csep 544

Protection against crashes

Client 1:

UPDATE Accounts

SET balance= balance - 500
WHERE name= ‘Fred’

| Crash!

UPDATE Accounts

SET balance = balance + 500
WHERE name= ‘Jo¢’

4/21/2009

What's wrong ?

10

Definition of Transactions

* A transaction = one or more operations,
which reflects a single real-world transition

— Happens completely or not at all
« Examples
— Transfer money between accounts
— Rent a movie; return a rented movie
— Purchase a group of products
— Register for a class (either waitlisted or allocated)

» By using transactions, all previous problems
disappear

4/21/2009 csep 544

11

Transactions in Applications

May be omitted:
first SQL query
starts txn

START TRANSACTION

[SQL statements]

COMMIT or ROLLBACK (=ABORT)

Default: each statement = one transaction

4/21/2009 csep 544 12

Revised Code

/* Client 1: transfer $100 acc1-> acc2 */
START TRANSACTION
X = Accountl1.balance; Account?2.balance += 100

If (X>=100) { Account1.balance -=100; COMMIT }
else {printin("Denied !"; ROLLBACK)

/* Client 1: transfer $100 acc2-> acc3 */
START TRANSACTION
X = Account2.balance: Account3.balance += 100

If (X>=100) { Account2.balance -=100; COMMIT }
else {printin("Denied !"; ROLLBACK)

13

Using Transactions

Very easy to use:

« START TRANSACTION

« COMMIT

« ROLLBACK

What they mean:

* Popular culture: ACID

» Theory: serializability (next lecture)

4/21/2009 csep 544

14

ACID Properties

tomicity: Either all changes performed by
transaction occur or none occurs

onsistency: A transaction as a whole does
not violate integrity constraints

solation: Transactions appear to execute one
after the other in sequence

urability: If a transaction commits, its
changes will survive failures

4/21/2009 csep 544 15

What Could Go Wrong?

» Concurrent operations
— Will discuss next time

 Fallures can occur at any time
— Will discuss today

* Transactions are intimately connected
to the buffer manager (will discuss next)

4/21/2009 csep 544 16

The Mechanics of Disk

Mechanical characteristics:

« Rotation speed (5400RPM) Diskhead

* Number of platters (1-30)
« Number of tracks (<=10000)
« Number of bytes/track(10°)

Unit of read or write:
disk block
Once in memory:

page
Typically: 4k or 8k or 16k

4/21/2009

Cylinder

_——Spindle

J

SN

l/,

—

Arm movem

Arm assembly

Tracks

Sector

Platters

17

Disk Access Characteristics

* Disk latency = time between when command is issued
and when data is in memory

Disk latency = seek time + rotational latency
— Seek time = time for the head to reach cylinder

* 10ms —40ms
— Rotational latency = time for the sector to rotate

» Rotation time = 10ms

» Average latency = 10ms/2

Transfer time = typically 40MB/s
Disks read/write one block at a time

4/21/2009 csep 544 18

RAID

Several disks that work in parallel
* Redundancy: use parity to recover from disk failure
« Speed: read from several disks at once

Various configurations (called levels):

 RAID 1 = mirror

 RAID 4 = n disks + 1 parity disk

 RAID 5 = n+1 disks, assign parity blocks round robin
 RAID 6 = "Hamming codes”

4/21/2009 csep 544

19

Design Question

« Consider the following query:

SELECT S1.temp, S2.pressure

FROM TempSensor S1, PressureSensor S2
WHERE S1.location = S2.location

AND S1.time = S2.time

 How can the DBMS execute this query given

— 1 GB of memory
— 100 GB TempSensor and 10 GB PressureSensor

4/21/2009 csep 544 20

SEAD Buffer Manager

WRITE Page requests from higher-level code

Files and access methods

Buffer pool manager

Buffer pool
Disk page
Pag Main
Free frame—|— memory
INPUT choice of frame dictated
OUTUPT by replacement policy

Disk = collection
of blocks

Data must be in RAM for DBMS to operate on it!
Buffer pool = table of <frame#, pageid> pairs

