# CSEP 544: Lecture 5 Concurrency Control

#### April 28, 2009

### Announcements

New deadlines:

- HW3 deadline: May 2<sup>nd</sup>, 11:45pm
- HW4 deadline: May 9th, 6:30 pm

# Outline

• Chapters 16, 17

# The Problem

- Multiple concurrent transactions  $T_1, T_2, ...$
- They read/write common elements A<sub>1</sub>, A<sub>2</sub>, ...
- How can we prevent unwanted interference ?

#### The SCHEDULER is responsible for that

# Some Famous Anomalies

- Recall these anomalies:
  - Dirty reads (including inconsistent reads)
  - Unrepeatable reads
  - Lost updates

#### Many other things can go wrong too

# **Dirty Reads**

### Write-Read Conflict



# **Inconsistent Read**

### Write-Read Conflict



# **Unrepeatable Read**

### **Read-Write Conflict**



 $T_2$ : READ(A);  $T_2$ : READ(A);

# Lost Update

### Write-Write Conflict



## Schedules

• Given multiple transactions

A <u>schedule</u> is a sequence of interleaved actions from all transactions

# Example

| T1          | T2         |
|-------------|------------|
| READ(A, t)  | READ(A, s) |
| t := t+100  | s := s*2   |
| WRITE(A, t) | WRITE(A,s) |
| READ(B, t)  | READ(B,s)  |
| t := t+100  | s := s*2   |
| WRITE(B,t)  | WRITE(B,s) |

#### **A Serial Schedule** T1 T2 READ(A, t) t := t+100 WRITE(A, t) READ(B, t) t := t+100 WRITE(B,t) READ(A,s)s := s\*2 WRITE(A,s) READ(B,s) s := s\*2 WRITE(B,s)

## Serializable Schedule

A schedule is <u>serializable</u> if it is equivalent to a serial schedule



#### A Non-Serializable Schedule T2 T1 READ(A, t) t := t+100 WRITE(A, t) READ(A,s)s := s\*2 WRITE(A,s) READ(B,s) s := s\*2 WRITE(B,s) READ(B, t)t := t+100 WRITE(B,t) CSEP 544 - Spring 2009

# Ignoring Details

- Sometimes transactions' actions can commute accidentally because of specific updates
  - Serializability is undecidable !
- Scheduler should not look at transaction details
- Assume worst case updates
  - Only care about reads r(A) and writes w(A)
  - Not the actual values involved

# Notation

T<sub>1</sub>: r<sub>1</sub>(A); w<sub>1</sub>(A); r<sub>1</sub>(B); w<sub>1</sub>(B) T<sub>2</sub>: r<sub>2</sub>(A); w<sub>2</sub>(A); r<sub>2</sub>(B); w<sub>2</sub>(B)

# **Conflict Serializability**

Conflicts:

Two actions by same transaction  $T_i$ :  $r_i$ 

 $r_i(X); w_i(Y)$ 

Two writes by  $T_i$ ,  $T_i$  to same element



Read/write by  $T_i$ ,  $T_i$  to same element





# **Conflict Serializability**

 A schedule is <u>conflict serializable</u> if it can be transformed into a serial schedule by a series of swappings of adjacent non-conflicting actions
Example:

 $[r_{1}(A); w_{1}(A); r_{2}(A); w_{2}(A); r_{1}(B); w_{1}(B); r_{2}(B); w_{2}(B)]$   $[r_{1}(A); w_{1}(A); r_{1}(B); w_{1}(B); r_{2}(A); w_{2}(A); r_{2}(B); w_{2}(B)]$ CSEP 544 - Spring 2009

# The Precedence Graph Test

Is a schedule conflict-serializable ? Simple test:

- Build a graph of all transactions T<sub>i</sub>
- Edge from T<sub>i</sub> to T<sub>j</sub> if T<sub>i</sub> makes an action that conflicts with one of T<sub>j</sub> and comes first
- The test: if the graph has no cycles, then it is conflict serializable !

