Lecture 7:
Query Execution and
Optimization
Tuesday, February 20, 2007
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Outline

* Relational Algebra: Chapter 4
* Query evaluation: Chapters 12, 13, 14
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The WHAT and the HOW

* In SQL we write WHAT we want to get form
the data

* The database system needs to figure out
HOW to get the data we want

* The passage from WHAT to HOW goes
through the Relational Algebra
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SQL = WHAT

Product(pid, name, price)
Purchase(pid, cid, store)
Customer(cid, name, city)

SELECT DISTINCT x.name, z.name

FROM Product x, Purchase y, Customer z

WHERE x.pid = y.pid and y.cid = y.cid and
x.price > 100 and z.city = ‘Seattle’

[It’s clear WHAT we want, unclear HOW to get it}
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Relational Algebra = HOW

| Final answer

Product(pid, name, price)
Purchase(pid, cid, store)
Customer(cid, name, city)

— T4(name,name)

0
I
X.name,z.name

1 T3(...)

T2(....) S
\\ price>100 and city=‘Seattle’

T1(pid,name,price,pid,cid,store) > id=cid
Temporary tables > id=pid \
T1, T2, ... / \ Customer

Product Purchase




Relational Algebra = HOW

The order is now clearly specified:

s \
Iterate over PRODUCT...

...Join with PURCHASE...
...Join with CUSTOMER...
...select tuples with Price>100 and
City="Seattle’...
...eliminate duplicates...
...and that’s the final answer !

" y
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Plan for Today

» Relational Algebra
* Implementation of physical operators

Next lecture:
* Optimizations

CSEP 544 - Spring, 2009



Sets v.s. Bags

« Sets: {a,b,c}, {a,d,e,f}, {}, ...
 Bags:{a, a, b, c}, {b,b,b,b,b}, ...

Relational Algebra has two flavors:

* Over sets: theoretically elegant but limited

* Over bags: needed to expresses SQL queries

We discuss set semantics, and mention bag
semantics only where needed
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Relational Algebra (1/3)

The Basic Five operators:
 Union: U

» Difference: -

» Selection: o

* Projection: I1

« Join: X
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Relational Algebra (2/3)

Derived or auxiliary operators:
* Intersection, complement
* Variations of joins

—natural, equi-join, theta join,
semi-join, cartesian product

 Renaming: p
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Relational Algebra (3/3)

Extensions for bags:

» Duplicate elimination: o
* Group by: vy

« Sorting: t
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Union and Difference

R1 U R2
R1-R2

[What do they mean over bags ’?}
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What about Intersection ?

* |t is a derived operator

R1 NR2=RI-(R1-R2)

» Also expressed as a join (will see later)
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Selection

» Returns all tuples which satisfy a
condition

O (R)

 Examples
— 08a|ary>40000 (Employee)
— Gname = “Smith” (Employee)

« The conditionccanbe =, <, <, >, =, <>
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SSN Name Salary
1234545 John 200000
5423341 Smith 600000
4352342 Fred 500000

OSaIary > 40000 (Em ployee)

SSN Name Salary
5423341 Smith 600000
4352342 Fred 500000
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Projection

 Eliminates columns

[1 A_l_,_._._._,A_I_l,(R)

 Example: project social-security number
and names:

- 1 SSN, Name (Employee)
— Output schema: Answer(SSN, Name)

[Semantics differs over set or over bags}
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SSN Name Salary
1234545 John 200000
5423341 John 600000
4352342 John 200000
IT Name salary (EMployee)
Name Salary
John 20000
John 60000

[Set semantics: duplicate elimination automatic}
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SSN Name Salary
1234545 John 200000
5423341 John 600000
4352342 John 200000
I1 Name,Salary (Employee) Name Salary
John 20000
John 60000
John 20000

[Bag semantics: no duplicate elimination; need explicit 6}
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Cartesian Product

» Each tuple in R1 with each tuple in R2

R1 x R2

* Very rare in practice; mainly used to
express joins

CSEP 544 - Spring, 2009

19



Employee Employee X Dependent

Name SSN

John 999999999 Name | SSN EmpSSN DePName

Tony 777777777 John 999999999 | 999999999 | Emily
Tony 777777777 | 777777777 | Joe
John 999999999 | 777777777 | Joe

Dependent :

Tony TTTTTTTTT | 999999999 | Emily

EmpSSN DepName

999999999 Emily

117777777 Joe
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Renaming

* Changes the schema, not the instance

P 1. Bn (R)

« Example:
— pn. s(Employee) - Answer(N, S)
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Natural Join

R1 XR2

» Meaning: R1XR2 =TI,(c(R1 x R2))

 \Where:

— The selection o checks equality of all
common attributes

— The projection eliminates the duplicate
common attributes
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Natural Join

RXS

23
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Natural Join

* Given the schemas R(A, B, C, D), S(A, C,
E), what is the schema of R X S ?

