
1

Lecture 6:
Storage/indexes, Tuning, Security

Tuesday, May 5, 2009

CSEP 544 - Spring 2009

2

Outline

•  Storage and indexing: Chapter 8, 10

•  Database Tuning: Chapter 20

•  Security in SQL: Chapter 21

CSEP 544 - Spring 2009

Storage Model
•  DBMS needs spatial and temporal control over storage

–  Spatial control for performance
–  Temporal control for correctness and performance

•  Solution: Buffer manager inside DBMS (see past lectures)

•  For spatial control, two alternatives
–  Use “raw” disk device interface directly
–  Use OS files

CSEP 544 - Spring 2009 3

CSEP 544 - Spring 2009

Spatial Control
Using “Raw” Disk Device Interface

•  Overview
–  DBMS issues low-level storage requests directly to disk device

•  Advantages
–  DBMS can ensure that important queries access data

sequentially
–  Can provide highest performance

•  Disadvantages
–  Requires devoting entire disks to the DBMS
–  Reduces portability as low-level disk interfaces are OS specific
–  Many devices are in fact “virtual disk devices”

4

CSEP 544 - Spring 2009

Spatial Control
Using OS Files

•  Overview
–  DBMS creates one or more very large OS files

•  Advantages
–  Allocating large file on empty disk can yield good physical

locality
•  Disadvantages

–  OS can limit file size to a single disk
–  OS can limit the number of open file descriptors
–  But these drawbacks have mostly been overcome by

modern OSs

5

CSEP 544 - Spring 2009

Commercial Systems
•  Most commercial systems offer both alternatives

–  Raw device interface for peak performance
–  OS files more commonly used

•  In both cases, we end-up with a DBMS file
abstraction implemented on top of OS files or raw
device interface

6

Database File Types

The data file can be one of:
•  Heap file

– Set of records, partitioned into blocks
– Unsorted

•  Sequential file
– Sorted according to some attribute(s)

called key

“key” here means something else than “primary key” 7

Index

•  A (possibly separate) file, that allows
fast access to records in the data file
given a search key

•  The index contains (key, value) pairs:
– The key = an attribute value
– The value = either a pointer to the record,

or the record itself

“key” (aka “search key”) again means something else 8

9

Index Classification
•  Clustered/unclustered

–  Clustered = records close in index are close in data
–  Unclustered = records close in index may be far in data

•  Primary/secondary
–  Meaning 1:

•  Primary = is over attributes that include the primary key
•  Secondary = otherwise

–  Meaning 2: means the same as clustered/unclustered

•  Organization: B+ tree or Hash table
CSEP 544 - Spring 2009

Clustered/Unclustered

•  Clustered
–  Index determines the location of indexed records
–  Typically, clustered index is one where values are

data records (but not necessary)

•  Unclustered
–  Index cannot reorder data, does not determine

data location
–  In these indexes: value = pointer to data record

CSEP 544 - Spring 2009 10

11

Clustered Index

•  File is sorted on the index attribute
•  Only one per table

10

20

30

40

50

60

70

80

10

20

30

40

50

60

70

80

Index File Data File

12

Unclustered Index

•  Several per table
10

10

20

20

20

30

30

30

20

30

30

20

10

20

10

30

CSEP 544 - Spring 2009

Example

Typically one relation = one file
•  Heap file: tuples inside file are not sorted
•  Sequential file: tuples sorted on a key

13

30

20

40

10

Heap File

1 record

1 page

Student(sid: int, age: int, …)

10

20

30

40

Sequential file sorted on sid

CSEP 544 - Spring 2009

OR

Clustered vs. Unclustered

Data entries
(Index File)
(Data file)

Data Records

Data entries

Data Records

CLUSTERED UNCLUSTERED

B+ Tree B+ Tree

14 CSEP 544 - Spring 2009

Student(sid: int, age: int, …)

sid age

CSEP 544 - Spring 2009

Hash-Based Index

18

18

20

22

19

21

21

19

10 21

20 20

30 18

40 19

50 22

60 18

70 21

80 19

H1

h1(sid) = 00

h1(sid) = 11

sid

H2 age

h2(age) = 00

h2(age) = 01

Another example of
clustered/primary index

Another example
of unclustered/secondary index

Good for point queries but not range queries

15

16

Alternatives for Data Entry k*
in Index

•  Three alternatives for k*:
– Data record with key value k
– <k, rid of data record with key = k>
– <k, list of rids of data records with key = k>

•  Last two choices are orthogonal to the
indexing technique used to locate data
entries with a given key value k.

