
CSEP 544
Database Systems

Lecture 8: Overview of
Query Optimization

May 19, 2009

CSEP544 - Spring 2009 1

Announcements

•  Homework 5 is due next week
–  How is it going?

•  Homework 6 (last) to be posted soon
–  Rather short assignment, but start early in case you

have questions

•  Final will be take-home
–  Posted on June 2nd, after last lecture
–  Due by June 4th; electronic turn-in 2

Where We Are

•  We are learning how a DBMS executes a query
•  What we learned so far

–  How data is stored and indexed: lecture 6
–  Logical query plans and physical operators: lecture 7

•  Today
–  How to select logical & physical query plans

CSEP544 - Spring 2009 3

Note: Today’s material contains more
than Chapter 15 in the textbook !

CSEP544 - Spring 2009 4

Query Optimization Goal

•  For a query
– There exists many logical and physical query

plans
– Query optimizer needs to pick a good one

CSEP544 - Spring 2009 5

Query Optimization Algorithm

•  Enumerate alternative plans

•  Compute estimated cost of each plan
– Compute number of I/Os
– Compute CPU cost

•  Choose plan with lowest cost
– This is called cost-based optimization

CSE 444 - Spring 2009 6

Example

•  Some statistics
–  T(Supplier) = 1000 records
–  B(Supplier) = 100 pages
–  T(Supplies) = 10,000 records
–  B(Supplies) = 100 pages
–  V(Supplier,scity) = 20, V(Supplier,state) = 10
–  V(Supplies,pno) = 2,500
–  Both relations are clustered

•  M = 10

Suppliers(sid, sname, scity, sstate)
Supplies(sid, pno, quantity)

CSEP544 - Spring 2009 7

Physical Query Plan 1

Suppliers Supplies

sid = sid

σ scity=‘Seattle’ ∧sstate=‘WA’ ∧ pno=2

π sname

(File scan) (File scan)

(Block-nested loop)

(On the fly)

(On the fly) Selection and project on-the-fly
-> No additional cost.

Total cost of plan is thus cost of join:
= B(Supplier)+B(Supplier)*B(Supplies)/M
= 100 + 10 * 100
= 1,100 I/Os

CSEP544 - Spring 2009 8

Suppliers Supplies

sid = sid

(1) σ scity=‘Seattle’ ∧sstate=‘WA’

π sname

(File scan) (File scan)

(Sort-merge join)

(Scan
write to T2)

(On the fly)

(2) σ pno=2

(Scan
 write to T1)

Physical Query Plan 2
Total cost
= 100 + 100 * 1/20 * 1/10 (1)
+ 100 + 100 * 1/2500 (2)
+ 2 (3)
+ 0 (4)
Total cost ≈ 204 I/Os

(3)

(4)

Supplies Suppliers

sid = sid

σ scity=‘Seattle’ ∧sstate=‘WA’

π sname

(Index nested loop)

(Index lookup on sid)
Doesn’t matter if clustered or not

(On the fly)

(1) σ pno=2

(Index lookup on pno)
Assume: clustered

Physical Query Plan 3
Total cost
= 1 (1)
+ 4 (2)
+ 0 (3)
+ 0 (3)
Total cost ≈ 5 I/Os

(Use index)

(2)

(3)

(4)

(On the fly)

4 tuples

CSEP544 - Spring 2009 10

Simplifications

•  In the previous examples, we assumed
that all index pages were in memory

•  When this is not the case, we need to
add the cost of fetching index pages
from disk

11

Lessons

•  Need to consider several physical plan
– even for one, simple logical plan

•  No magic “best” plan: depends on the
data

•  In order to make the right choice
– need to have statistics over the data
–  the B’s, the T’s, the V’s

CSEP544 - Spring 2009

CSEP544 - Spring 2009 12

Outline

•  Search space

•  Algorithm for enumerating query plans

•  Estimating the cost of a query plan

CSEP544 - Spring 2009 13

Relational Algebra
Equivalences

•  Selections
–  Commutative: σc1(σc2(R)) same as σc2(σc1(R))
–  Cascading: σc1∧c2(R) same as σc2(σc1(R))