Disk space manager

1 page corresponds
to 1 disk block

21

Buffer Manager

» Enables higher layers of the DBMS to
assume that needed data is in main memory

* Needs to decide on page replacement policy
— LRU, clock algorithm, or other

* Both work well in OS, but not always in DB

4/21/2009 csep 544

22

Least Recently Used (LRU)

* Order pages by the time of last accessed
* Always replace the least recently accessed

PS5, P2, P8, P4, P1, P9, PG, P3, P7

1 &=

P6, P5, P2, P8, P4, P1, P9, P3, P7

LRU is expensive (why ?); the clock algorithm is good ap®rox

Buffer Manager

* Why not use the OS for the task??

« Reason 1: Correctness
— DBMS needs fine grained control for transactions
— Needs to force pages to disk for recovery purposes

 Reason 2: Performance
— DBMS may be able to anticipate access patterns
— Hence, may also be able to perform prefetching
— May select better page replacement policy

4/21/2009 csep 544 24

Transaction Management and
the Buffer Manager

Transaction manager operates on buffer
pool

* Recovery: ‘log-file write-ahead’, then
careful policy about which pages to
force to disk

 Concurrency control: locks at the
page level, multiversion concurrency
control

4/21/2009 csep 544

25

Connection to ACID

» Recovery from crashes: ACID
— Will discuss today

» Concurrency control: ACID
— Wil discuss next week

4/21/2009 csep 544

26

Recovery

From which events below can DBMS
recover ?

* Wrong data entry
* Disk failure
* Fire / earthquake / bankruptcy /

« System failure, transaction failure:

— Power failure
— Rollback

4/21/2009 csep 544

27

Recovery

Type of Crash

Prevention

Wrong data entry

Constraints and
Data cleaning

Disk crashes

Redundancy:
e.g. RAID, archive

Most

frequent

Fire, theft, Buy insurance,

\ bankruptcy... Change jobs...
ystem/transaction DATABASE
failures RECOVERY

28

System Failures

 Each transaction has internal state

* When system crashes, internal state is lost
— Don’t know which parts executed and which didn’t
— Need ability to undo and redo

 Remedy: use a log
— File that records every single action of each transaction

4/21/2009 csep 544 29

Problem lllustration

Client 1:
START TRANSACTION
INSERT INTO SmallProduct(name, price)
SELECT pname, price
FROM Product
WHERE price <= 0.99

DELETE Product
WHERE price <=0.99
COMMIT

Crash !

What do we do now?

4/21/2009 csep 544

30

Transactions

* Assumption: db composed of elements
— Usually 1 element = 1 block

— Can be smaller (=1 record) or larger (=1
relation)

* Assumption: each transaction reads/
writes some elements

4/21/2009 csep 544 31

Primitive Operations of

Transactions
READ(X,t)

— copy element X to transaction local variable t
WRITE(X,t)

— copy transaction local variable t to element X

INPUT(X)

— read element X to memory buffer

OUTPUT(X)

— write element X to disk

4/21/2009 csep 544

Example

START TRANSACTION
READ(A,1);

t="102 Atomicity:
WRITE(A,1); BOTH A and B
READ(B,t); are multiplied by 2

t:=1*2;
WRITE(B,t);
COMMIT;

4/21/2009 csep 544 33

READ(At):

t:=1*2; WRITE(A1);
READ(B,t); t =t

*2: WRITE(B, t);

Transaction Buffer pool Disk

A A A
r N N 7 I

Action t Mem A Mem B Disk A Disk B

INPUT(A) 8 8

READ(A 1)

t:=t*2

WRITE(A,1)

INPUT(B)

READ(B,t)

t:=t*2

WRITE(B,)

OUTPUT(A)

OUTPUT(B)

READ(At):

t:=1*2; WRITE(A1);
READ(B,t); t =t

*2: WRITE(B, t);