« GivenR(A,B,C), S(D,E), whatisRX S ?

* Given R(A, B), S(A, B), whatis RX S ?
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Theta Join

* A join that involves a predicate

R1X,R2 = 0, (Rl xR2)

* Here 0 can be any condition
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Eg-join

» A theta join where 0 is an equality

RI X, 3 R2 = 0,5 (Rl xR2)

* This is by far the most used variant of
join in practice
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So Which Join Is It ?

 When we write R X' S we usually mean
an eg-join, but we often omit the

equality predicate when it is clear from
the context
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Semijoin

R*eS =11 5 Ay (R X S)

 Where A, ..

., A, are the attributes in R
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Semijoins in Distributed
Databases

Dependent

< DepName | Age

network

Employee

SSN

Name | Stuff

Employee [X]SSN=EmpSSN (O age>71 (Dependent))

L T =TI g\ O yge-71 (Dependents)
R = Employee *ssn—pmpssn T

\»

Answer = R Mggn_gmpssy Dependents




Operators on Bags

* Duplicate elimination o
* Grouping v
» Sorting t
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Complex RA Expressions

Y u.name, count(*)

><
X.ssn=y.buyer-ssn
>
/ y.pid=u.pid
>
y.seller-ssn=z.ssn
11 ssn 11 pid
Ohame=fred O’name=gizmo

Person x Purchase y Person z Product u
31



RA EXxpressions v.s. Programs
* An Algebra Expression is like a program

— Several operations
— Strictly specified order

» But Algebra expressions have
limitations
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RA and Transitive Closure

Cannot compute “transitive closure”

Name1 Name2 Relationship
Fred Mary Father
Mary Joe Cousin
Mary Bill Spouse

Nancy Lou Sister

Find all direct and indirect relatives of Fred
Cannot express in RA !l Need to write Java program
Remember the Bacon number ? Needs TC too !
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Query Evaluation Steps

SQL query
Logical
plan
Physical
plan

34

Query
optimization<




Example Database Schema

Supplier (sno, sname, scity, sstate)
Part (pno, pname, psize,pcolor)

Supply (sno, pno, price)

View: Suppliers in Seattle

CREATE VIEW NearbySupp AS
SELECT sno, sname
FROM Supplier

WHERE scity='Seattle' AND sstate='WA'
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Example Query

Find the names of all suppliers in Seattle
who supply part number 2

SELECT sname FROM NearbySupp

WHERE sno IN ( SELECT sno
FROM Supplies
WHERE pno = 2 )
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Steps in Query Evaluation

« Step 0: Admission control
— User connects to the db with username, password
— User sends query in text format

« Step 1: Query parsing
— Parses query into an internal format

— Performs various checks using catalog
» Correctness, authorization, integrity constraints

« Step 2: Query rewrite

— View rewriting, flattening, etc.
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Rewritten Version of QOur

Query

Original query:
SELECT sname
FROM NearbySupp
WHERE sno IN ( SELECT sno
FROM Supplies
WHERE pno = 2 )

Rewritten query:

SELECT S.sname

FROM Supplier S, Supplies U

WHERE S.scity='Seattle' AND S.sstate='WA’
AND S.sno = U.sno

AND U.pno = 2;
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Continue with Query

Evaluation

« Step 3: Query optimization
— Find an efficient query plan for executing the query

 Aquery planis
— Logical query plan: an extended relational algebra tree

— Physical query plan: with additional annotations at each
node
» Access method to use for each relation
* Implementation to use for each relational operator
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Extended Algebra Operators

Union U, intersection N, difference -
Selection o

Projection nt

Join X

Duplicate elimination 6

Grouping and aggregation vy

Sorting ©

Rename p

CSEP 544 - Spring, 2009

40



Logical Query Plan

IT

sSname

Y sscity="Seattle’ nsstate="WA’ A pno=2

=]

SNO = sSNo

N

Suppliers Supplies
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Query Block

* Most optimizers operate on individual query
blocks

* A query block is an SQL query with no nesting

— Exactly one
« SELECT clause
« FROM clause

— At most one
« WHERE clause
« GROUP BY clause
 HAVING clause
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Typical Plan for Block (1/2)

T fields A
O selection condition
SELECT-PROJECT-JOIN
join condition Query

RN

=]

join condition

PN
R S _/
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Typical Plan For Block (2/2)

Ghaving-ondition

Y fields, sum/count/min/max(fields)

I1 fields

selection condition

join condition

RN

CSEP 544 - Spring, 2009
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How about Subqueries?