## Example 1

#### $r_2(A); r_1(B); w_2(A); r_3(A); w_1(B); w_3(A); r_2(B); w_2(B)$



This schedule is conflict-serializable

## Example 2

#### $r_2(A); r_1(B); w_2(A); r_2(B); r_3(A); w_1(B); w_3(A); w_2(B)$



#### This schedule is NOT conflict-serializable

# **View Equivalence**

 A serializable schedule need not be conflict serializable, even under the "worst case update" assumption



## View Equivalent



Serializable, but not conflict serializable 4

# View Equivalence

Two schedules S, S' are *view equivalent* if:

- If T reads an initial value of A in S, then T also reads the initial value of A in S'
- If T reads a value of A written by T' in S, then T also reads a value of A written by T' in S'
- If T writes the final value of A in S, then it writes the final value of A in S'

# Schedules with Aborted Transactions

- When a transaction aborts, the recovery manager undoes its updates
- But some of its updates may have affected other transactions !

# Schedules with Aborted Transactions



Cannot abort T1 because cannot undo T2

# **Recoverable Schedules**

 A schedule is *recoverable* if whenever a transaction T commits, all transactions who have written elements read by T have already committed

### **Recoverable Schedules**



# **Cascading Aborts**

- If a transaction T aborts, then we need to abort any other transaction T' that has read an element written by T
- A schedule is said to avoid cascading aborts if whenever a transaction read an element, the transaction that has last written it has already committed.

# **Avoiding Cascading Aborts**



With cascading aborts



# **Review of Schedules**

#### Serializability

- Serial
- Serializable
- Conflict serializable
- View equivalent to serial

#### Recoverability

- Recoverable
- Avoiding cascading deletes

# Scheduler

- The scheduler is the module that schedules the transaction's actions, ensuring serializability
- How ? We discuss three techniques in class:
  - Locks
  - Time stamps
  - Validation

# Locking Scheduler

Simple idea:

- Each element has a unique lock
- Each transaction must first acquire the lock before reading/writing that element
- If the lock is taken by another transaction, then wait
- The transaction must release the lock(s)

# Notation

 $I_i(A)$  = transaction  $T_i$  acquires lock for element A

 $u_i(A)$  = transaction  $T_i$  releases lock for element A




Locks did not enforce conflict-serializability !!!

# Two Phase Locking (2PL)

The 2PL rule:

- In every transaction, all lock requests must preceed all unlock requests
- This ensures conflict serializability ! (why?)



#### What about Aborts?

- 2PL enforces conflict-serializable schedules
- But does not enforce recoverable schedules

#### A Non-recoverable Schedule T1 T2 $L_1(A); L_1(B); READ(A, t)$ t := t+100 WRITE(A, t); $U_1(A)$ $L_2(A)$ ; READ(A,s) s := s\*2 WRITE(A,s); L<sub>2</sub>(B); **DENIED...** READ(B, t)t := t+100 WRITE(B,t); $U_1(B)$ ;

Abort

...**GRANTED;** READ(B,s) s := s\*2 WRITE(B,s); U<sub>2</sub>(A); U<sub>2</sub>(B); Commit <sup>41</sup>

#### Strict 2PL

• Strict 2PL: All locks held by a transaction are released when the transaction is completed

- Ensures that schedules are recoverable
  - Transactions commit only after all transactions whose changes they read also commit
- Avoids cascading rollbacks

# Deadlock

- Trasaction  $T_1$  waits for a lock held by  $T_2$ ;
- But T<sub>2</sub> waits for a lock held by T<sub>3</sub>;
- While  $T_3$  waits for . . .
- . . .
- . . .and  $T_{73}$  waits for a lock held by  $T_1$  !!
- Could be avoided, by ordering all elements (see book); or deadlock detection + rollback

#### Lock Modes

- S = shared lock (for READ)
- X = exclusive lock (for WRITE)
- U = update lock
  - Initially like S
  - Later may be upgraded to X
- I = increment lock (for A := A + something)
  - Increment operations commute

Read the book !