17

Alternatives 2 and 3

10

10

20

20

20

30

30

30

10

20

30

…

18

B+ Trees

•  Search trees

•  Idea in B Trees
–  Make 1 node = 1 block
–  Keep tree balanced in height

•  Idea in B+ Trees
–  Make leaves into a linked list: facilitates range queries

CSEP 544 - Spring 2009

19

•  Parameter d = the degree
•  Each node has d <= m <= 2d keys (except root)

•  Each leaf has d <= m <= 2d keys

B+ Trees Basics

30 120 240

Keys k < 30
Keys 30<=k<120 Keys 120<=k<240 Keys 240<=k

40 50 60

40 50 60

Next leaf

CSEP 544 - Spring 2009

Each node also
has m+1 pointers

20

B+ Tree Example

80

20 60 100 120 140

10 15 18 20 30 40 50 60 65 80 85 90

10 15 18 20 30 40 50 60 65 80 85 90

d = 2 Find the key 40

40 ≤ 80

20 < 40 ≤ 60

30 < 40 ≤ 40

CSEP 544 - Spring 2009

21

B+ Tree Design

•  How large d ?
•  Example:

– Key size = 4 bytes
– Pointer size = 8 bytes
– Block size = 4096 bytes

•  2d x 4 + (2d+1) x 8 <= 4096
•  d = 170

CSEP 544 - Spring 2009

22

Searching a B+ Tree

•  Exact key values:
– Start at the root
– Proceed down, to the leaf

•  Range queries:
– As above
– Then sequential traversal

Select name
From people
Where age = 25

Select name
From people
Where 20 <= age
 and age <= 30

CSEP 544 - Spring 2009

B+ Trees in Practice
•  Typical order: 100. Typical fill-factor: 67%

–  average fanout = 133
•  Typical capacities

–  Height 4: 1334 = 312,900,700 records
–  Height 3: 1333 = 2,352,637 records

•  Can often hold top levels in buffer pool
–  Level 1 = 1 page = 8 Kbytes
–  Level 2 = 133 pages = 1 Mbyte
–  Level 3 = 17,689 pages = 133 Mbytes

23 CSEP 544 - Spring 2009

24

Insertion in a B+ Tree
Insert (K, P)
•  Find leaf where K belongs, insert
•  If no overflow (2d keys or less), halt
•  If overflow (2d+1 keys), split node, insert in parent:

•  If leaf, keep K3 too in right node
•  When root splits, new root has 1 key only

K1 K2 K3 K4 K5

P0 P1 P2 P3 P4 P5

K1 K2

P0 P1 P2

K4 K5

P3 P4 P5

parent
 K3

parent

CSEP 544 - Spring 2009

25

Insertion in a B+ Tree

80

20 60 100 120 140

10 15 18 20 30 40 50 60 65 80 85 90

10 15 18 20 30 40 50 60 65 80 85 90

Insert K=19

CSEP 544 - Spring 2009

26

Insertion in a B+ Tree

80

20 60 100 120 140

10 15 18 19 20 30 40 50 60 65 80 85 90

10 15 18 20 30 40 50 60 65 80 85 90 19

After insertion

CSEP 544 - Spring 2009

27

Insertion in a B+ Tree

80

20 60 100 120 140

10 15 18 19 20 30 40 50 60 65 80 85 90

10 15 18 20 30 40 50 60 65 80 85 90 19

Now insert 25

CSEP 544 - Spring 2009

28

Insertion in a B+ Tree

80

20 60 100 120 140

10 15 18 19 20 25 30 40 50 60 65 80 85 90

10 15 18 20 25 30 40 60 65 80 85 90 19

After insertion

50

CSEP 544 - Spring 2009

29

Insertion in a B+ Tree

80

20 60 100 120 140

10 15 18 19 20 25 30 40 50 60 65 80 85 90

10 15 18 20 25 30 40 60 65 80 85 90 19

But now have to split !