SELECT Q.name
FROM Person Q
WHERE Q.age > 25
and not exists
SELECT *
FROM Purchase P
WHERE P.buyer = Q.name
and P.price > 100
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How about Subqueries?

SELECT Q.name -
FROM Person Q RN
WHERE Q.age > 25 T T
and not exists name
SELECT * /

name

FROM Purchase P
WHERE P.buyer = Q.name
and P.price > 100

O
Price > 100

o

buyer=name

PN

Person Purchase Person
CSEP 544 - Spring, 2009 46
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Physical Query Plan

Logical query plan with extra annotations

Access path selection for each relation
— Use a file scan or use an index

Implementation choice for each operator

Scheduling decisions for operators

CSEP 544 - Spring, 2009
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Physical Query Plan

(On the fly) T

Sname

(Onthefly) o

sscity="Seattle’ nsstate="WA’ A pno=2

(Nested loop) ]
SNO = SNO
Suppliers Supplies
(File scan) (File scan)
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Final Step in Query
Processing

« Step 4: Query execution
— How to synchronize operators?
— How to pass data between operators?

 What techniques are possible?
— One thread per process
— lterator interface
— Pipelined execution
— Intermediate result materialization
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lterator Interface

Each operator implements this interface
Interface has only three methods

open()
— Initializes operator state
— Sets parameters such as selection condition

get_next()

— Operator invokes get _next() recursively on its inputs
— Performs processing and produces an output tuple

close(): cleans-up state
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Pipelined Execution

* Applies parent operator to tuples directly as
they are produced by child operators

* Benefits
— No operator synchronization issues
— Saves cost of writing intermediate data to disk
— Saves cost of reading intermediate data from disk
— Good resource utilizations on single processor

* This approach is used whenever possible
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Pipelined Execution
(On the fly) T

Sname

(Onthefly) o

sscity="Seattle’ nsstate="WA’ A pno=2

(Nested loop) ]
SNO = SNO
Suppliers Supplies
(File scan) (File scan)
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Intermediate Tuple
Materialization

Writes the results of an operator to an
iIntermediate table on disk

No direct benefit but
Necessary for some operator implementations

When operator needs to examine the same
tuples multiple times
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Intermediate Tuple Materialization

(On the ﬂy) T sname
(Sort-merge join) N

(Scan: erte toT1) / \ (Scan: write to T2)

ssmty— Seattle’ Asstate="WA’

pno =2
Suppliers Supplies
(File scan) (File scan)
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Physical Operators

Each of the logical operators may have one or
more implementations = physical operators

WIll discuss several basic physical operators,
with a focus on join

CSEP 544 - Spring, 2009 55



Question in Class

Logical operator:
Product(pname, cname) X Company(cname, city)

Propose three physical operators for the join,
assuming the tables are in main memory:

1.
2.
3.
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Question in Class

Product(pname, cname) X Company(cname, city)

« 1000000 products
« 1000 companies

How much time do the following physical operators take if the
data is in main memory ?

 Nested loop join time =
« Sort and merge (="merge-join”) time =
« Hash join time =
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The lterator Model of
Execution

Each operator implements three methods:
* Open()

* GetNext( )

* Close()
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Cost Parameters

The cost of an operation = total number of 1/Os
result assumed to be delivered in main memory
Cost parameters:

B(R) = number of blocks for relation R

T(R) = number of tuples in relation R

V(R, a) = number of distinct values of attribute a
M = size of main memory buffer pool, in blocks
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Cost Parameters

Clustered table R:
— Blocks consists only of records from this table

— B(R) << T(R)
Unclustered table R:

— Its records are placed on blocks with other tables
— B(R) = T(R)

When a is a key, V(R,a) = T(R)
When a is not a key, V(R,a) << T(R)

CSEP 544 - Spring, 2009
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Selection and Projection

Selection o(R), projection II(R)
* Both are tuple-at-a-time algorithms
* Cost: B(R)

Input buffer—— Unary » Output buffer
operator
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Hash Tables

Key data structure used in many operators

May also be used for indexes, as alternative to B
+rees

Recall basics:

— There are n buckets

— A hash function f(k) maps a key kto {0, 1, ..., n-1}
— Store in bucket f(k) a pointer to record with key k