#### Phantom Problem

- So far we have assumed the database to be a *static* collection of elements (=tuples)
- If tuples are inserted/deleted then the *phantom problem* appears

#### **Phantom Problem**

T1 SELECT \* FROM Product WHERE color='blue'

> INSERT INTO Product(name, color) VALUES ('gizmo', 'blue')

SELECT \* FROM Product WHERE color='blue'

Suppose there are two blue products, X1, X2:

T2

R1(X1),R1(X2),W2(X3),R1(X1),R1(X2),R1(X3)

Conflict serializable ! But not serializable due to phantoms

# **Dealing with Phantoms**

- In a *static* database:
  - Conflict serializability implies serializability
- In a *dynamic* database, this may fail due to phantoms
- Strict 2PL guarantees conflict serializability, but not serializability
- Expensive ways of dealing with phantoms:
  - Lock the entire table, or
  - Lock the index entry for 'blue' (if index is available)
  - Or use *predicate locks* (a lock on an arbitrary predicate)

Serializable transactions are very expensive

# Lock Granularity

- Fine granularity locking (e.g., tuples)
  - High concurrency
  - High overhead in managing locks
- Coarse grain locking (e.g., tables, predicate locks)
  - Many false conflicts
  - Less overhead in managing locks
- Alternative techniques
  - Hierarchical locking (and intentional locks) [commercial DBMSs]
  - Lock escalation

# The Locking Scheduler

Task 1:

Add lock/unlock requests to transactions

- Examine all READ(A) or WRITE(A) actions
- Add appropriate lock requests
- Ensure Strict 2PL !

# The Locking Scheduler

Task 2:

Execute the locks accordingly

- Lock table: a big, critical data structure in a DBMS !
- When a lock is requested, check the lock table
  - Grant, or add the transaction to the element's wait list
- When a lock is released, re-activate a transaction from its wait list
- When a transaction aborts, release all its locks
- Check for deadlocks occasionally

# Concurrency Control Mechanisms

• Pessimistic:

- Locks

- Optimistic
  - Timestamp based: basic, multiversion
  - Validation
  - Snapshot isolation: a variant of both

#### Timestamps

 Each transaction receives a unique timestamp TS(T)

Could be:

- The system's clock
- A unique counter, incremented by the scheduler

#### Timestamps

Main invariant:

The timestamp order defines the serialization order of the transaction

Will generate a schedule that is view-equivalent to a serial schedule, and recoverable

#### Main Idea

• For any two conflicting actions, ensure that their order is the serialized order:



When T requests  $r_T(X)$ , need to check  $TS(U) \le TS(T)$ 

#### Timestamps

With each element X, associate

- RT(X) = the highest timestamp of any transaction U that read X
- WT(X) = the highest timestamp of any transaction U that wrote X
- C(X) = the commit bit: true when transaction with highest timestamp that wrote X committed

If element = page, then these are associated with each page X in the buffer pool

# Simplified Timestamp-based Scheduling

Only for transactions that do not abort Otherwise, may result in non-recoverable schedule

Transaction wants to read element X If TS(T) < WT(X) then ROLLBACK Else READ and update RT(X) to larger of TS(T) or RT(X)

Transaction wants to write element X If TS(T) < RT(X) then ROLLBACK Else if TS(T) < WT(X) ignore write & continue (Thomas Write Rule) Otherwise, WRITE and update WT(X) =TS(T)

Read too late:

T wants to read X, and TS(T) < WT(X)</li>



Need to rollback T !

Write too late:

T wants to write X, and TS(T) < RT(X)</li>

START(T) ... START(U) ...  $r_U(X) ... w_T(X)$ 

Need to rollback T !

