
1 

CSEP 544: Lecture 5 
Concurrency Control 

April 28, 2009 
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Announcements 

New deadlines: 

•  HW3 deadline: May 2nd, 11:45pm 

•  HW4 deadline: May 9th, 6:30 pm 
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Outline 

•  Chapters 16, 17 
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The Problem 

•  Multiple concurrent transactions T1, T2, … 

•  They read/write common elements A1, A2, … 

•  How can we prevent unwanted interference ? 
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The SCHEDULER is responsible for that 
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Some Famous Anomalies 

•  Recall these anomalies: 
– Dirty reads (including inconsistent reads) 
– Unrepeatable reads 
– Lost updates 

Many other things can go wrong too 
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Dirty Reads 

T1:  WRITE(A)  

T1:  ABORT 

T2:  READ(A) 

Write-Read Conflict 
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Inconsistent Read 

T1:  A := 20;  B := 20; 
T1:  WRITE(A)  

T1:  WRITE(B)  

T2:  READ(A); 
T2:  READ(B);  

Write-Read Conflict 
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Unrepeatable Read 

T1:  WRITE(A)  

T2:  READ(A); 

T2:  READ(A);  

Read-Write Conflict 
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Lost Update 

T1: READ(A)  

T1: A := A+5 

T1: WRITE(A)  

T2: READ(A); 

T2: A := A*1.3 

T2: WRITE(A); 

Write-Write Conflict 
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Schedules 

•  Given multiple transactions 
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A schedule is a sequence of interleaved actions  
from all transactions 
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Example 

T1 T2 
READ(A, t) READ(A, s) 
t := t+100 s := s*2 
WRITE(A, t) WRITE(A,s) 
READ(B, t) READ(B,s) 
t := t+100 s := s*2 
WRITE(B,t) WRITE(B,s) 
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A Serial Schedule 
T1 T2 
READ(A, t) 
t := t+100 
WRITE(A, t) 
READ(B, t) 
t := t+100 
WRITE(B,t) 

READ(A,s) 
s := s*2 
WRITE(A,s) 
READ(B,s) 
s := s*2 
WRITE(B,s) 
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Serializable Schedule 
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A schedule is serializable if it is  
equivalent to a serial schedule 
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A Serializable Schedule 
T1 T2 
READ(A, t) 
t := t+100 
WRITE(A, t) 

READ(A,s) 
s := s*2 
WRITE(A,s) 

READ(B, t) 
t := t+100 
WRITE(B,t) 

READ(B,s) 
s := s*2 
WRITE(B,s) This is NOT a serial schedule 
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A Non-Serializable Schedule 
T1 T2 
READ(A, t) 
t := t+100 
WRITE(A, t) 

READ(A,s) 
s := s*2 
WRITE(A,s) 
READ(B,s) 
s := s*2 
WRITE(B,s) 

READ(B, t) 
t := t+100 
WRITE(B,t) 
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Ignoring Details 

•  Sometimes transactions’ actions can commute 
accidentally because of specific updates 
–  Serializability is undecidable ! 

•  Scheduler should not look at transaction details 

•  Assume worst case updates 
–  Only care about reads r(A) and writes w(A) 
–  Not the actual values involved 
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Notation 

T1: r1(A); w1(A); r1(B); w1(B) 
T2: r2(A); w2(A); r2(B); w2(B) 
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Conflict Serializability 

Conflicts: 

ri(X); wi(Y) Two actions by same transaction Ti: 

wi(X); wj(X) Two writes by Ti, Tj to same element 

wi(X); rj(X) 
Read/write by Ti, Tj to same element 

ri(X); wj(X) 
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Conflict Serializability 
•  A schedule is conflict serializable if it 

can be transformed into a serial 
schedule by a series of swappings of 
adjacent non-conflicting actions 

Example: 

r1(A); w1(A); r1(B); w1(B); r2(A); w2(A); r2(B); w2(B) 

r1(A); w1(A); r2(A); w2(A); r1(B); w1(B); r2(B); w2(B) 
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The Precedence Graph Test 

Is a schedule conflict-serializable ? 
Simple test: 
•  Build a graph of all transactions Ti 

•  Edge from Ti to Tj if Ti makes an action that 
conflicts with one of Tj and comes first 

•  The test: if the graph has no cycles, then it is 
conflict serializable ! 
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Example 1 

r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B) 

1 2 3 

This schedule is conflict-serializable 

A B 
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Example 2 

r2(A); r1(B); w2(A); r2(B); r3(A); w1(B); w3(A); w2(B) 