Transaction Buffer pool Disk

Action t Mem A Mem B Disk A Disk B

INPUT(A) 8 8 8

READ(A 1)

t:=t*2

WRITE(A,1)

INPUT(B)

READ(B,t)

t:=t*2

WRITE(B,)

OUTPUT(A)

OUTPUT(B)

READ(At); t := t*2; WRITE(A,t);
READ(B,1); t := t*2; WRITE(B,t);
Transaction Buffer pool Disk
— - ~ ~- ™
Action t Mem A Mem B Disk A Disk B
INPUT(A) 8 8 8
READ(A,) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(A,1)
INPUT(B)
READ(B, 1)
t:=t*2
WRITE(B, 1)
OUTPUT(A)
OUTPUT(B)

READ(At); t := t*2; WRITE(A,t);
READ(B,1); t := t*2; WRITE(B,t);
Transaction Buffer pool Disk
— - ~ ~- ™
Action t Mem A Mem B Disk A Disk B
INPUT(A) 8 8 8
READ(A,) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(A,1) 16 16 8 8
INPUT(B)
READ(B, 1)
t:=t*2
WRITE(B, 1)
OUTPUT(A)
OUTPUT(B)

READ(At); t := t*2; WRITE(A,t);
READ(B,1); t := t*2; WRITE(B,t);
Transaction Buffer pool Disk
— - ~ ~- ™
Action t Mem A Mem B Disk A Disk B
INPUT(A) 8 8 8
READ(A,) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(A,1) 16 16 8 8
INPUT(B) 16 16 8 8 8
READ(B, 1)
t:=t*2
WRITE(B, 1)
OUTPUT(A)
OUTPUT(B)

READ(At); t := t*2; WRITE(A,t);
READ(B,1); t := t*2; WRITE(B,t);
Transaction Buffer pool Disk
— - ~ ~- ™
Action t Mem A Mem B Disk A Disk B
INPUT(A) 8 8 8
READ(A,) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(A,1) 16 16 8 8
INPUT(B) 16 16 8 8 8
READ(B, 1) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B, 1)
OUTPUT(A)
OUTPUT(B)

READ(At); t := t*2; WRITE(A,t);
READ(B,1); t := t*2; WRITE(B,t);
Transaction Buffer pool Disk
— —-
Action t Mem A Mem B Disk A Disk B
INPUT(A) 8 8 8
READ(A,) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(A,1) 16 16 8 8
INPUT(B) 16 16 8 8 8
READ(B, 1) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8
OUTPUT(A)
OUTPUT(B)

READ(At); t := t*2; WRITE(A,t);
READ(B,1); t := t*2; WRITE(B,t);
Transaction Buffer pool Disk
— —-
Action t Mem A Mem B Disk A Disk B
INPUT(A) 8 8 8
READ(A,) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(A,1) 16 16 8 8
INPUT(B) 16 16 8 8 8
READ(B, 1) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8
OUTPUT(A) 16 16 16 16 8
OUTPUT(B)

READ(At); t := t*2; WRITE(A,t);
READ(B,1); t := t*2; WRITE(B,t);
Transaction Buffer pool Disk
— —-
Action t Mem A Mem B Disk A Disk B
INPUT(A) 8 8 8
READ(A,) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(A,1) 16 16 8 8
INPUT(B) 16 16 8 8 8
READ(B, 1) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8
OUTPUT(A) 16 16 16 16 8
OUTPUT(B) 16 16 16 16 16

Action t Mem A Mem B Disk A Disk B
INPUT(A) 8 8 8
READ(A\1) 8 8 8 8

t:=t*2 16 8 8 8
WRITE(A,1) 16 16 8 8
INPUT(B) 16 16 8 8 8
READ(B,1) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8
OUTPUT(A) 16 16 16 16 j% Ny
OUTPUT(B) 16 16 16 16

Crash occurs after OUTPUT(A), before OUTPUT(B)

We lose atomicity 43

Buffer Manager Policies

STEAL or NO-STEAL

— Can an update made by an uncommitted transaction overwrite the
most recent committed value of a data item on disk?