•  Projections
•  Joins

–  Commutative : R ⋈ S same as S ⋈ R
–  Associative: R ⋈ (S ⋈ T) same as (R ⋈ S) ⋈ T

Left-Deep Plans and
Bushy Plans

CSEP544 - Spring 2009 14

R3 R1 R2 R4 R3 R1

R4

R2

Left-deep plan Bushy plan

15

Example:
Simple Algebraic Laws

•  Commutative and Associative Laws
R ∪ S = S ∪ R, R ∪ (S ∪ T) = (R ∪ S) ∪ T
R ⨝ S = S ⨝ R, R ⨝ (S ⨝ T) = (R ⨝ S) ⨝ T
R ⨝ S = S ⨝ R, R ⨝ (S ⨝ T) = (R ⨝ S) ⨝ T

•  Distributive Laws
R ⨝ (S ∪ T) = (R ⨝ S) ∪ (R ⨝ T)

CSEP544 - Spring 2009

16

Example:
Simple Algebraic Laws

•  Laws involving selection:
 σ C AND C’(R) = σ C(σ C’(R)) = σ C(R) ∩ σ C’(R)
 σ C OR C’(R) = σ C(R) ∪ σ C’(R)
 σ C (R ⨝ S) = σ C (R) ⨝ S

•  When C involves only attributes of R
 σ C (R – S) = σ C (R) – S
 σ C (R ∪ S) = σ C (R) ∪ σ C (S)
 σ C (R ⨝ S) = σ C (R) ⨝ S

CSEP544 - Spring 2009

17

Example:
Simple Algebraic Laws

•  Example: R(A, B, C, D), S(E, F, G)
 σ F=3 (R ⨝ D=E S) = ?
 σ A=5 AND G=9 (R ⨝ D=E S) = ?

CSEP544 - Spring 2009

18

Example:
Simple Algebraic Laws

•  Laws involving projections
ΠM(R ⨝ S) = ΠM(ΠP(R) ⨝ ΠQ(S))
ΠM(ΠN(R)) = ΠM,N(R)

•  Example R(A,B,C,D), S(E, F, G)
ΠA,B,G(R ⨝ D=E S) = Π ? (Π?(R) ⨝ D=E Π?(S))

CSEP544 - Spring 2009

19

Example:
Simple Algebraic Laws

•  Laws involving grouping and aggregation:
δ(γA, agg(B)(R)) = γA, agg(B)(R)
γA, agg(B)(δ(R)) = γA, agg(B)(R) if agg is “duplicate insensitive”

•  Which of the following are “duplicate insensitive” ?
sum, count, avg, min, max

γA, agg(D)(R(A,B) ⨝ B=C S(C,D)) =
γA, agg(D)(R(A,B) ⨝ B=C (γC, agg(D)S(C,D)))

CSEP544 - Spring 2009

Laws Involving Constratins

CSEP544 - Spring 2009 20

Product(pid, pname, price, cid)
Company(cid, cname, city, state)

Foreign key

Πpid, price(Product ⨝cid=cid Company) = Πpid, price(Product)

Need a second constraint for this law to hold. Which one ?

21

Laws with Semijoins

Recall the definition of a semijoin:

•  R ⋉ S = Π A1,…,An (R ⨝ S)

•  Where the schemas are:
–  Input: R(A1,…An), S(B1,…,Bm)
– Output: T(A1,…,An)

CSEP544 - Spring 2009

22

Laws with Semijoins
Semijoins: a bit of theory (see Database Theory, AHV)
•  Given a query:

•  A semijoin reducer for Q is

such that the query is equivalent to:

•  A full reducer is such that no dangling tuples remain

Q :- Π (σ (Rk1 ⨝ Rk2 ⨝ . . . ⨝ Rkn))