1 2 3 

This schedule is NOT conflict-serializable 

A 
B 

B 
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View Equivalence 

•  A serializable schedule need not be 
conflict serializable, even under the 
“worst case update” assumption 

w1(X); w1(Y); w2(X); w2(Y); w3(Y); 

w1(X); w2(X); w2(Y); w1(Y); w3(Y); 

Lost write 

Equivalent,  but can’t swap 
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View Equivalent 
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T1 T2 T3 
W1(X) 

W2(X) 
W2(Y) 
CO2 

W1(Y) 
CO1 

W3(Y) 
CO3 

T1 T2 T3 
W1(X) 
CO1 

W2(X) 
W2(Y) 
CO2 

W3(Y) 
CO3 Lost 

CSEP 544 - Spring 2009 Serializable, but not conflict serializable 



View Equivalence 

Two schedules S, S’ are view equivalent if: 
•  If T reads an initial value of A in S, then T 

also reads the initial value of A in S’ 
•  If T reads a value of A written by T’ in S, 

then T also reads a value of A written by 
T’ in S’ 

•  If T writes the final value of A in S, then it 
writes the final value of A in S’ 
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Schedules with Aborted 
Transactions 

•  When a transaction aborts, the recovery 
manager undoes its updates 

•  But some of its updates may have 
affected other transactions ! 
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Schedules with Aborted 
Transactions 
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T1 T2 
R(A) 
W(A) 

R(A) 
W(A) 
R(B) 
W(B) 
Commit 

Abort 

CSEP 544 - Spring 2009 Cannot abort T1 because cannot undo T2 



Recoverable Schedules 

•  A schedule is recoverable if whenever a 
transaction T commits, all transactions 
who have written elements read by T 
have already committed 
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Recoverable Schedules 
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T1 T2 
R(A) 
W(A) 

R(A) 
W(A) 
R(B) 
W(B) 
Commit 

Abort 

T1 T2 
R(A) 
W(A) 

R(A) 
W(A) 
R(B) 
W(B) 

Abort 
Commit 

Nonrecoverable Recoverable 
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Cascading Aborts 

•  If a transaction T aborts, then we need 
to abort any other transaction T’ that 
has read an element written by T 

•  A schedule is said to avoid cascading 
aborts if whenever a transaction read an 
element, the transaction that has last 
written it has already committed. 
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Avoiding Cascading Aborts 
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T1 T2 
R(A) 
W(A) 
Commit 

R(A) 
W(A) 
R(B) 
W(B) 
. . . 

Without cascading aborts 

T1 T2 
R(A) 
W(A) 

R(A) 
W(A) 
R(B) 
W(B) 

. . . 
. . . 

With cascading aborts 



Review of Schedules 

Serializability 
•  Serial 
•  Serializable 
•  Conflict serializable 
•  View equivalent to serial 

Recoverability 
•  Recoverable 
•  Avoiding cascading 

deletes 

32 CSEP 544 - Spring 2009 



Scheduler 

•  The scheduler is the module that 
schedules the transaction’s actions, 
ensuring serializability 

•  How ?  We discuss three techniques in 
class: 
– Locks 
– Time stamps 
– Validation 
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Locking Scheduler 

Simple idea: 
•  Each element has a unique lock 
•  Each transaction must first acquire the 

lock before reading/writing that element 
•  If the lock is taken by another 

transaction, then wait 
•  The transaction must release the lock(s) 
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Notation 

li(A) = transaction Ti acquires lock for element A 

ui(A) = transaction Ti releases lock for element A 
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Example 
T1 T2 
L1(A); READ(A, t) 
t := t+100 
WRITE(A, t); U1(A); L1(B) 

L2(A); READ(A,s) 
s := s*2 
WRITE(A,s); U2(A);  
L2(B); DENIED… 

READ(B, t) 
t := t+100 
WRITE(B,t); U1(B);  

…GRANTED; READ(B,s) 
s := s*2 
WRITE(B,s); U2(B);  

Scheduler has ensured a conflict-serializable schedule 36 



Example 
T1 T2 
L1(A); READ(A, t) 
t := t+100 
WRITE(A, t); U1(A); 

L2(A); READ(A,s) 
s := s*2 
WRITE(A,s); U2(A); 
L2(B); READ(B,s) 
s := s*2 
WRITE(B,s); U2(B); 

L1(B); READ(B, t) 
t := t+100 
WRITE(B,t); U1(B);  

Locks did not enforce conflict-serializability !!! 37 



Two Phase Locking (2PL) 

The 2PL rule: 

•  In every transaction, all lock requests 
must preceed all unlock requests 

•  This ensures conflict serializability !  
(why?) 