FORCE or NO-FORCE

— Should all updates of a transaction be forced to disk before the
transaction commits?

Easiest for recovery: NO-STEAL/FORCE

Highest performance: STEAL/NO-FORCE

4/21/2009 csep 544 44

Solution: Use a Log

Log: append-only file containing log records
Enables the use of STEAL and NO-FORCE

For every update, commit, or abort operation
— Write physical, logical, or physiological log record

— Note: multiple transactions run concurrently, log
records are interleaved

After a system crash, use log to:

— Redo some transaction that did commit
— Undo other transactions that didn’t commit

4/21/2009 csep 544 45

Write-Ahead Log

* Rule 1: (WAL Rule) All log records pertaining to a
page are written to disk before the page is overwritten
on disk

* Rule 2: All log records for transaction are written to
disk before the transaction is considered committed
— Why is this faster than FORCE policy?

« Committed transaction: transactions whose commit
log record has been written to disk

4/21/2009 csep 544 46

Undo Logging

Log records
« <START T>

— Transaction T has begun

« <COMMIT T>

— T has committed

« <ABORT T>
— T has aborted

 <T,X,v> --Update record
— T has updated element X, and its o/d value was v

4/21/2009 csep 544 47

Action T MemA | MemB | Disk A Disk B Log
<START T>
INPUT(A) 8 8 8
READ(A,1) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(A,1) 16 16 8 8 <T,A,8>
INPUT(B) 16 16 8 8 8
READ(B,t) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,1) 16 16 16 8 8 <T,B,8>
OUTPUT(A) 16 16 16 16 8
OUTPUT(B) 16 16 16 16 16
COMMIT <COMMIT T>

4/21/2009

csep 544

48

Action T MemA | MemB | Disk A Disk B Log
<START T>
INPUT(A) 8 8 8
READ(A 1) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(AL) | 16 16 8 8 <T,A,8>
INPUT(B) | 16 16 8 8 8
READ(B,) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,t) | 16 16 16 8 8 <T,B,8>
OUTPUT(A)| 16 16 16 16 <_§A\/V
OUTPUT(B)| 16 16 16 16 i Crash |
COMMIT VT <COMMIT T>

4/21/2009

WHAT DO WEDY 2

49

Action T MemA | MemB | DiskA Disk B Log
<START T>
INPUT(A) 8 8 8
READ(A,1) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(A,1) 16 16 8 8 <T,A,8>
INPUT(B) 16 16 8 8 8
READ(B,t) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,1) 16 16 16 8 8 <T,B,8>
OUTPUT(A) 16 16 16 16 8
OUTPUT(B) 16 16 16 16 16
COMMIT - ITT>
4/21/2009 Crash! 5

WHAT DO WEDY 2

After Crash

 In the first example:
— We UNDO both changes: A=8, B=8

— The transaction is atomic, since none of its actions has been
executed

* |n the second example
— We don’t undo anything

— The transaction is atomic, since both it's actions have been
executed

4/21/2009 csep 544 51

Undo-Logging Rules

Undo-logging Rule: If T commits, then
OUTPUT(X) must be written to disk
before <COMMIT T>

 Hence: OUTPUTs are done early,
before the transaction commits

4/21/2009 csep 544

52

Action T MemA | MemB | Disk A Disk B Log
<START T>
INPUT(A) 8 8 8
READ(A,1) 8 8 8 8
t=t*2 16 8 8 8
WRITE(AL) | 16 16 8 8 (<T,A,8> >
INPUT(B) | 16 16 8 8 8
READ(B, 1) 8 16 8 8 8
t:=t*2 16 /’Iﬁ/ 8 8 8
WRITE@BY) | 16~ | 16 16 8 | 8 — <T,B,8>)
OU TPu\j 16 16| —16 | 16 8
CutPUTE)—T6 | 16 16 16 16
COMMIT D A e <COMM|T§
4/21/2009 csep 544 53~