50

CSEP 544 - Spring 2009

30

Insertion in a B+ Tree

80

20 30 60 100 120 140

10 15 18 19 20 25 60 65 80 85 90

10 15 18 20 25 30 40 60 65 80 85 90 19

After the split

50

30 40 50

CSEP 544 - Spring 2009

31

Deletion from a B+ Tree

80

20 30 60 100 120 140

10 15 18 19 20 25 60 65 80 85 90

10 15 18 20 25 30 40 60 65 80 85 90 19

Delete 30

50

30 40 50

CSEP 544 - Spring 2009

32

Deletion from a B+ Tree

80

20 30 60 100 120 140

10 15 18 19 20 25 60 65 80 85 90

10 15 18 20 25 40 60 65 80 85 90 19

After deleting 30

50

40 50

May change to
40, or not

CSEP 544 - Spring 2009

33

Deletion from a B+ Tree

80

20 30 60 100 120 140

10 15 18 19 20 25 60 65 80 85 90

10 15 18 20 25 40 60 65 80 85 90 19

Now delete 25

50

40 50

CSEP 544 - Spring 2009

34

Deletion from a B+ Tree

80

20 30 60 100 120 140

10 15 18 19 20 60 65 80 85 90

10 15 18 20 40 60 65 80 85 90 19

After deleting 25
Need to rebalance
Rotate

50

40 50

CSEP 544 - Spring 2009

35

Deletion from a B+ Tree

80

19 30 60 100 120 140

10 15 18 19 20 60 65 80 85 90

10 15 18 20 40 60 65 80 85 90 19

Now delete 40

50

40 50

CSEP 544 - Spring 2009

36

Deletion from a B+ Tree

80

19 30 60 100 120 140

10 15 18 19 20 60 65 80 85 90

10 15 18 20 60 65 80 85 90 19

After deleting 40
Rotation not possible
Need to merge nodes

50

50

CSEP 544 - Spring 2009

37

Deletion from a B+ Tree

80

19 60 100 120 140

10 15 18 19 20 50 60 65 80 85 90

10 15 18 20 60 65 80 85 90 19

Final tree

50

CSEP 544 - Spring 2009

38

Summary of B+ Trees

•  Default index structure on most DBMS
•  Very effective at answering ‘point’

queries:
 productName = ‘gizmo’

•  Effective for range queries:
 50 < price AND price < 100

•  Less effective for multirange:
 50 < price < 100 AND 2 < quant < 20

CSEP 544 - Spring 2009

Indexes in PostgreSQL

39

CREATE INDEX V1_N ON V(N)

CREATE TABLE V(M int, N varchar(20), P int);

CREATE INDEX V2 ON V(P, M)

CREATE INDEX VVV ON V(M, N)

CLUSTER V USING V2 Makes V2 clustered
CSEP 544 - Spring 2009

Database Tuning Overview

•  The database tuning problem
•  Index selection (discuss in detail)
•  Horizontal/vertical partitioning (see

lecture 3)
•  Denormalization (discuss briefly)

40 CSEP 544 - Spring 2009

CSEP 544 - Spring 2009

Levels of Abstraction in a
DBMS

Disk

Physical Schema

Conceptual Schema

External Schema External Schema External Schema

a.k.a logical schema
describes stored data
in terms of data model

includes storage details
file organization
indexes

views
access control

41

The Database Tuning
Problem

•  We are given a workload description
–  List of queries and their frequencies
–  List of updates and their frequencies
–  Performance goals for each type of query

•  Perform physical database design
–  Choice of indexes
–  Tuning the conceptual schema

•  Denormalization, vertical and horizontal partition

–  Query and transaction tuning

42 CSEP 544 - Spring 2009

The Index Selection Problem

•  Given a database schema (tables, attributes)
•  Given a “query workload”:

–  Workload = a set of (query, frequency) pairs
–  The queries may be both SELECT and updates
–  Frequency = either a count, or a percentage

•  Select a set of indexes that optimizes the
workload

43

In general this is a very hard problem
CSEP 544 - Spring 2009

Index Selection: Which Search
Key

•  Make some attribute K a search key if
the WHERE clause contains:
– An exact match on K
– A range predicate on K
– A join on K

44 CSEP 544 - Spring 2009

The Index Selection Problem 1

45

V(M, N, P);

SELECT *
FROM V
WHERE N=?

SELECT *
FROM V
WHERE P=?

100000 queries: 100 queries:
Your workload is this

What indexes ?

CSEP 544 - Spring 2009

The Index Selection Problem 1

46

V(M, N, P);

SELECT *
FROM V
WHERE N=?

SELECT *
FROM V
WHERE P=?

100000 queries: 100 queries:
Your workload is this

A: V(N) and V(P) (hash tables or B-trees)

CSEP 544 - Spring 2009

The Index Selection Problem 2

47

V(M, N, P);

SELECT *
FROM V
WHERE N>? and N<?

SELECT *
FROM V
WHERE P=?

100000 queries: 100 queries:
Your workload is this

What indexes ?

INSERT INTO V
VALUES (?, ?, ?)

100000 queries:

CSEP 544 - Spring 2009

The Index Selection Problem 2

48

V(M, N, P);

SELECT *
FROM V
WHERE P=?

100000 queries: 100 queries:
Your workload is this

INSERT INTO V
VALUES (?, ?, ?)

100000 queries:

A: definitely V(N) (must B-tree); unsure about V(P)

SELECT *
FROM V
WHERE N>? and N<?