38 CSEP 544 - Spring 2009 



Example: 2PL transactions 
T1 T2 
L1(A); L1(B); READ(A, t) 
t := t+100 
WRITE(A, t); U1(A)  

L2(A); READ(A,s) 
s := s*2 
WRITE(A,s);  
L2(B); DENIED… 

READ(B, t) 
t := t+100 
WRITE(B,t); U1(B);  

…GRANTED; READ(B,s) 
s := s*2 
WRITE(B,s); U2(A); U2(B);  

Now it is conflict-serializable 39 



What about Aborts? 

•  2PL enforces conflict-serializable 
schedules 

•  But does not enforce recoverable 
schedules 
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A Non-recoverable Schedule 
T1 T2 
L1(A); L1(B); READ(A, t) 
t := t+100 
WRITE(A, t); U1(A)  

L2(A); READ(A,s) 
s := s*2 
WRITE(A,s);  
L2(B); DENIED… 

READ(B, t) 
t := t+100 
WRITE(B,t); U1(B);  

…GRANTED; READ(B,s) 
s := s*2 
WRITE(B,s); U2(A); U2(B);  

Abort Commit 41 



Strict 2PL 

•  Strict 2PL: All locks held by a transaction are 
released when the transaction is completed 

•  Ensures that schedules are recoverable 
–  Transactions commit only after all transactions 

whose changes they read also commit 
•  Avoids cascading rollbacks 
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Deadlock 

•  Trasaction T1 waits for a lock held by T2; 
•  But T2 waits for a lock held by T3; 
•  While T3 waits for . . . . 
•  . . . 
•  . . .and T73 waits for a lock held by T1  !! 

•  Could be avoided, by ordering all elements 
(see book); or deadlock detection + rollback 
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Lock Modes 

•  S = shared lock (for READ) 
•  X = exclusive lock (for WRITE) 
•  U = update lock 

–  Initially like S 
– Later may be upgraded to X 

•  I = increment lock (for A := A + 
something) 
–  Increment operations commute 

Read the book ! 44 
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Phantom Problem 
•  So far we have assumed the database to 

be a static collection of elements (=tuples) 

•  If tuples are inserted/deleted then the 
phantom problem appears 
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Phantom Problem 
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T1 T2 
SELECT * 
FROM Product 
WHERE color=‘blue’ 

INSERT INTO Product(name, color) 
VALUES (‘gizmo’,’blue’) 

SELECT * 
FROM Product 
WHERE color=‘blue’ 

Suppose there are two blue products, X1, X2: 
R1(X1),R1(X2),W2(X3),R1(X1),R1(X2),R1(X3) 

Conflict serializable !  But not serializable due to phantoms 
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Dealing with Phantoms 
•  In a static database: 

–  Conflict serializability implies serializability 

•  In a dynamic database, this may fail due to phantoms 

•  Strict 2PL guarantees conflict serializability, but not 
serializability 

•  Expensive ways of dealing with phantoms: 
–  Lock the entire table, or 
–  Lock the index entry for ‘blue’ (if index is available) 
–  Or use predicate locks (a lock on an arbitrary predicate) 

Serializable transactions are very expensive 
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Lock Granularity 
•  Fine granularity locking (e.g., tuples) 

–  High concurrency 
–  High overhead in managing locks 

•  Coarse grain locking (e.g., tables, predicate locks) 
–  Many false conflicts 
–  Less overhead in managing locks 

•  Alternative techniques 
–  Hierarchical locking (and intentional locks) [commercial DBMSs] 
–  Lock escalation 
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The Locking Scheduler 
Task 1: 

Add lock/unlock requests to transactions 
•  Examine all READ(A) or WRITE(A) actions 
•  Add appropriate lock requests 
•  Ensure Strict 2PL ! 
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The Locking Scheduler 
Task 2:  

Execute the locks accordingly 
•  Lock table: a big, critical data structure in a DBMS ! 
•  When a lock is requested, check the lock table 

–  Grant, or add the transaction to the element’s wait list 

•  When a lock is released, re-activate a transaction 
from its wait list 

•  When a transaction aborts, release all its locks 
•  Check for deadlocks occasionally 
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Concurrency Control 
Mechanisms 

