
1

CSEP 544: Lecture 5
Concurrency Control

April 28, 2009

CSEP 544 - Spring 2009

Announcements

New deadlines:

•  HW3 deadline: May 2nd, 11:45pm

•  HW4 deadline: May 9th, 6:30 pm

2 CSEP 544 - Spring 2009

3

Outline

•  Chapters 16, 17

CSEP 544 - Spring 2009

The Problem

•  Multiple concurrent transactions T1, T2, …

•  They read/write common elements A1, A2, …

•  How can we prevent unwanted interference ?

4

The SCHEDULER is responsible for that
CSEP 544 - Spring 2009

Some Famous Anomalies

•  Recall these anomalies:
– Dirty reads (including inconsistent reads)
– Unrepeatable reads
– Lost updates

Many other things can go wrong too

5 CSEP 544 - Spring 2009

Dirty Reads

T1: WRITE(A)

T1: ABORT

T2: READ(A)

Write-Read Conflict

6 CSEP 544 - Spring 2009

Inconsistent Read

T1: A := 20; B := 20;
T1: WRITE(A)

T1: WRITE(B)

T2: READ(A);
T2: READ(B);

Write-Read Conflict

7 CSEP 544 - Spring 2009

Unrepeatable Read

T1: WRITE(A)

T2: READ(A);

T2: READ(A);

Read-Write Conflict

8 CSEP 544 - Spring 2009

Lost Update

T1: READ(A)

T1: A := A+5

T1: WRITE(A)

T2: READ(A);

T2: A := A*1.3

T2: WRITE(A);

Write-Write Conflict

9 CSEP 544 - Spring 2009

Schedules

•  Given multiple transactions

10

A schedule is a sequence of interleaved actions
from all transactions

CSEP 544 - Spring 2009

Example

T1 T2
READ(A, t) READ(A, s)
t := t+100 s := s*2
WRITE(A, t) WRITE(A,s)
READ(B, t) READ(B,s)
t := t+100 s := s*2
WRITE(B,t) WRITE(B,s)

11 CSEP 544 - Spring 2009

A Serial Schedule
T1 T2
READ(A, t)
t := t+100
WRITE(A, t)
READ(B, t)
t := t+100
WRITE(B,t)

READ(A,s)
s := s*2
WRITE(A,s)
READ(B,s)
s := s*2
WRITE(B,s)

12 CSEP 544 - Spring 2009

Serializable Schedule

13

A schedule is serializable if it is
equivalent to a serial schedule

CSEP 544 - Spring 2009

A Serializable Schedule
T1 T2
READ(A, t)
t := t+100
WRITE(A, t)

READ(A,s)
s := s*2
WRITE(A,s)

READ(B, t)
t := t+100
WRITE(B,t)

READ(B,s)
s := s*2
WRITE(B,s) This is NOT a serial schedule

14 CSEP 544 - Spring 2009

A Non-Serializable Schedule
T1 T2
READ(A, t)
t := t+100
WRITE(A, t)

READ(A,s)
s := s*2
WRITE(A,s)
READ(B,s)
s := s*2
WRITE(B,s)

READ(B, t)
t := t+100
WRITE(B,t)

15 CSEP 544 - Spring 2009

Ignoring Details

•  Sometimes transactions’ actions can commute
accidentally because of specific updates
–  Serializability is undecidable !

•  Scheduler should not look at transaction details

•  Assume worst case updates
–  Only care about reads r(A) and writes w(A)
–  Not the actual values involved

16 CSEP 544 - Spring 2009

Notation

T1: r1(A); w1(A); r1(B); w1(B)
T2: r2(A); w2(A); r2(B); w2(B)

17 CSEP 544 - Spring 2009

Conflict Serializability

Conflicts:

ri(X); wi(Y) Two actions by same transaction Ti:

wi(X); wj(X) Two writes by Ti, Tj to same element

wi(X); rj(X)
Read/write by Ti, Tj to same element

ri(X); wj(X)
18 CSEP 544 - Spring 2009

Conflict Serializability
•  A schedule is conflict serializable if it

can be transformed into a serial
schedule by a series of swappings of
adjacent non-conflicting actions

Example:

r1(A); w1(A); r1(B); w1(B); r2(A); w2(A); r2(B); w2(B)

r1(A); w1(A); r2(A); w2(A); r1(B); w1(B); r2(B); w2(B)

19 CSEP 544 - Spring 2009

The Precedence Graph Test

Is a schedule conflict-serializable ?
Simple test:
•  Build a graph of all transactions Ti

•  Edge from Ti to Tj if Ti makes an action that
conflicts with one of Tj and comes first

•  The test: if the graph has no cycles, then it is
conflict serializable !