CSEP 544 - Spring 2009

The Index Selection Problem 3

49

V(M, N, P);

SELECT *
FROM V
WHERE N=?

SELECT *
FROM V
WHERE N=? and P>?

100000 queries: 1000000 queries:
Your workload is this

What indexes ?

INSERT INTO V
VALUES (?, ?, ?)

100000 queries:

CSEP 544 - Spring 2009

The Index Selection Problem 3

50

V(M, N, P);

SELECT *
FROM V
WHERE N=?

SELECT *
FROM V
WHERE N=? and P>?

100000 queries: 1000000 queries:
Your workload is this

A: V(N, P)

INSERT INTO V
VALUES (?, ?, ?)

100000 queries:

CSEP 544 - Spring 2009

The Index Selection Problem 4

51

V(M, N, P);

SELECT *
FROM V
WHERE P>? and P<?

1000 queries: 100000 queries:
Your workload is this

SELECT *
FROM V
WHERE N>? and N<?

What indexes ?
CSEP 544 - Spring 2009

The Index Selection Problem 4

52

V(M, N, P);

SELECT *
FROM V
WHERE P>? and P<?

1000 queries: 100000 queries:
Your workload is this

SELECT *
FROM V
WHERE N>? and N<?

A: V(N) secondary, V(P) primary index

CSEP 544 - Spring 2009

The Index Selection Problem

•  SQL Server
–  Automatically, thanks to AutoAdmin project
–  Much acclaimed successful research project from

mid 90’s, similar ideas adopted by the other major
vendors

•  PostgreSQL
–  You will do it manually, part of homework 5
–  But tuning wizards also exist

53 CSEP 544 - Spring 2009

Index Selection:
Multi-attribute Keys

Consider creating a multi-attribute key on K1,
K2, … if

•  WHERE clause has matches on K1, K2, …
–  But also consider separate indexes

•  SELECT clause contains only K1, K2, ..
–  A covering index is one that can be used

exclusively to answer a query, e.g. index R(K1,K2)
covers the query:

54 CSEP 544 - Spring 2009 SELECT K2 FROM R WHERE K1=55

To Cluster or Not

•  Range queries benefit mostly from
clustering

•  Covering indexes do not need to be
clustered: they work equally well
unclustered

55 CSEP 544 - Spring 2009

56

Percentage tuples retrieved

Cost

0 100

Sequential scan

SELECT *
FROM R
WHERE K>? and K<?

CSEP 544 - Spring 2009

Hash Table v.s. B+ tree

•  Rule 1: always use a B+ tree

•  Rule 2: use a Hash table on K when:
–  There is a very important selection query on

equality (WHERE K=?), and no range queries
–  You know that the optimizer uses a nested loop

join where K is the join attribute of the inner
relation (you will understand that in a few lectures)

57 CSEP 544 - Spring 2009

Balance Queries v.s. Updates

•  Indexes speed up queries
– SELECT FROM WHERE

•  But they usually slow down updates:
–  INSERT, DELETE, UPDATE
– However some updates benefit from

indexes

58 CSEP 544 - Spring 2009

UPDATE R
 SET A = 7
 WHERE K=55

Tools for Index Selection

•  SQL Server 2000 Index Tuning Wizard
•  DB2 Index Advisor

•  How they work:
– They walk through a large number of

configurations, compute their costs, and
choose the configuration with minimum
cost

59 CSEP 544 - Spring 2009

Denormalization

60

SELECT x.pid, x.pname
FROM Product x, Company y
WHERE x.cid = y.cid and x.price < ? and y.city = ?

Product(pid, pname, price, cid)
Company(cid, cname, city)

A very frequent query:

How can we speed up this query workload ?

CSEP 544 - Spring 2009

Denormalization

61

INSERT INTO ProductCompany
 SELECT x.pid, x.pname, x.price, y.cname, y.city
 FROM Product x, Company y
 WHERE x.cid = y.cid

Product(pid, pname, price, cid)
Company(cid, cname, city)

Denormalize:
ProductCompany(pid, pname, price, cname, city)

CSEP 544 - Spring 2009

Denormalization

62

SELECT x.pid, x.pname
FROM Product x, Company y
WHERE x.cid = y.cid and x.price < ? and y.city = ?

Next, replace the query

SELECT pid, pname
FROM ProductCompany
WHERE price < ? and city = ?

CSEP 544 - Spring 2009

Issues with Denormalization

•  It is no longer in BCNF
–  We have the hidden FD: cid cname, city

•  When Product or Company are updated, we need
to propagate updates to ProductCompany
–  Use a TRIGGER in PostgreSQL (see PostgreSQL doc.)