Ri1 := Ri1 ⋉ Rj1
Ri2 := Ri2 ⋉ Rj2

.
Rip := Rip ⋉ Rjp

CSEP544 - Spring 2009

Q :- Π (σ (R1 ⨝ R2 ⨝ . . . ⨝ Rn))

23

Laws with Semijoins

•  Example:

•  A full reducer is:
Q(A,E) :- ΠA,E(R1(A,B) ⨝ R2(B,C) ⨝ R3(C,D,E))

R2’(B,C) := R2(B,C) ⋉ R1(A,B)
R3’(C,D,E) := R3(C,D,E) ⋉ R2(B,C)
R2’’(B,C) := R2’(B,C) ⋉ R3’(C,D,E)
R1’(A,B) := R1(A,B) ⋉ R2’’(B,C)

The new tables have only the tuples necessary to compute Q(E)

Q(A,E) :- ΠA,E(R1’(A,B) ⨝ R2’’(B,C) ⨝ R3’(C,D,E))

24

Laws with Semijoins
•  Example:

•  Doesn’t have a full reducer (we can reduce forever)

Theorem a query has a full reducer iff it is “acyclic”
[Database Theory, by Abiteboul, Hull, Vianu]

Q(E) :- R1(A,B) ⨝ R2(B,C) ⨝ R3(A,C, E)

CSEP544 - Spring 2009

Example with Semijoins

25

CREATE VIEW DepAvgSal As (
 SELECT E.did, Avg(E.Sal) AS avgsal
 FROM Emp E
 GROUP BY E.did)

[Chaudhuri’98] Emp(eid, ename, sal, did)
Dept(did, dname, budget)
DeptAvgSal(did, avgsal) /* view */

SELECT E.eid, E.sal
FROM Emp E, Dept D, DepAvgSal V
WHERE E.did = D.did AND E.did = V.did

 AND E.age < 30 AND D.budget > 100k
 AND E.sal > V.avgsal

View:

Query:

Goal: compute only the necessary part of the view

Example with Semijoins

26

CREATE VIEW LimitedAvgSal As (
 SELECT E.did, Avg(E.Sal) AS avgsal
 FROM Emp E, Dept D

 WHERE E.did = D.did AND D.buget > 100k
 GROUP BY E.did)

[Chaudhuri’98]

New view
uses a reducer:

Emp(eid, ename, sal, did)
Dept(did, dname, budget)
DeptAvgSal(did, avgsal) /* view */

SELECT E.eid, E.sal
FROM Emp E, Dept D, LimitedAvgSal V
WHERE E.did = D.did AND E.did = V.did

 AND E.age < 30 AND D.budget > 100k
 AND E.sal > V.avgsal

New query:

Example with Semijoins

27

CREATE VIEW PartialResult AS
 (SELECT E.eid, E.sal, E.did
 FROM Emp E, Dept D
 WHERE E.did=D.did AND E.age < 30
 AND D.budget > 100k)

CREATE VIEW Filter AS
 (SELECT DISTINCT P.did FROM PartialResult P)

CREATE VIEW LimitedAvgSal AS
 (SELECT E.did, Avg(E.Sal) AS avgsal
 FROM Emp E, Filter F
 WHERE E.did = F.did GROUP BY E.did)

[Chaudhuri’98]

Full reducer:

Emp(eid, ename, sal, did)
Dept(did, dname, budget)
DeptAvgSal(did, avgsal) /* view */

28

Example with Semijoins

SELECT P.eid, P.sal
FROM PartialResult P, LimitedDepAvgSal V
WHERE P.did = V.did AND P.sal > V.avgsal

CSEP544 - Spring 2009

New query:

Search Space Challenges

•  Search space is huge!
– Many possible equivalent trees
– Many implementations for each operator
– Many access paths for each relation

•  File scan or index + matching selection condition

•  Cannot consider ALL plans
– Heuristics: only partial plans with “low” cost

CSEP544 - Spring 2009 29

CSEP544 - Spring 2009 30

Outline

•  Search space

•  Algorithms for enumerating query plans

•  Estimating the cost of a query plan

Key Decisions

•  When selecting a plan, some of the
most important decisions include:
– Logical plan

•  Which algebraic laws do we apply, and in which
context(s) ?