Secondary storage: bucket = block, use overflow

blocks when needed
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Hash Table Example

+ pointers
* h(e)=0
* h(b)=h(f)=1

* h(g)=2
* h(a)=h(c)=3

Here: h(x) = x mod 4

Assume 1 bucket (block) stores 2 keys

O _______________

" L
f

2 & _ ]

3 4
C
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Searching in a Hash Table

Search for a:
Compute h(a)=3
Read bucket 3 I

1 disk access N
2 & _ ]
3 |l

CSEP 544 - Spring, 2009
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Insertion iIn Hash Table

* Place in right bucket, if space

* E.9. h(d)=2

0 I

" L
f

2 & ____
d

3 4
C
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Insertion iIn Hash Table

» Create overflow block, if no space

. E.g. h(k)=1

* More over- ,
flow blocks
may be needed
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Hash Table Performance

 Excellent, if no overflow blocks

* Degrades considerably when number of
keys exceeds the number of buckets
(I.e. many overflow blocks).
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Main Memory Hash Join

Hash join: RX S
e Scan S, build buckets in main memory
 Then scan R and join

» Cost: B(R) + B(S)
* Assumption: B(S) <=M

CSEP 544 - Spring, 2009
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Main Memory Hash Join

* What are Open( ), GetNext( ), Close( ) ?
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Main Memory Hash Join

Open( ) {
H = newHashTable( );

S.Open( );

x = S.GetNext( );

while (x !=null) { H.insert(x); x = S.GetNext( );}
S.Close( );

R.Open( );

buffer = |;

j

CSEP 544 - Spring, 2009




Main Memory Hash Join

GetNext( ) ¢
while (buffer ==1[]) {
x = R.GetNext( );
if (x==Null) return NULL;

buffer = H.find(x);

h
z = buffer.first( );

buffer = buffer.rest( );
return z;

j
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Main Memory Hash Join

Close( ) {
release memory (H, buffer, etc.);

R.Close( )
h
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Duplicate Elimination

Duplicate elimination 6(R)
« Hash table in main memory

» Cost: B(R)
« Assumption: B(6(R)) <= M

CSEP 544 - Spring, 2009
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Grouping

Grouping:
Product(name, department, quantity)

Ydepartment, sum(quantity) (PrOdUCt) 2
Answer(department, sum)

Main memory hash table
Question: How ?

CSEP 544 - Spring, 2009
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Nested Loop Joins

* Tuple-based nested loop R X S

for each tuple r in R do
for each tuple s in S do

if r and s join then output (r,s)

« Cost: T(R) B(S) when S is clustered
* Cost: T(R) T(S) when S is unclustered




Nested Loop Joins

« \We can be much more clever

* Question: how would you compute the join In
the following cases ? What is the cost ?

— B(R)=1000,B(S)=2, M =4
— B(R) = 1000, B(S)=3, M =4

— B(R) = 1000, B(S) =6, M = 4

CSEP 544 - Spring, 2009
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Block-Based Nested-loop Join

for each (M-2) blocks bs of S do
for each block br of R do
for each tuple s 1n bs
for each tuple r in br do

1f “r and s join then output(t,s)

CSEP 544 - Spring, 2009
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Block-Based Nested-loop Join

oin Result
Hash table for block of S J ————

(M-2 pages)

Y

A
éy

-

>

Input buffer for R Output buffen
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Block-Based Nested-loop Join

» Cost:
— Read S once: cost B(S)

— Quter loop runs B(S)/(M-2) times, and each
time need to read R: costs B(S)B(R)/(M-2)

— Total cost: B(S) + B(S)B(R)/(M-2)
Notice: it is better to iterate over the
smaller relation first

R X S: R=outer relation, S=inner
relation CSEP 544 - Spring, 2009 -



Index Based Selection

Selection on equality: o_-,(R)
» Clustered index on a: cost B(R)/V(R,a)

* Unclustered index : cost T(R)/V(R,a)
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Index Based Selection

B(R) = 2000
Example: | T(R)=100,000| |costofo, (R)=7?
V(R,a)=20

Table scan (assuming R is clustered):
— B(R) = 2,000 I/Os
Index based selection:

— If index is clustered: B(R)/V(R,a) = 100 I/Os
— If index is unclustered: T(R)/V(R,a) = 5,000 I/Os

Lesson: don't build unclustered indexes when V(R,a)
Is small !
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Index Based Join

R X S

 Assume S has an index on the join
attribute

for each tuple r in R do

lookup the tuple(s) s 1n S using the index
output (r,s)

CSEP 544 - Spring, 2009
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Index Based Join

Cost (Assuming R is clustered):

* If index is clustered: B(R) + T(R)B(S)/V(S,a)
* If unclustered: B(R) + T(R)T(S)/V(S,a)
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Operations on Very Large
Tables

» Partitioned hash algorithms

* Merge-sort algorithms

CSEP 544 - Spring, 2009
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Partitioned Hash Algorithms

 |dea: partition a relation R into buckets, on disk
« Each bucket has size approx. B(R)/M

Relation R
OUTPUT
e 1
1
INPUT 2
2 hash
> function o6y
h M-1
B(R)
—
Disk M main memory buffers

* Does each bucket fit in main memory ?