•  Pessimistic: 
– Locks 

•  Optimistic 
– Timestamp based: basic, multiversion 
– Validation 
– Snapshot isolation: a variant of both 

CSEP 544 - Spring 2009 51 



Timestamps 

•  Each transaction receives a unique 
timestamp TS(T) 

Could be: 

•  The system’s clock 
•  A unique counter, incremented by the 

scheduler 
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Timestamps 

The timestamp order defines 
 the serialization order of the transaction 

Main invariant: 
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Will generate a schedule that is view-equivalent 
to a serial schedule, and recoverable 



Main Idea 

•  For any two conflicting actions, ensure 
that their order is the serialized order: 

In each of these cases 
•  wU(X) . . . rT(X) 
•  rU(X) . . . wT(X) 
•  wU(X) . . . wT(X) 

When T requests rT(X), need to check TS(U) <= TS(T) 

Read too 
late ? 

Write too 
late ? 
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Timestamps 

With each element X, associate 
•  RT(X) = the highest timestamp of any 

transaction U that read X 
•  WT(X) = the highest timestamp of any 

transaction U that wrote X 
•  C(X) = the commit bit: true when 

transaction with highest timestamp that 
wrote X committed 
If element = page, then these are associated 
with each page X in the buffer pool 55 
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Simplified Timestamp-based 
Scheduling 

Only for transactions that do not abort 
Otherwise, may result in non-recoverable schedule 

Transaction wants to read element X 
If TS(T) < WT(X)  then ROLLBACK 
Else READ and update RT(X) to larger of TS(T) or RT(X) 

Transaction wants to write element X 
If TS(T) < RT(X) then ROLLBACK 
Else if TS(T) < WT(X) ignore write & continue (Thomas Write Rule) 
Otherwise, WRITE and update WT(X) =TS(T) 
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Details 

Read too late: 
•  T wants to read X, and TS(T) < WT(X) 

START(T) … START(U) … wU(X) . . . rT(X) 

Need to rollback T ! 
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Details 

Write too late: 
•  T wants to write X, and TS(T) < RT(X) 

START(T) … START(U) … rU(X) . . . wT(X) 

Need to rollback T ! 
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Details 

Write too late, but we can still handle it: 
•  T wants to write X, and  

TS(T) >= RT(X)  but WT(X) > TS(T) 

START(T) … START(V) … wV(X) . . . wT(X) 

Don’t write X at all ! 
(Thomas’ rule) 
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Ensuring Recoverable 
Schedules 

•  Recall the definition: if a transaction 
reads an element, then the transaction 
that wrote it must have already 
committed 

•  Use the commit bit C(X) to keep track if 
the transaction that last wrote X has 
committed 

60 Note: this part follows Ullman, not R&G 



Ensuring Recoverable 
Schedules 

Read dirty data: 
•  T wants to read X, and WT(X) < TS(T) 
•  Seems OK, but… 

START(U) … START(T) … wU(X). . . rT(X)… ABORT(U) 

If C(X)=false, T needs to wait for it to become true 
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Ensuring Recoverable 
Schedules 

Thomas’ rule needs to be revised: 
•  T wants to write X, and WT(X) > TS(T) 
•  Seems OK not to write at all, but … 

START(T) … START(U)… wU(X). . . wT(X)… ABORT(U) 

If C(X)=false, T needs to wait for it to become true 
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Timestamp-based Scheduling 

63 

Transaction wants to READ element X 
If TS(T) < WT(X)  then ROLLBACK 
Else If C(X) = false, then WAIT 
Else READ and update RT(X) to larger of TS(T) or RT(X) 

Transaction wants to WRITE element X 
If TS(T) < RT(X) then ROLLBACK 
Else if TS(T) < WT(X) 

Then If C(X) = false then WAIT  
          else IGNORE write (Thomas Write Rule)  

Otherwise, WRITE, and update WT(X)=TS(T), C(X)=false 
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Summary of Timestamp-
based Scheduling 

•  Conflict-serializable 

•  Recoverable 
– Even avoids cascading aborts 

•  Does NOT handle phantoms 
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Multiversion Timestamp 

•  When transaction T requests r(X) 
but WT(X) > TS(T), then T must rollback 

•  Idea: keep multiple versions of X: 
Xt, Xt-1, Xt-2, . . . 