•  What logical plans do we consider (left-deep,
bushy ?)

– Physical plan
•  What join algorithms to use?
•  What access paths to use (file scan or index)? 31

Optimizers

•  Heuristic-based optimizers:
– Apply greedily rules that always improve

•  Typically: push selections down
– Very limited: no longer used today

•  Cost-based optimizers
– Use a cost model to estimate the cost of

each plan
– Select the “cheapest” plan

CSEP544 - Spring 2009 32

Representation of Partial
Plans

•  Bottom-up optimization algorithms:
– A partial plan is an algebra tree that

computes only part of the query

•  Top-down optimization algorithms:
– A partial plan is an algebra tree whose

leaves are either base relations, or queries
(without a plan yet)

CSEP544 - Spring 2009 33

Examples of Partial Plans

34

SELECT *
FROM R, S, T
WHERE R.B=S.B and S.C=T.C and R.A<40

R(A,B)
S(B,C)
T(C,D)

⨝ σA<40

Bottom-up plans

R S T

⨝

S σA<40

R

⨝

R S

⨝

S σA<40

R

⨝

T

…..

Examples of Partial Plans

35

SELECT *
FROM R, S, T
WHERE R.B=S.B and S.C=T.C and R.A<40

R(A,B)
S(B,C)
T(C,D)

⨝ σA<40

Top-down plans

T
⨝

S

⨝

T

…..

SELECT R.A, T.D
FROM R, S, T
WHERE R.B=S.B
 and S.C=T.C

SELECT *
FROM R, S
WHERE R.B=S.B
 and R.A < 40 SELECT *

FROM R
WHERE R.A < 40

Plan Enumeration Algorithms

•  Dynamic programming
– Classical algorithm [1979]
– Limited to joins: join reordering algorithm
– Bottom-up

•  Rule-based algorithm
– Database of rules (=algebraic laws)
– Usually: dynamic programming
– Usually: top-down

CSEP544 - Spring 2009 36

37

Dynamic Programming
Originally proposed in System R [1979]
•  Only handles single block queries:

•  Heuristics: selections down, projections up
•  Dynamic programming: join reordering

SELECT list�
FROM R1, …, Rn�
WHERE cond1 AND cond2 AND . . . AND condk

CSEP544 - Spring 2009

38

Join Trees
•  R1 ⨝ R2 ⨝ …. ⨝ Rn
•  Join tree:

•  A plan = a join tree
•  A partial plan = a subtree of a join tree

R3 R1 R2 R4

CSEP544 - Spring 2009

39

Types of Join Trees

•  Left deep:

R3 R1

R5

R2

R4

CSEP544 - Spring 2009

40

Types of Join Trees

•  Bushy:

R3

R1

R2 R4

R5

CSEP544 - Spring 2009

41

Types of Join Trees

•  Right deep:

R3

R1
R5

R2 R4

CSEP544 - Spring 2009

42

Dynamic Programming

Join ordering:
•  Given: a query R1 ⨝ R2 ⨝ . . . ⨝ Rn
•  Find optimal order

•  Assume we have a function cost() that
gives us the cost of every join tree

CSEP544 - Spring 2009

43

Dynamic Programming

•  For each subquery Q ⊆{R1, …, Rn}
compute the following:
– Size(Q) = the estimated size of Q
– Plan(Q) = a best plan for Q
– Cost(Q) = the estimated cost of that plan

CSEP544 - Spring 2009

44

Dynamic Programming

•  Step 1: For each {Ri} do:
– Size({Ri}) = B(Ri)
– Plan({Ri}) = Ri
– Cost({Ri}) = (cost of scanning Ri)

CSEP544 - Spring 2009

45

Dynamic Programming

•  Step 2: For each Q ⊆{R1, …, Rn} of
cardinality i do:
– Size(Q) = estimate it recursively
– For every pair of subqueries Q’, Q’’

s.t. Q = Q’ ∪ Q’’
compute cost(Plan(Q’) ⨝ Plan(Q’’))
•  Cost(Q) = the smallest such cost
•  Plan(Q) = the corresponding plan