Partitions
e

[

~Yes if B(R)YM <= M, i.e. B(R) <= M?

—
Disk

M-1
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Duplicate Elimination

Recall: 6(R) = duplicate elimination
Step 1. Partition R into buckets

Step 2. Apply 0 to each bucket (may
read in main memory)

Cost: 3B(R)
Assumption:B(R) <= M?
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Grouping

Recall: y(R) = grouping and
aggregation
Step 1. Partition R into buckets

Step 2. Apply y to each bucket (may
read in main memory)

Cost: 3B(R)
Assumption:B(R) <= M?
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Partitioned Hash Join

RX S

« Step 1:
— Hash S into M buckets
— send all buckets to disk

o Step 2
— Hash R into M buckets
— Send all buckets to disk

¢ Step 3

— Join every pair of buckets
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Original

Partitions
e

M-1

Join Result

S

Y

Hash-Join  retation
S— 1
Partition both relations INPUT 9
using hgsh.fn .h: R tuples . hash
in partition i will only > f”"‘;"°" 00 g
match S tuples in partition M-1
- ~
Disk B main memory buffers
Partitions
of R&S
) .. Hash table for partition
Read in a partition — hash Si ( < M-1 pages)
of R, hash it using 1;‘?2 ..
h2 (<> h!). Scan g é
matching partition oo Nede
Of S Search for Input buffer Output
t, h == for Ri buffer
matches.

Disk

~

B main memory buffers Disk



Partitioned Hash Join

» Cost: 3B(R) + 3B(S)
« Assumption: min(B(R), B(S)) <= M?
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External Sorting

Problem:
Sort a file of size B with memory M

Where we need this:

— ORDER BY in SQL queries
— Several physical operators
— Bulk loading of B+-tree indexes.

Will discuss only 2-pass sorting, for when B <
M2
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External Merge-Sort: Step 1

* Phase one: load M bytes in memory, sort

— >
\// \//
: :\\\ M | |

| |
| | | |
_ .
Disk

Disk Main memory I
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External Merge-Sort: Step 2

 Merge M — 1 runs into a new run
« Result: runs of length M (M — 1)= M?

—— > | |Input 1 —
| I | l
| ! “|Input2 = Qutput |’ .« . |
[ I~ . . / I |
— T=|Input M T
Disk Main memory pisk

If B <= M4 then we are done 0



Cost of External Merge Sort

» Read+write+read = 3B(R)

« Assumption: B(R) <= M?
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Duplicate Elimination

Duplicate elimination 6(R)

» |dea: do a two step merge sort, but
change one of the steps

« Question in class: which step needs to
be changed and how ?

* Cost = 3B(R)
« Assumption: B(8(R)) <= M?
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Grouping

Grouping: Ya, sum(b) (R)
« Same as before: sort, then compute the
sum(b) for each group of a’s

* Total cost: 3B(R)
« Assumption: B(R) <= M?
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Merge-Join

JoOIn R X S

» Step 1a: initial runs for R
« Step 1b: initial runs for S
» Step 2: merge and join
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Merge-Join

—— > | - Input1
I
! Tlnput2
4] /

~——— | inputM

Main memory

Output

M, = B(R)/M runs for R
M, = B(S)/M runs for S
If B <= M? then we are done &




Two-Pass Algorithms Based
on Sorting

JOINR X S

* |f the number of tuples in R matching
those in S is small (or vice versa) we
can compute the join during the merge
phase

» Total cost: 3B(R)+3B(S)
« Assumption: B(R) + B(S) <= M?
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Summary of External Join

Algorithms
* Block Nested Loop: B(S) + B(R)*B(S)/M

* Index Join: B(R) + T(R)B(S)/V(S,a)

« Partitioned Hash: 3B(R)+3B(S):
— min(B(R),B(S)) <= M2

* Merge Join: 3B(R)+3B(S
— B(R)+B(S) <= M?
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