20 CSEP 544 - Spring 2009

Example 1

r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B)

1 2 3

This schedule is conflict-serializable

A B

21 CSEP 544 - Spring 2009

Example 2

r2(A); r1(B); w2(A); r2(B); r3(A); w1(B); w3(A); w2(B)

1 2 3

This schedule is NOT conflict-serializable

A
B

B

22 CSEP 544 - Spring 2009

View Equivalence

•  A serializable schedule need not be
conflict serializable, even under the
“worst case update” assumption

w1(X); w1(Y); w2(X); w2(Y); w3(Y);

w1(X); w2(X); w2(Y); w1(Y); w3(Y);

Lost write

Equivalent, but can’t swap
23 CSEP 544 - Spring 2009

View Equivalent

24

T1 T2 T3
W1(X)

W2(X)
W2(Y)
CO2

W1(Y)
CO1

W3(Y)
CO3

T1 T2 T3
W1(X)
CO1

W2(X)
W2(Y)
CO2

W3(Y)
CO3 Lost

CSEP 544 - Spring 2009 Serializable, but not conflict serializable

View Equivalence

Two schedules S, S’ are view equivalent if:
•  If T reads an initial value of A in S, then T

also reads the initial value of A in S’
•  If T reads a value of A written by T’ in S,

then T also reads a value of A written by
T’ in S’

•  If T writes the final value of A in S, then it
writes the final value of A in S’

25 CSEP 544 - Spring 2009

Schedules with Aborted
Transactions

•  When a transaction aborts, the recovery
manager undoes its updates

•  But some of its updates may have
affected other transactions !

26 CSEP 544 - Spring 2009

Schedules with Aborted
Transactions

27

T1 T2
R(A)
W(A)

R(A)
W(A)
R(B)
W(B)
Commit

Abort

CSEP 544 - Spring 2009 Cannot abort T1 because cannot undo T2

Recoverable Schedules

•  A schedule is recoverable if whenever a
transaction T commits, all transactions
who have written elements read by T
have already committed

28 CSEP 544 - Spring 2009

Recoverable Schedules

29

T1 T2
R(A)
W(A)

R(A)
W(A)
R(B)
W(B)
Commit

Abort

T1 T2
R(A)
W(A)

R(A)
W(A)
R(B)
W(B)

Abort
Commit

Nonrecoverable Recoverable
CSEP 544 - Spring 2009

Cascading Aborts

•  If a transaction T aborts, then we need
to abort any other transaction T’ that
has read an element written by T

•  A schedule is said to avoid cascading
aborts if whenever a transaction read an
element, the transaction that has last
written it has already committed.

30 CSEP 544 - Spring 2009

Avoiding Cascading Aborts

31

T1 T2
R(A)
W(A)
Commit

R(A)
W(A)
R(B)
W(B)
. . .

Without cascading aborts

T1 T2
R(A)
W(A)

R(A)
W(A)
R(B)
W(B)

. . .
. . .

With cascading aborts

Review of Schedules

Serializability
•  Serial
•  Serializable
•  Conflict serializable
•  View equivalent to serial

Recoverability
•  Recoverable
•  Avoiding cascading

deletes

32 CSEP 544 - Spring 2009

Scheduler

•  The scheduler is the module that
schedules the transaction’s actions,
ensuring serializability

•  How ? We discuss three techniques in
class:
– Locks
– Time stamps
– Validation

33 CSEP 544 - Spring 2009

Locking Scheduler

Simple idea:
•  Each element has a unique lock
•  Each transaction must first acquire the

lock before reading/writing that element
•  If the lock is taken by another

transaction, then wait
•  The transaction must release the lock(s)

34 CSEP 544 - Spring 2009

Notation

li(A) = transaction Ti acquires lock for element A

ui(A) = transaction Ti releases lock for element A

35 CSEP 544 - Spring 2009

Example
T1 T2
L1(A); READ(A, t)
t := t+100
WRITE(A, t); U1(A); L1(B)

L2(A); READ(A,s)
s := s*2
WRITE(A,s); U2(A);
L2(B); DENIED…

READ(B, t)
t := t+100
WRITE(B,t); U1(B);

…GRANTED; READ(B,s)
s := s*2
WRITE(B,s); U2(B);

Scheduler has ensured a conflict-serializable schedule 36

Example
T1 T2
L1(A); READ(A, t)
t := t+100
WRITE(A, t); U1(A);

L2(A); READ(A,s)
s := s*2
WRITE(A,s); U2(A);
L2(B); READ(B,s)
s := s*2
WRITE(B,s); U2(B);

L1(B); READ(B, t)
t := t+100
WRITE(B,t); U1(B);

Locks did not enforce conflict-serializability !!! 37

Two Phase Locking (2PL)

The 2PL rule:

•  In every transaction, all lock requests
must preceed all unlock requests

•  This ensures conflict serializability !
(why?)