CSEP544 - Spring 2009

46

Dynamic Programming

•  Step 3: Return Plan({R1, …, Rn})

CSEP544 - Spring 2009

47

Example

To illustrate, we will make the following
simplifications:

•  Cost(P1 ⨝ P2) = Cost(P1) + Cost(P2) +
 size(intermediate result(s))
–  Size(intermediate result(s)) =

If P1 = a join, then the size of the intermediate
result is size(P1), otherwise the size is 0
Similarly for P2

•  Cost of a scan = 0
CSEP544 - Spring 2009

48

Example

•  R ⨝ S ⨝ T ⨝ U
•  Number of tuples: 2000, 5000, 3000, 1000
•  Size estimation: T(A ⨝ B) = 0.01*T(A)*T(B)

CSEP544 - Spring 2009

49

Subquery Size Cost Plan

RS

RT

RU

ST

SU

TU

RST

RSU

RTU

STU

RSTU

50

Subquery Size Cost Plan

RS 100k 0 RS

RT 60k 0 RT

RU 20k 0 RU

ST 150k 0 ST

SU 50k 0 SU

TU 30k 0 TU

RST 3M 60k (RT)S

RSU 1M 20k (RU)S

RTU 0.6M 20k (RU)T

STU 1.5M 30k (TU)S

RSTU 30M 60k+50k=110k (RT)(SU)

51

Reducing the Search Space
•  Left-linear trees v.s. Bushy trees

•  Trees without cartesian product

Example: R(A,B) ⨝ S(B,C) ⨝ T(C,D)

Plan: (R(A,B) ⨝ T(C,D)) ⨝ S(B,C) has a cartesian product
– most query optimizers will not consider it

CSEP544 - Spring 2009

52

Dynamic Programming:
Summary

•  Handles only join queries:
–  Selections are pushed down (i.e. early)
–  Projections are pulled up (i.e. late)

•  Takes exponential time in general, BUT:
–  Left linear joins may reduce time
–  Non-cartesian products may reduce time further

CSEP544 - Spring 2009

53

Rule-Based Optimizers

•  Extensible collection of rules
Rule = Algebraic law with a direction

•  Algorithm for firing these rules
Generate many alternative plans, in some

order
Prune by cost

•  Volcano (later SQL Sever)
•  Starburst (later DB2)

54

Completing the
Physical Query Plan

•  Choose algorithm for each operator
– How much memory do we have ?
– Are the input operand(s) sorted ?

•  Access path selection for base tables
•  Decide for each intermediate result:

– To materialize
– To pipeline

CSEP544 - Spring 2009

CSEP544 - Spring 2009 55

Access Path Selection
•  Access path: a way to retrieve tuples from a table

–  A file scan
–  An index plus a matching selection condition

•  Index matches selection condition if it can be used to
retrieve just tuples that satisfy the condition
–  Example: Supplier(sid,sname,scity,sstate)
–  B+-tree index on (scity,sstate)

•  matches scity=‘Seattle’
•  does not match sid=3, does not match sstate=‘WA’

CSEP544 - Spring 2009 56

Access Path Selection
•  Supplier(sid,sname,scity,sstate)

•  Selection condition: sid > 300 ∧ scity=‘Seattle’

•  Indexes: B+-tree on sid and B+-tree on scity

•  Which access path should we use?