•  Sometimes cannot modify the query
–  What do we do then ?

63 CSEP 544 - Spring 2009

Denormalization Using Views

64 CSEP 544 - Spring 2009

INSERT INTO ProductCompany
 SELECT x.pid, x.pname,.price, y.cid, y.cname, y.city
 FROM Product x, Company y
 WHERE x.cid = y.cid;

DROP Product; DROP Company;

CREATE VIEW Product AS
 SELECT pid, pname, price, cid FROM ProductCompany

CREATE VIEW Company AS
 SELECT DISTINCT cid, cname, city FROM ProductCompany

Security in SQL

•  Discretionary access control in SQL

•  Using views for security

CSEP 544 - Spring 2009 65

66

Discretionary Access Control
in SQL

GRANT privileges �
 ON object�
 TO users
 [WITH GRANT OPTIONS]

privileges = SELECT | �
 INSERT(column-name) |�
 UPDATE(column-name) |�
 DELETE |�
 REFERENCES(column-name)�
object = table | attribute

67

Examples

GRANT INSERT, DELETE ON Customers
 TO Yuppy WITH GRANT OPTIONS

Queries allowed to Yuppy:

Queries denied to Yuppy:

INSERT INTO Customers(cid, name, address)�
 VALUES(32940, ‘Joe Blow’, ‘Seattle’)

DELETE Customers
 WHERE LastPurchaseDate < 1995

SELECT Customer.address
FROM Customer
WHERE name = ‘Joe Blow’

68

Examples

GRANT SELECT ON Customers TO Michael

Now Michael can SELECT, but not INSERT or DELETE

69

Examples

GRANT SELECT ON Customers �
 TO Michael WITH GRANT OPTIONS

Michael can say this:
 GRANT SELECT ON Customers TO Yuppi

Now Yuppi can SELECT on Customers

70

Examples

GRANT UPDATE (price) ON Product TO Leah

Leah can update, but only Product.price, but not Product.name

71

Examples

GRANT REFERENCES (cid) ON Customer TO Bill

Customer(cid, name, address, balance)�
Orders(oid, cid, amount) cid= foreign key

Now Bill can INSERT tuples into Orders

Bill has INSERT/UPDATE rights to Orders.
BUT HE CAN’T INSERT ! (why ?)

72

Views and Security

CREATE VIEW PublicCustomers
 SELECT Name, Address
 FROM Customers
GRANT SELECT ON PublicCustomers TO Fred

David says

Name Address Balance
Mary Huston 450.99
Sue Seattle -240
Joan Seattle 333.25
Ann Portland -520

David owns

Customers:
Fred is not
allowed to

see this

73

Views and Security

Name Address Balance
Mary Huston 450.99
Sue Seattle -240
Joan Seattle 333.25
Ann Portland -520

CREATE VIEW BadCreditCustomers
 SELECT *
 FROM Customers
 WHERE Balance < 0
GRANT SELECT ON BadCreditCustomers TO John

David says

David owns

Customers: John is
allowed to
see only <0

balances

74

Views and Security
•  Each customer should see only her/his record

CREATE VIEW CustomerMary
 SELECT * FROM Customers �
 WHERE name = ‘Mary’
GRANT SELECT �
ON CustomerMary TO Mary

Doesn’t scale.

Need row-level access control !

Name Address Balance
Mary Huston 450.99
Sue Seattle -240
Joan Seattle 333.25
Ann Portland -520

David says

CREATE VIEW CustomerSue
 SELECT * FROM Customers �
 WHERE name = ‘Sue’
GRANT SELECT �
ON CustomerSue TO Sue

. . .

75

Revocation

REVOKE [GRANT OPTION FOR] privileges�
 ON object FROM users { RESTRICT | CASCADE }

Administrator says:

REVOKE SELECT ON Customers FROM David CASCADE

John loses SELECT privileges on BadCreditCustomers

76

Revocation
Joe: GRANT [….] TO Art …�
Art: GRANT [….] TO Bob …�
Bob: GRANT [….] TO Art …�
Joe: GRANT [….] TO Cal …�
Cal: GRANT [….] TO Bob …�
Joe: REVOKE [….] FROM Art CASCADE

Same privilege,�
same object,�

GRANT OPTION

What happens ??

77

Revocation

Admin

Joe Art

Cal Bob

0

1

234

5

Revoke

According to SQL everyone keeps the privilege

Summary of SQL Security

Limitations:
•  No row level access control
•  Table creator owns the data: that’s unfair !
•  Today the database is not at the center of

the policy administration universe

78