38 CSEP 544 - Spring 2009

Example: 2PL transactions
T1 T2
L1(A); L1(B); READ(A, t)
t := t+100
WRITE(A, t); U1(A)

L2(A); READ(A,s)
s := s*2
WRITE(A,s);
L2(B); DENIED…

READ(B, t)
t := t+100
WRITE(B,t); U1(B);

…GRANTED; READ(B,s)
s := s*2
WRITE(B,s); U2(A); U2(B);

Now it is conflict-serializable 39

What about Aborts?

•  2PL enforces conflict-serializable
schedules

•  But does not enforce recoverable
schedules

40 CSEP 544 - Spring 2009

A Non-recoverable Schedule
T1 T2
L1(A); L1(B); READ(A, t)
t := t+100
WRITE(A, t); U1(A)

L2(A); READ(A,s)
s := s*2
WRITE(A,s);
L2(B); DENIED…

READ(B, t)
t := t+100
WRITE(B,t); U1(B);

…GRANTED; READ(B,s)
s := s*2
WRITE(B,s); U2(A); U2(B);

Abort Commit 41

Strict 2PL

•  Strict 2PL: All locks held by a transaction are
released when the transaction is completed

•  Ensures that schedules are recoverable
–  Transactions commit only after all transactions

whose changes they read also commit
•  Avoids cascading rollbacks

42 CSEP 544 - Spring 2009

Deadlock

•  Trasaction T1 waits for a lock held by T2;
•  But T2 waits for a lock held by T3;
•  While T3 waits for
•  . . .
•  . . .and T73 waits for a lock held by T1 !!

•  Could be avoided, by ordering all elements
(see book); or deadlock detection + rollback

43 CSEP 544 - Spring 2009

Lock Modes

•  S = shared lock (for READ)
•  X = exclusive lock (for WRITE)
•  U = update lock

–  Initially like S
– Later may be upgraded to X

•  I = increment lock (for A := A +
something)
–  Increment operations commute

Read the book ! 44

45

Phantom Problem
•  So far we have assumed the database to

be a static collection of elements (=tuples)

•  If tuples are inserted/deleted then the
phantom problem appears

CSEP 544 - Spring 2009

Phantom Problem

46

T1 T2
SELECT *
FROM Product
WHERE color=‘blue’

INSERT INTO Product(name, color)
VALUES (‘gizmo’,’blue’)

SELECT *
FROM Product
WHERE color=‘blue’

Suppose there are two blue products, X1, X2:
R1(X1),R1(X2),W2(X3),R1(X1),R1(X2),R1(X3)

Conflict serializable ! But not serializable due to phantoms

47

Dealing with Phantoms
•  In a static database:

–  Conflict serializability implies serializability

•  In a dynamic database, this may fail due to phantoms

•  Strict 2PL guarantees conflict serializability, but not
serializability

•  Expensive ways of dealing with phantoms:
–  Lock the entire table, or
–  Lock the index entry for ‘blue’ (if index is available)
–  Or use predicate locks (a lock on an arbitrary predicate)

Serializable transactions are very expensive

48

Lock Granularity
•  Fine granularity locking (e.g., tuples)

–  High concurrency
–  High overhead in managing locks

•  Coarse grain locking (e.g., tables, predicate locks)
–  Many false conflicts
–  Less overhead in managing locks

•  Alternative techniques
–  Hierarchical locking (and intentional locks) [commercial DBMSs]
–  Lock escalation

CSEP 544 - Spring 2009

The Locking Scheduler
Task 1:

Add lock/unlock requests to transactions
•  Examine all READ(A) or WRITE(A) actions
•  Add appropriate lock requests
•  Ensure Strict 2PL !