•  We should pick the most selective access path

CSEP544 - Spring 2009 57

Access Path Selectivity
•  Access path selectivity is the number of pages

retrieved if we use this access path
–  Most selective retrieves fewest pages

•  As we saw earlier, for equality predicates
–  Selection on equality: σa=v(R)
–  V(R, a) = # of distinct values of attribute a
–  1/V(R,a) is thus the reduction factor
–  Clustered index on a: cost B(R)/V(R,a)
–  Unclustered index on a: cost T(R)/V(R,a)
–  (we are ignoring I/O cost of index pages for simplicity)

58

Materialize Intermediate
Results Between Operators

⋈

⋈

⋈ T

R S

U

HashTable S
repeat read(R, x)

 y join(HashTable, x)
 write(V1, y)

HashTable T
repeat read(V1, y)

 z join(HashTable, y)
 write(V2, z)

HashTable U
repeat read(V2, z)

 u join(HashTable, z)
 write(Answer, u)

V1

V2

CSEP544 - Spring 2009

59

Materialize Intermediate
Results Between Operators

Question in class

Given B(R), B(S), B(T), B(U)

•  What is the total cost of the plan ?
–  Cost =

•  How much main memory do we need ?
–  M =

CSEP544 - Spring 2009

60

Pipeline Between Operators

⋈

⋈

⋈ T

R S

U

HashTable1 S
HashTable2 T
HashTable3 U
repeat read(R, x)

 y join(HashTable1, x)
 z join(HashTable2, y)
 u join(HashTable3, z)
 write(Answer, u)

CSEP544 - Spring 2009

61

Pipeline Between Operators
Question in class

Given B(R), B(S), B(T), B(U)

•  What is the total cost of the plan ?
–  Cost =

•  How much main memory do we need ?
–  M =

CSEP544 - Spring 2009

62

Pipeline in Bushy Trees

⋈

⋈

⋈

X R S

⋈

⋈ Z

Y

⋈

V

T

⋈

I

63

Example

•  Logical plan is:

•  Main memory M = 101 buffers

R(w,x)
5,000 blocks

S(x,y)
10,000 blocks

U(y,z)
10,000 blocks

k blocks

CSEP544 - Spring 2009

64

Example

Naïve evaluation:
•  2 partitioned hash-joins
•  Cost 3B(R) + 3B(S) + 4k + 3B(U) = 75000 + 4k

R(w,x)
5,000 blocks

S(x,y)
10,000 blocks

U(y,z)
10,000 blocks

k blocks

M = 101

CSEP544 - Spring 2009

65

Example

Smarter:
•  Step 1: hash R on x into 100 buckets, each of 50 blocks; to disk
•  Step 2: hash S on x into 100 buckets; to disk
•  Step 3: read each Ri in memory (50 buffer) join with Si (1 buffer); hash

result on y into 50 buckets (50 buffers) -- here we pipeline
•  Cost so far: 3B(R) + 3B(S)

R(w,x)
5,000 blocks

S(x,y)
10,000 blocks

U(y,z)
10,000 blocks

k blocks

M = 101

66

Example

Continuing:
•  How large are the 50 buckets on y ? Answer: k/50.
•  If k <= 50 then keep all 50 buckets in Step 3 in memory, then:
•  Step 4: read U from disk, hash on y and join with memory
•  Total cost: 3B(R) + 3B(S) + B(U) = 55,000

R(w,x)
5,000 blocks

S(x,y)
10,000 blocks

U(y,z)
10,000 blocks

k blocks

M = 101

67

Example

Continuing:
•  If 50 < k <= 5000 then send the 50 buckets in Step 3 to disk

–  Each bucket has size k/50 <= 100
•  Step 4: partition U into 50 buckets
•  Step 5: read each partition and join in memory
•  Total cost: 3B(R) + 3B(S) + 2k + 3B(U) = 75,000 + 2k

R(w,x)
5,000 blocks

S(x,y)
10,000 blocks

U(y,z)
10,000 blocks

k blocks

M = 101

68

Example

Continuing:
•  If k > 5000 then materialize instead of pipeline
•  2 partitioned hash-joins
•  Cost 3B(R) + 3B(S) + 4k + 3B(U) = 75000 + 4k