•  Let T read an older version, with appropriate 
timestamp 

TS(Xt) > TS(Xt-1) > TS(Xt-2) > . . . 
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Details 
•  When wT(X) occurs,  

 create a new version, denoted  Xt where t = TS(T) 

•  When rT(X) occurs,  
 find most recent version Xt such that t < TS(T) 
 Notes: 

–  WT(Xt)  = t and it never changes 
–  RT(Xt) must still be maintained to check legality of writes 

•  Can delete Xt if we have a later version Xt1 and all active 
transactions T have TS(T) > t1 

66 CSEP 544 - Spring 2009 



Concurrency Control by 
Validation 

•  Each transaction T defines a read set RS(T) and a 
write set WS(T) 

•  Each transaction proceeds in three phases: 
–  Read all elements in RS(T).  Time = START(T) 
–  Validate (may need to rollback).  Time = VAL(T) 
–  Write all elements in WS(T). Time = FIN(T) 

Main invariant: the serialization order is VAL(T) 
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Avoid rT(X) - wU(X) Conflicts 

U: Read phase Validate Write phase 

START(U) VAL(U) FIN(U) 

T: Read phase Validate ? 

START(T) 
IF  RS(T) ∩ WS(U) and FIN(U) > START(T)  
        (U has validated and  U has not finished before T begun) 
Then ROLLBACK(T) 

conflicts 
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Avoid wT(X) - wU(X) Conflicts 

U: Read phase Validate Write phase 

START(U) VAL(U) FIN(U) 

T: Read phase Validate Write phase ? 

START(T) VAL(T) 
IF  WS(T) ∩ WS(U) and FIN(U) > VAL(T)  
        (U has validated and  U has not finished before T validates) 
Then ROLLBACK(T) 

conflicts 
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Snapshot Isolation 

•  Another optimistic concurrency control 
method 

•  Very efficient, and very popular 
– Oracle, Postgres, SQL Server 2005 

•  Not serializable (!), yet ORACLE uses it 
even for SERIALIZABLE transactions ! 

70 



Snapshot Isolation Rules 

•  Each transactions receives a timestamp TS(T) 

•  Tnx sees the snapshot at time TS(T) of database 

•  When T commits, updated pages written to disk 

•  Write/write conflicts are resolved by the 
“first committer wins” rule 

71 



Snapshot Isolation (Details) 

•  Multiversion concurrency control: 
– Versions of X:   Xt1, Xt2, Xt3, . . . 

•  When T reads X, return XTS(T). 
•  When T writes X: if other transaction 

updated X, abort 
– Not faithful to “first committer” rule, 

because the other transaction U might 
have committed after T.  But once we abort 
T, U becomes the first committer  72 



What Works and What Not 

•  No dirty reads (Why ?) 
•  No unconsistent reads (Why ?) 
•  No lost updates (“first committer wins”) 

•  Moreover: no reads are ever delayed 

•  However: read-write conflicts not 
caught ! 73 



Write Skew 
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T1: 
   READ(X); 
   if X >= 50 
         then Y = -50; WRITE(Y) 
   COMMIT 

T2: 
   READ(Y); 
   if Y >= 50 
         then X = -50; WRITE(X) 
   COMMIT 

In our notation: 

R1(X), R2(Y), W1(Y), W2(X), C1,C2 

Starting with X=50,Y=50, we end with X=-50, Y=-50. 
Non-serializable !!! 



Write Skews Can Be Serious 
•  ACIDland had two viceroys, Delta and Rho 
•  Budget had two registers: taXes, and spendYng 
•  They had HIGH taxes and LOW spending… 
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Delta: 
   READ(X); 
   if X= ‘HIGH’ 
         then { Y= ‘HIGH’; 
                    WRITE(Y) } 
   COMMIT 

Rho: 
   READ(Y); 
   if Y= ‘LOW’ 
         then {X= ‘LOW’; 
                   WRITE(X) } 
   COMMIT 

… and they ran a deficit ever since. 