Recovery with Undo Log

After system’s crash, run recovery manager

 |dea 1. Decide for each transaction T whether
it is completed or not

— <START T>....<COMMIT T>.... =yes
— <START T>...<ABORT T>....... = yes
— <START T>.. . = NO

» |dea 2. Undo all modifications by incomplete

transactions
4/21/2009 csep 544 54

Recovery with Undo Log

Recovery manager:

* Read log from the end; cases:
<COMMIT T>: mark T as completed
<ABORT T>: mark T as completed

<T,X,v>:if T is not completed
then write X=v to disk
else ignore

<START T>: ignore

4/21/2009 csep 544

55

Recovery with Undo Log

<T6,X6,v6>

<START T5>
<START T4>
<T1,X1,v1>
<T5,X5,v5>
<T4,X4v4>
<COMMIT T5>

<T3,X3,v3>
crash, T2X2v2>

544

Question1 in class:
Which updates are
undone ?

Question 2 in class:
How far back

do we need to

read in the log ?

56

Recovery with Undo Log

* Note: all undo commands are
idempotent

— If we perform them a second time, no harm
done

— E.qg. if there is a system crash during
recovery, simply restart recovery from
scratch

4/21/2009 csep 544 57

Recovery with Undo Log

When do we stop reading the log ?

* \We cannot stop until we reach the
beginning of the log file

* This is impractical
Instead: use checkpointing

4/21/2009 csep 544

58

Checkpointing

Checkpoint the database periodically
» Stop accepting new transactions

 \Wait until all current transactions
complete

* Flush log to disk
* Write a <CKPT> log record, flush
 Resume transactions

4/21/2009 csep 544

59

Undo Recovery with

During recovery,
Can stop at first
<CKPT>

4/21/2009

<T9.X9.vO>

(all completed)
<CKPT>
<START T2>
<START T3
<START T5>
<START T4>
<T1,X1,v1>
<T5,X5,v5>
<T4,X4,v4>
<COMMIT T5>
<T3,X3,v3>
<T2,X2,v2>

Checkpointing

> other transactions

> transactions T2,T3,T4,T5

) 60

Nonquiescent Checkpointing

* Problem with checkpointing: database
freezes during checkpoint

» \Would like to checkpoint while database
IS operational

* |dea: nonquiescent checkpointing

Quiescent = being quiet, still, or at rest; inactive
Non-quiescent = allowing transactions to be active

4/21/2009 csep 544 61

Nonquiescent Checkpointing

* Write a <START CKPT(T1,...,Tk)>
where T1,..., Tk are all active
transactions. Flush log to disk

» Continue normal operation

 When all of T1,...,Tk have completed,
write <END CKPT>. Flush log to disk

4/21/2009 csep 544 62

Undo Recovery with
Nonquiescent Checkpointing

\ earlier transactions plus
During recovery, | T4,T5,T6

Can stop at first <START CKPT T4, T5, T6> |/
< >
<CKPT> - \

> T4, TS5, T6, plus
later transactions

<END CKPT>)

' later transactions
Q: do we need

<END CKPT> ? csep 544) 63

Implementing ROLLBACK

Recall: a transaction can end In
COMMIT or ROLLBACK

ldea: use the undo-log to implement
ROLLBCACK

 How ?
 LSN = Log Segence Number

* Log entries for the same transaction are
inked, using the LSN’s

4/21/2009 csep 544 64

Redo Logging

Log records

<START T> = transaction T has begun
<COMMIT T> =T has committed
<ABORT T>=T has aborted

<T,X,v>=T has updated element X, and
its new value is v

4/21/2009 csep 544 65

Action T MemA | MemB | DiskA Disk B Log
<START T>
READ(A,1) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(A,t) 16 16 8 8 <T,A,16>
READ(B,t) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8 <T,B,16>
<COMMIT T>
OUTPUT(A) 16 16 16 16 8
OUTPUT(B) 16 16 16 16 16

4/21/2009

csep 544

66

Redo-Logging Rules

Redo-logging Rule: If T modifies X, then
both <T,X,v>and <COMMIT T> must
be written to disk before OUTPUT(X)