CSEP 544 - Spring 2009

Write too late, but we can still handle it:

 T wants to write X, and TS(T) >= RT(X) but WT(X) > TS(T)

START(T) ... START(V) ...  $w_V(X) \dots w_T(X)$ 

#### Don't write X at all ! (Thomas' rule)

CSEP 544 - Spring 2009

#### Ensuring Recoverable **Schedules**

- Recall the definition: if a transaction reads an element, then the transaction that wrote it must have already committed
- Use the commit bit C(X) to keep track if the transaction that last wrote X has committed

Note: this part follows Ullman, not R&G

#### Ensuring Recoverable Schedules

Read dirty data:

- T wants to read X, and WT(X) < TS(T)
- Seems OK, but...

START(U) ... START(T) ... w<sub>U</sub>(X). . (r<sub>T</sub>(X)... ABORT(U)

If C(X)=false, T needs to wait for it to become true

CSEP 544 - Spring 2009

#### Ensuring Recoverable Schedules

Thomas' rule needs to be revised:

- T wants to write X, and WT(X) > TS(T)
- Seems OK not to write at all, but ...

START(T) ... START(U)...  $w_U(X)$ ...  $w_T(X)$ ... ABORT(U)

If C(X)=false, T needs to wait for it to become true

# **Timestamp-based Scheduling**

Transaction wants to READ element X If TS(T) < WT(X) then ROLLBACK Else If C(X) = false, then WAIT Else READ and update RT(X) to larger of TS(T) or RT(X)

Transaction wants to WRITE element X If TS(T) < RT(X) then ROLLBACK Else if TS(T) < WT(X) Then If C(X) = false then WAIT else IGNORE write (Thomas Write Rule) Otherwise, WRITE, and update WT(X)=TS(T), C(X)=false

# Summary of Timestampbased Scheduling

- Conflict-serializable
- Recoverable
  - Even avoids cascading aborts
- Does NOT handle phantoms

# Multiversion Timestamp

- When transaction T requests r(X) but WT(X) > TS(T), then T must rollback
- Idea: keep multiple versions of X: X<sub>t</sub>, X<sub>t-1</sub>, X<sub>t-2</sub>, . . .

 $TS(X_t) > TS(X_{t-1}) > TS(X_{t-2}) > ...$ 

Let T read an older version, with appropriate timestamp

- When w<sub>T</sub>(X) occurs, create a new version, denoted X<sub>t</sub> where t = TS(T)
- When r<sub>T</sub>(X) occurs, find most recent version X<sub>t</sub> such that t < TS(T) Notes:
  - WT(X<sub>t</sub>) = t and it never changes
  - RT(X<sub>t</sub>) must still be maintained to check legality of writes
- Can delete X<sub>t</sub> if we have a later version X<sub>t1</sub> and all active transactions T have TS(T) > t1

CSEP 544 - Spring 2009

# Concurrency Control by Validation

- Each transaction T defines a <u>read set</u> RS(T) and a <u>write set</u> WS(T)
- Each transaction proceeds in three phases:
  - Read all elements in RS(T). Time = START(T)
  - Validate (may need to rollback). Time = VAL(T)
  - Write all elements in WS(T). Time = FIN(T)

Main invariant: the serialization order is VAL(T)



Avoid 
$$w_T(X) - w_U(X)$$
 Conflicts



#### **Snapshot Isolation**

- Another optimistic concurrency control method
- Very efficient, and very popular
  Oracle, Postgres, SQL Server 2005
- Not serializable (!), yet ORACLE uses it even for SERIALIZABLE transactions !

#### **Snapshot Isolation Rules**

- Each transactions receives a timestamp TS(T)
- Tnx sees the snapshot at time TS(T) of database
- When T commits, updated pages written to disk
- Write/write conflicts are resolved by the "<u>first committer wins</u>" rule

#### Snapshot Isolation (Details)

- Multiversion concurrency control: - Versions of X:  $X_{t1}, X_{t2}, X_{t3}, \ldots$
- When T reads X, return  $X_{TS(T)}$ .
- When T writes X: if other transaction updated X, abort
  - Not faithful to "first committer" rule, because the other transaction U might have committed after T. But once we abort T, U becomes the first committer ③ 72
#### What Works and What Not

- No dirty reads (Why ?)
- No unconsistent reads (Why ?)
- No lost updates ("first committer wins")
- Moreover: no reads are ever delayed
- However: read-write conflicts not caught !