49 CSEP 544 - Spring 2009

The Locking Scheduler
Task 2:

Execute the locks accordingly
•  Lock table: a big, critical data structure in a DBMS !
•  When a lock is requested, check the lock table

–  Grant, or add the transaction to the element’s wait list

•  When a lock is released, re-activate a transaction
from its wait list

•  When a transaction aborts, release all its locks
•  Check for deadlocks occasionally

50 CSEP 544 - Spring 2009

Concurrency Control
Mechanisms

•  Pessimistic:
– Locks

•  Optimistic
– Timestamp based: basic, multiversion
– Validation
– Snapshot isolation: a variant of both

CSEP 544 - Spring 2009 51

Timestamps

•  Each transaction receives a unique
timestamp TS(T)

Could be:

•  The system’s clock
•  A unique counter, incremented by the

scheduler
52 CSEP 544 - Spring 2009

Timestamps

The timestamp order defines
 the serialization order of the transaction

Main invariant:

53

Will generate a schedule that is view-equivalent
to a serial schedule, and recoverable

Main Idea

•  For any two conflicting actions, ensure
that their order is the serialized order:

In each of these cases
•  wU(X) . . . rT(X)
•  rU(X) . . . wT(X)
•  wU(X) . . . wT(X)

When T requests rT(X), need to check TS(U) <= TS(T)

Read too
late ?

Write too
late ?

54 CSEP 544 - Spring 2009

Timestamps

With each element X, associate
•  RT(X) = the highest timestamp of any

transaction U that read X
•  WT(X) = the highest timestamp of any

transaction U that wrote X
•  C(X) = the commit bit: true when

transaction with highest timestamp that
wrote X committed
If element = page, then these are associated
with each page X in the buffer pool 55

56

Simplified Timestamp-based
Scheduling

Only for transactions that do not abort
Otherwise, may result in non-recoverable schedule

Transaction wants to read element X
If TS(T) < WT(X) then ROLLBACK
Else READ and update RT(X) to larger of TS(T) or RT(X)

Transaction wants to write element X
If TS(T) < RT(X) then ROLLBACK
Else if TS(T) < WT(X) ignore write & continue (Thomas Write Rule)
Otherwise, WRITE and update WT(X) =TS(T)

CSEP 544 - Spring 2009

Details

Read too late:
•  T wants to read X, and TS(T) < WT(X)

START(T) … START(U) … wU(X) . . . rT(X)

Need to rollback T !

57 CSEP 544 - Spring 2009

Details

Write too late:
•  T wants to write X, and TS(T) < RT(X)

START(T) … START(U) … rU(X) . . . wT(X)

Need to rollback T !

58 CSEP 544 - Spring 2009

Details

Write too late, but we can still handle it:
•  T wants to write X, and

TS(T) >= RT(X) but WT(X) > TS(T)

START(T) … START(V) … wV(X) . . . wT(X)

Don’t write X at all !
(Thomas’ rule)

59 CSEP 544 - Spring 2009

Ensuring Recoverable
Schedules

•  Recall the definition: if a transaction
reads an element, then the transaction
that wrote it must have already
committed

•  Use the commit bit C(X) to keep track if
the transaction that last wrote X has
committed

60 Note: this part follows Ullman, not R&G

Ensuring Recoverable
Schedules

Read dirty data:
•  T wants to read X, and WT(X) < TS(T)
•  Seems OK, but…

START(U) … START(T) … wU(X). . . rT(X)… ABORT(U)

If C(X)=false, T needs to wait for it to become true

61 CSEP 544 - Spring 2009

Ensuring Recoverable
Schedules

Thomas’ rule needs to be revised:
•  T wants to write X, and WT(X) > TS(T)
•  Seems OK not to write at all, but …

START(T) … START(U)… wU(X). . . wT(X)… ABORT(U)

If C(X)=false, T needs to wait for it to become true

62 CSEP 544 - Spring 2009

Timestamp-based Scheduling

63

Transaction wants to READ element X
If TS(T) < WT(X) then ROLLBACK
Else If C(X) = false, then WAIT
Else READ and update RT(X) to larger of TS(T) or RT(X)

Transaction wants to WRITE element X
If TS(T) < RT(X) then ROLLBACK
Else if TS(T) < WT(X)

Then If C(X) = false then WAIT
 else IGNORE write (Thomas Write Rule)

Otherwise, WRITE, and update WT(X)=TS(T), C(X)=false

CSEP 544 - Spring 2009

Summary of Timestamp-
based Scheduling

•  Conflict-serializable

•  Recoverable
– Even avoids cascading aborts

•  Does NOT handle phantoms

64 CSEP 544 - Spring 2009

Multiversion Timestamp

•  When transaction T requests r(X)
but WT(X) > TS(T), then T must rollback

•  Idea: keep multiple versions of X:
Xt, Xt-1, Xt-2, . . .