 Hence: OUTPUTs are done /ate

4/21/2009 csep 544 67

Action T MemA | MemB | DiskA Disk B Log
<START T>
READ(A,t) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(A,t) 16 16 8 8 <T,A,16>
READ(B,t) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8 <T,B,16>
///QCOMMIT T
@PUT(X;: 16 16 }/16/{
@FUT)(@/TG/ 16 16 16 16

4/21/2009

csep 544

68

Recovery with Redo Log

After system’s crash, run recovery manager

« Step 1. Decide for each transaction T whether
it is completed or not

— <START T>....<COMMIT T>.... =yes
— <START T>....<ABORT T>....... = yes
— <START T>. . = no

« Step 2. Read log from the beginning, redo all
updates of committed transactions

4/21/2009 csep 544 69

4/21/2009

Recovery with Redo Log

<START T1>
<T1,X1,vl>
<START T2>
<T2, X2, v2>
<START T3>
<T1,X3,v3>
<COMMIT T2>
<T3,X4,v4>
<T1,X5,v5>

csep 544

70

Nonquiescent Checkpointing

* Write a <START CKPT(T1,...,Tk)>
where T1,..., Tk are all active
transactions

* Flush to disk all blocks of committed
transactions (dirty blocks), while
continuing normal operation

 \When all blocks have been written, write
<END CKPT>

4/21/2009 csep 544 71

Redo Recovery with
Nonquiescent Checkpointing

Step 1: look for
The last
<END CKPT>

All OUTPUTs
of T1 are
known to be on disk

Cannot
4/21/24&L

<START T1>

<COMMIT T1>
...d
<START T4>

N <START CKPT T4, T5, T6>

<END CKPT>

| <START CKPT T9, T10>

csep 544

Step 2: redo
from the
earliest
start of

T4, T5, T6
ignoring
transactions
committed
earlier

72

Nonquiescent Checkpointing

* This checkpointing methods is only for
the simple redo-log

* We will discuss later the checkpointing
method for ARIES, which differs
significantly

* The book describes ARIES only

4/21/2009 csep 544

73

Comparison Undo/Redo

* Undo logging:
— OUTPUT must be done early

— If <COMMIT T> is seen, T definitely has written all its data to
disk (hence, don’t need to redo) — inefficient

Steal/Force

* Redo logging
— OUTPUT must be done late No-Steal/No-Force

— If <COMMIT T> is not seen, T definitely has not written any
of its data to disk (hence there is not dirty data on disk, no
need to undo) — inflexible

« Would like more flexibility on when to OUTPUT:
undo/redo logging (next)

Steal/No-Force

4/21/2009 csep 544 74

Undo/Redo Logging

Log records, only one change

« <T,X,u,v>=T has updated element X,
its old value was u, and its new value is
Y

4/21/2009 csep 544 75

Action T MemA | MemB | DiskA Disk B Log
<START T>
REAT(A1) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(A,t) 16 16 8 8 <T,A,8,16>
READ(B,t) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8 <T,B,8,16>
OUTPUT(A) 16 16 16 16 8
<COMMIT T>
OUTPUT(B) 16 16 16 16 16

Can OUTPUT whenever we want: before/after COMMIT

Recovery with Undo/Redo Log

After system’s crash, run recovery manager
* Redo all committed transaction, top-down
* Undo all uncommitted transactions, bottom-up

4/21/2009 csep 544 77

Recovery with Undo/Redo Log

4/21/2009

<START T1>
<T1,X1,v1>
<START T2>
<T2, X2, v2>
<START T3>
<T1,X3,v3>
<COMMIT T2>
<T3,X4,v4>
<T1,X5,v5>

csep 544

4

A

78

ARIES Method

 Read R&K Chapter 18

 Three pass algorithm

— Analysis pass
« Figure out what was going on at time of crash
 List of dirty pages and active transactions

— Redo pass (repeating history principle)
» Redo all operations, even for transactions that will not commit
» Get back to state at the moment of the crash