Tradeoffs 
•  Pessimistic Concurrency Control (Locks): 

–  Great when there are many conflicts 
–  Poor when there are few conflicts 

•  Optimistic Concurrency Control (Timestamps): 
–  Poor when there are many conflicts (rollbacks) 
–  Great when there are few conflicts 

•  Compromise 
–  READ ONLY transactions → timestamps 
–  READ/WRITE transactions → locks 
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READ-ONLY Transactions 
Client 1: START TRANSACTION 

 INSERT INTO SmallProduct(name, price) 
  SELECT pname, price 
  FROM Product 
  WHERE price <= 0.99 

 DELETE  FROM Product 
    WHERE price <=0.99 
 COMMIT 

Client 2: SET TRANSACTION READ ONLY 
 START TRANSACTION 
 SELECT count(*) 
 FROM Product 

 SELECT count(*) 
 FROM SmallProduct 
 COMMIT 

Can improve 
performance 
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Isolation Levels in SQL 
1.  “Dirty reads” 

SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED 

2.  “Committed reads” 
SET TRANSACTION ISOLATION LEVEL READ COMMITTED 

3.  “Repeatable reads” 
SET TRANSACTION ISOLATION LEVEL REPEATABLE READ 

4.  Serializable transactions 
SET TRANSACTION ISOLATION LEVEL SERIALIZABLE 

ACID 
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Choosing Isolation Level 

•  Trade-off: efficiency vs correctness 

•  DBMSs give user choice of level 

79 

Beware!! 
•  Default level is often NOT serializable 
•  Default level differs between DBMSs 
•  Some engines support subset of levels! 
•  Serializable may not be exactly ACID   

Always read docs! 



1. Isolation Level: Dirty Reads 

Implementation using locks: 

•  “Long duration” WRITE locks 
– Strict Two Phase Locking (you knew that !) 

•  No READ locks 
– Read-only transactions are never delayed 
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Possible pbs: dirty and inconsistent reads 
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2. Isolation Level: Read 
Committed  

Implementation using locks: 

•  “Long duration” WRITE locks 
•  “Short duration” READ locks 

– Only acquire lock while reading (not 2PL) 

81 

Unrepeatable reads  
When reading same element twice,  
may get two different values 



2. Read Committed in Java   

82 

In the handout: isolation.java - Transaction 1: 
db.setTransactionIsolation(Connection.TRANSACTION_READ_COMMITTED); 
db.setAutoCommit(false); 
readAccount(); 
Thread.sleep(5000); 
readAccount(); 
db.commit(); 

In the handout: isolation.java – Transaction 2: 
db.setTransactionIsolation(Connection.TRANSACTION_READ_COMMITTED); 
db.setAutoCommit(false); 
writeAccount(); 
db.commit(); 

Can see a 
different value 
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3. Isolation Level: Repeatable 
Read  

Implementation using locks: 

•  “Long duration” READ and WRITE locks 
– Full Strict Two Phase Locking 

83 

This is not serializable yet !!! 

Why ? 



3. Repeatable Read in Java   
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In the handout: isolation.java - Transaction 1: 
db.setTransactionIsolation(Connection.TRANSACTION_REPEATABLE_READ); 
db.setAutoCommit(false); 
readAccount(); 
Thread.sleep(5000); 
readAccount(); 
db.commit(); 

In the handout: isolation.java – Transaction 2: 
db.setTransactionIsolation(Connection. TRANSACTION_REPEATABLE_READ); 
db.setAutoCommit(false); 
writeAccount(); 
db.commit(); 

Now sees the 
same value 
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3. Repeatable Read in Java   
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In the handout: isolation.java – Transaction 3: 
db.setTransactionIsolation(Connection.TRANSACTION_REPEATABLE_READ); 
db.setAutoCommit(false); 
countAccounts(); 
Thread.sleep(5000); 
countAccounts(); 
db.commit(); 

In the handout: isolation.java – Transaction 4: 
db.setTransactionIsolation(Connection.TRANSACTION_REPEATABLE_READ); 
db.setAutoCommit(false); 
insertAccount(); 
db.commit(); 

Can see a 
different count 

This shows that they are not serializable ! 



4. Serializable in Java   
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In the handout: isolation.java – Transaction 3: 
db.setTransactionIsolation(Connection. TRANSACTION_SERIALIZABLE); 
db.setAutoCommit(false); 
countAccounts(); 
Thread.sleep(5000); 
countAccounts(); 
db.commit(); 

In the handout: isolation.java – Transaction 4: 
db.setTransactionIsolation(Connection. TRANSACTION_SERIALIZABLE); 
db.setAutoCommit(false); 
insertAccount(); 
db.commit(); 

Now should see 
same count 
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Commercial Systems 
•  DB2: Strict 2PL 
•  SQL Server: 

– Strict 2PL for standard 4 levels of isolation 
– Multiversion concurrency control for snapshot 

isolation 
•  PostgreSQL:  

– Multiversion concurrency control 
•  Oracle 

– Snapshot isolation even for SERIALIZABLE 