•  Let T read an older version, with appropriate
timestamp

TS(Xt) > TS(Xt-1) > TS(Xt-2) > . . .

65 CSEP 544 - Spring 2009

Details
•  When wT(X) occurs,

 create a new version, denoted Xt where t = TS(T)

•  When rT(X) occurs,
 find most recent version Xt such that t < TS(T)
 Notes:

–  WT(Xt) = t and it never changes
–  RT(Xt) must still be maintained to check legality of writes

•  Can delete Xt if we have a later version Xt1 and all active
transactions T have TS(T) > t1

66 CSEP 544 - Spring 2009

Concurrency Control by
Validation

•  Each transaction T defines a read set RS(T) and a
write set WS(T)

•  Each transaction proceeds in three phases:
–  Read all elements in RS(T). Time = START(T)
–  Validate (may need to rollback). Time = VAL(T)
–  Write all elements in WS(T). Time = FIN(T)

Main invariant: the serialization order is VAL(T)

67 CSEP 544 - Spring 2009

Avoid rT(X) - wU(X) Conflicts

U: Read phase Validate Write phase

START(U) VAL(U) FIN(U)

T: Read phase Validate ?

START(T)
IF RS(T) ∩ WS(U) and FIN(U) > START(T)
 (U has validated and U has not finished before T begun)
Then ROLLBACK(T)

conflicts

68 CSEP 544 - Spring 2009

Avoid wT(X) - wU(X) Conflicts

U: Read phase Validate Write phase

START(U) VAL(U) FIN(U)

T: Read phase Validate Write phase ?

START(T) VAL(T)
IF WS(T) ∩ WS(U) and FIN(U) > VAL(T)
 (U has validated and U has not finished before T validates)
Then ROLLBACK(T)

conflicts

69 CSEP 544 - Spring 2009

Snapshot Isolation

•  Another optimistic concurrency control
method

•  Very efficient, and very popular
– Oracle, Postgres, SQL Server 2005

•  Not serializable (!), yet ORACLE uses it
even for SERIALIZABLE transactions !

70

Snapshot Isolation Rules

•  Each transactions receives a timestamp TS(T)

•  Tnx sees the snapshot at time TS(T) of database

•  When T commits, updated pages written to disk

•  Write/write conflicts are resolved by the
“first committer wins” rule

71

Snapshot Isolation (Details)

•  Multiversion concurrency control:
– Versions of X: Xt1, Xt2, Xt3, . . .

•  When T reads X, return XTS(T).
•  When T writes X: if other transaction

updated X, abort
– Not faithful to “first committer” rule,

because the other transaction U might
have committed after T. But once we abort
T, U becomes the first committer 72

What Works and What Not

•  No dirty reads (Why ?)
•  No unconsistent reads (Why ?)
•  No lost updates (“first committer wins”)

•  Moreover: no reads are ever delayed

•  However: read-write conflicts not
caught ! 73

Write Skew

74

T1:
 READ(X);
 if X >= 50
 then Y = -50; WRITE(Y)
 COMMIT

T2:
 READ(Y);
 if Y >= 50
 then X = -50; WRITE(X)
 COMMIT

In our notation:

R1(X), R2(Y), W1(Y), W2(X), C1,C2

Starting with X=50,Y=50, we end with X=-50, Y=-50.
Non-serializable !!!

Write Skews Can Be Serious
•  ACIDland had two viceroys, Delta and Rho
•  Budget had two registers: taXes, and spendYng
•  They had HIGH taxes and LOW spending…

75

Delta:
 READ(X);
 if X= ‘HIGH’
 then { Y= ‘HIGH’;
 WRITE(Y) }
 COMMIT

Rho:
 READ(Y);
 if Y= ‘LOW’
 then {X= ‘LOW’;
 WRITE(X) }
 COMMIT

… and they ran a deficit ever since.