— Undo pass
« Remove effects of all uncommitted transactions
» Log changes during undo in case of another crash during undo

4/21/2009 csep 544

79

ARIES Method lllustration

Start of oldest First update ‘ .] ‘
in—progress potentially Checkpoint End of Log
transaction lost during crash
IIII| IIIIIIIIIIIIIIIIIIIIIIIIIIII I II ll [.‘Og (til'lc —-*:
ol Analysis
= Redo
- Undo

Figure 3: The Three Passes of ARIES Restart

[Figure 3 from Franklin97]

4/21/2009 csep 544 80

ARIES Method Elements

« Each page contains a pageLSN

— Log Sequence Number of log record for latest update
to that page

— Will serve to determine if an update needs to be redone

* Physiological logging
— page-oriented REDO

» Possible because will always redo all operations in order

— logical UNDO

* Needed because will only undo some operations

4/21/2009 csep 544 81

ARIES Data Structures

* Transaction table

— Lists all running transactions (active transactions)

— For each txn: lastLSN = most recent update by transaction
« Dirty page table

— Lists all dirty pages

— For each dirty page: recoveryLSN = first LSN that caused
page to become dirty

- Write ahead log contains log records
— LSN, prevLSN = previous LSN for same transaction
— other attributes

4/21/2009 csep 544

82

ARIES Data Structures

Dirty pages
pagelD recLSN
P5 2
P6 3
P7 1

Active transactions

transID lastLSN
T100 4
T200 3

4/21/2009

Log

LSN

S W N =

prevLSN | transID | pagelD | Log entry
TI00 | P7
T200 |P5
T200 | P6
TI00 |P5

csep 544

ARIES Method Detalls

« Steps under normal operations
— Add log record
— Update transactions table
— Update dirty page table
— Update pageL.SN

4/21/2009 csep 544

84

Checkpoints

* Write into the log
— Contents of transactions table
— Contents of dirty page table

 Enables REDO phase to restart from
earliest recoveryLSN in dirty page table

— Shortens REDO phase

4/21/2009 csep 544 85

Analysis Phase

« Goal
— Determine point in log where to start REDO

— Determine set of dirty pages when crashed
» Conservative estimate of dirty pages

— ldentify active transactions when crashed

* Approach
— Rebuild transactions table and dirty pages table

— Reprocess the log from the beginning (or checkpoint)
* Only update the two data structures

— Find oldest recoveryLSN (firstLSN) in dirty pages tables

4/21/2009 csep 544

86

Redo Phase

* Goal: redo all updates since firstLSN

* For each log record

— If affected page is not in Dirty Page Table then do
not update

— If affected page is in Dirty Page Table but
recoveryLSN > LSN of record, then no update

— Else if pageLSN > LSN, then no update

* Note: only condition that requires reading page from disk

— Otherwise perform update
4/21/2009 csep 544 87

Undo Phase

 (Goal: undo effects of aborted transactions
* |dentifies all loser transactions in trans. table

« Scan log backwards
— Undo all operations of loser transactions
— Undo each operation unconditionally

— All ops. logged with compensation log records (CLR)
— Never undo a CLR
» Look-up the UndoNextLSN and continue from there

4/21/2009 csep 544

88

Handling Crashes during

| Indo

s
Write Write Write g’ e CLRF
. - . AN, ~ ~
page 1 page 1 page 1 “7rg™ Lol 30
¢
I_‘]g (ti']]c _b') IIIII ---------------- | IIIIIIIIIIIIII 1 ------------------------------ //(4
LSN: g 20 30 Esa 40

T A

R

LSN 20

¢,
o
(7]

50

S)
- - y r
CLR FOR o C
! ! [1
hd - i L \
- AL Z
() L

Restart

Figure 4: The Use of CLRs for UNDO

[Figure 4 from Franklin97]

4/21/2009 csep 544

89

Summary

 Transactions are a useful abstraction
* They simplity application development

 DBMS must maintain ACID properties in
face of
— Concurrency

— Failures
4/21/2009 csep 544 90