#### Write Skew



In our notation:

$$R_1(X), R_2(Y), W_1(Y), W_2(X), C_1, C_2$$

Starting with X=50,Y=50, we end with X=-50, Y=-50. Non-serializable !!!

#### Write Skews Can Be Serious

- ACIDIand had two viceroys, Delta and Rho
- Budget had two registers: ta<u>X</u>es, and spend<u>Y</u>ng
- They had HIGH taxes and LOW spending...



```
Rho:

READ(Y);

if Y= 'LOW'

then {X= 'LOW';

WRITE(X) }

COMMIT
```

... and they ran a deficit ever since. <sup>75</sup>

# Tradeoffs

- Pessimistic Concurrency Control (Locks):
  - Great when there are many conflicts
  - Poor when there are few conflicts
- Optimistic Concurrency Control (Timestamps):
  - Poor when there are many conflicts (rollbacks)
  - Great when there are few conflicts
- Compromise
  - READ ONLY transactions → timestamps
  - READ/WRITE transactions  $\rightarrow$  locks

## **READ-ONLY Transactions**



#### Isolation Levels in SQL

"Dirty reads" 1.

SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED

- 2. "Committed reads" SET TRANSACTION ISOLATION LEVEL READ COMMITTED
- 3. "Repeatable reads" SET TRANSACTION ISOLATION LEVEL REPEATABLE READ
- ACI 4. Serializable transactions SET TRANSACTION ISOLATION | EVEL SERIAL IZABLE CSEP 544 - Spring 2009 78

#### **Choosing Isolation Level**

- Trade-off: efficiency vs correctness
- DBMSs give user choice of level

#### Beware!!

Always read docs!

- Default level is often NOT serializable
- Default level differs between DBMSs
- Some engines support subset of levels!
- Serializable may not be exactly <u>A</u>CID

## 1. Isolation Level: Dirty Reads

Implementation using locks:

- "Long duration" WRITE locks

   Strict Two Phase Locking (you knew that !)
- No READ locks
  - Read-only transactions are never delayed

Possible pbs: dirty and inconsistent reads

### 2. Isolation Level: Read Committed

Implementation using locks:

- "Long duration" WRITE locks
- "Short duration" READ locks
  - Only acquire lock while reading (not 2PL)

Unrepeatable reads When reading same element twice, may get two different values

# 2. Read Committed in Java



In the handout: isolation.java – Transaction 2: db.setTransactionIsolation(Connection.TRANSACTION\_READ\_COMMITTED); db.setAutoCommit(false); writeAccount(); db.commit();

# 3. Isolation Level: Repeatable Read

Implementation using locks:

- "Long duration" READ and WRITE locks
  - Full Strict Two Phase Locking



This is not serializable yet !!!

# 3. Repeatable Read in Java



| In the handout: isolation.java – Transaction 2:                      |
|----------------------------------------------------------------------|
| db.setTransactionIsolation(Connection. TRANSACTION_REPEATABLE_READ); |
| db.setAutoCommit(false);                                             |
| writeAccount();                                                      |
| db.commit();                                                         |

## 3. Repeatable Read in Java



In the handout: isolation.java – Transaction 4: db.setTransactionIsolation(Connection.TRANSACTION\_REPEATABLE\_READ); db.setAutoCommit(false); insertAccount(); db.commit();

#### This shows that they are not serializable !

## 4. Serializable in Java



In the handout: isolation.java – Transaction 4: db.setTransactionIsolation(Connection. TRANSACTION\_SERIALIZABLE); db.setAutoCommit(false); insertAccount(); db.commit();

#### **Commercial Systems**

- DB2: Strict 2PL
- SQL Server:
  - Strict 2PL for standard 4 levels of isolation
  - Multiversion concurrency control for snapshot isolation
- PostgreSQL:
  - Multiversion concurrency control
- Oracle

– Snapshot isolation even for SERIALIZABLE  $_{\rm 87}$