Tradeoffs
•  Pessimistic Concurrency Control (Locks):

–  Great when there are many conflicts
–  Poor when there are few conflicts

•  Optimistic Concurrency Control (Timestamps):
–  Poor when there are many conflicts (rollbacks)
–  Great when there are few conflicts

•  Compromise
–  READ ONLY transactions → timestamps
–  READ/WRITE transactions → locks

76 CSEP 544 - Spring 2009

77

READ-ONLY Transactions
Client 1: START TRANSACTION

 INSERT INTO SmallProduct(name, price)
 SELECT pname, price
 FROM Product
 WHERE price <= 0.99

 DELETE FROM Product
 WHERE price <=0.99
 COMMIT

Client 2: SET TRANSACTION READ ONLY
 START TRANSACTION
 SELECT count(*)
 FROM Product

 SELECT count(*)
 FROM SmallProduct
 COMMIT

Can improve
performance

CSEP 544 - Spring 2009

78

Isolation Levels in SQL
1.  “Dirty reads”

SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED

2.  “Committed reads”
SET TRANSACTION ISOLATION LEVEL READ COMMITTED

3.  “Repeatable reads”
SET TRANSACTION ISOLATION LEVEL REPEATABLE READ

4.  Serializable transactions
SET TRANSACTION ISOLATION LEVEL SERIALIZABLE

ACID

CSEP 544 - Spring 2009

Choosing Isolation Level

•  Trade-off: efficiency vs correctness

•  DBMSs give user choice of level

79

Beware!!
•  Default level is often NOT serializable
•  Default level differs between DBMSs
•  Some engines support subset of levels!
•  Serializable may not be exactly ACID

Always read docs!

1. Isolation Level: Dirty Reads

Implementation using locks:

•  “Long duration” WRITE locks
– Strict Two Phase Locking (you knew that !)

•  No READ locks
– Read-only transactions are never delayed

80

Possible pbs: dirty and inconsistent reads
CSEP 544 - Spring 2009

2. Isolation Level: Read
Committed

Implementation using locks:

•  “Long duration” WRITE locks
•  “Short duration” READ locks

– Only acquire lock while reading (not 2PL)

81

Unrepeatable reads
When reading same element twice,
may get two different values

2. Read Committed in Java

82

In the handout: isolation.java - Transaction 1:
db.setTransactionIsolation(Connection.TRANSACTION_READ_COMMITTED);
db.setAutoCommit(false);
readAccount();
Thread.sleep(5000);
readAccount();
db.commit();

In the handout: isolation.java – Transaction 2:
db.setTransactionIsolation(Connection.TRANSACTION_READ_COMMITTED);
db.setAutoCommit(false);
writeAccount();
db.commit();

Can see a
different value

CSEP 544 - Spring 2009

3. Isolation Level: Repeatable
Read

Implementation using locks:

•  “Long duration” READ and WRITE locks
– Full Strict Two Phase Locking

83

This is not serializable yet !!!

Why ?

3. Repeatable Read in Java

84

In the handout: isolation.java - Transaction 1:
db.setTransactionIsolation(Connection.TRANSACTION_REPEATABLE_READ);
db.setAutoCommit(false);
readAccount();
Thread.sleep(5000);
readAccount();
db.commit();

In the handout: isolation.java – Transaction 2:
db.setTransactionIsolation(Connection. TRANSACTION_REPEATABLE_READ);
db.setAutoCommit(false);
writeAccount();
db.commit();

Now sees the
same value

CSEP 544 - Spring 2009

3. Repeatable Read in Java

85

In the handout: isolation.java – Transaction 3:
db.setTransactionIsolation(Connection.TRANSACTION_REPEATABLE_READ);
db.setAutoCommit(false);
countAccounts();
Thread.sleep(5000);
countAccounts();
db.commit();

In the handout: isolation.java – Transaction 4:
db.setTransactionIsolation(Connection.TRANSACTION_REPEATABLE_READ);
db.setAutoCommit(false);
insertAccount();
db.commit();

Can see a
different count

This shows that they are not serializable !

4. Serializable in Java

86

In the handout: isolation.java – Transaction 3:
db.setTransactionIsolation(Connection. TRANSACTION_SERIALIZABLE);
db.setAutoCommit(false);
countAccounts();
Thread.sleep(5000);
countAccounts();
db.commit();

In the handout: isolation.java – Transaction 4:
db.setTransactionIsolation(Connection. TRANSACTION_SERIALIZABLE);
db.setAutoCommit(false);
insertAccount();
db.commit();

Now should see
same count

CSEP 544 - Spring 2009

87

Commercial Systems
•  DB2: Strict 2PL
•  SQL Server:

– Strict 2PL for standard 4 levels of isolation
– Multiversion concurrency control for snapshot

isolation
•  PostgreSQL:

– Multiversion concurrency control
•  Oracle

– Snapshot isolation even for SERIALIZABLE