R(w,x)
5,000 blocks

S(x,y)
10,000 blocks

U(y,z)
10,000 blocks

k blocks

M = 101

CSEP544 - Spring 2009 69

Outline

•  Search space

•  Algorithms for enumerating query plans

•  Estimating the cost of a query plan

CSEP544 - Spring 2009 70

Computing the Cost of a Plan

•  Collect statistical summaries of stored data

•  Estimate size in a bottom-up fashion

•  Estimate cost by using the estimated size

CSEP544 - Spring 2009 71

Statistics on Base Data

•  Collected information for each relation
–  Number of tuples (cardinality)
–  Indexes, number of keys in the index
–  Number of physical pages, clustering info
–  Statistical information on attributes

•  Min value, max value, number distinct values
•  Histograms

–  Correlations between columns (hard)

•  Collection approach: periodic, using sampling

72

Size Estimation

Estimating the size of a projection
•  Easy: T(ΠL(R)) = T(R)
•  This is because a projection doesn’t

eliminate duplicates

CSEP544 - Spring 2009

73

Size Estimation for Selection
Estimating the size of a selection
•  S = σA=c(R)

–  T(S) can be anything from 0 to T(R) – V(R,A) + 1
–  Estimate: T(S) = T(R)/V(R,A)
–  When V(R,A) is not available, estimate T(S) = T(R)/10

•  S = σA<c(R)
–  T(S) can be anything from 0 to T(R)
–  Estimate: T(S) = (c - Low(R, A))/(High(R,A) - Low(R,A))T(R)
–  When Low, High unavailable, estimate T(S) = T(R)/3

CSEP544 - Spring 2009

CSEP544 - Spring 2009 74

Size Estimation for Selection

What if we have an index on multiple attributes?
•  Example selection S=σa=v1 ∧ b= v2(R)

How to compute the selectivity?
•  Assume attributes are independent
•  T(S) = T(R) / (V(R,a) * V(R,b))

CSEP544 - Spring 2009 75

Example
•  Selection condition: sid > 300 ∧ scity=‘Seattle’

–  Index I1: B+-tree on sid clustered
–  Index I2: B+-tree on scity unclustered

•  Let’s assume
–  V(Supplier,scity) = 20
–  Max(Supplier, sid) = 1000, Min(Supplier,sid)=1
–  B(Supplier) = 100, T(Supplier) = 1000

•  Cost I1: B(R) * (Max-v)/(Max-Min) = 100*700/999 ≈ 70
•  Cost I2: T(R) * 1/V(Supplier,scity) = 1000/20 = 50

76

Size Estimation for Join

Estimating the size of a natural join, R ⨝A S
•  When the set of A values are disjoint,

then T(R ⨝A S) = 0
•  When A is a key in S and a foreign key in

R, then T(R ⨝A S) = T(R)
•  When A has a unique value, the same in

R and S, then T(R ⨝A S) = T(R) T(S)

Estimation seems hopelessly hard !

77

Size Estimation for Join
Assumptions:
•  Containment of values: if V(R,A) <= V(S,A), then the

set of A values of R is included in the set of A values
of S
–  Note: this indeed holds when A is a foreign key in R, and a

key in S

•  Preservation of values: for any other attribute B,
V(R ⨝A S, B) = V(R, B) (or V(S, B))

CSEP544 - Spring 2009

78

Size Estimation for Join
Assume V(R,A) <= V(S,A)
•  Then each tuple t in R joins some tuple(s) in S

–  How many ?
–  On average T(S)/V(S,A)
–  t will contribute T(S)/V(S,A) tuples in R ⨝A S

•  Hence T(R ⨝A S) = T(R) T(S) / V(S,A)

In general: T(R ⨝A S) = T(R) T(S) / max(V(R,A),V(S,A))

CSEP544 - Spring 2009

79

Size Estimation for Join

Example:
•  T(R) = 10000, T(S) = 20000
•  V(R,A) = 100, V(S,A) = 200
•  How large is R ⨝A S ?

Answer: T(R ⨝A S) = 10000 20000/200 =
1M

CSEP544 - Spring 2009

80

Size Estimation for Join

Joins on more than one attribute:
•  T(R ⨝A,B S) =

T(R) T(S)/(max(V(R,A),V(S,A))*max(V(R,B),V(S,B)))

CSEP544 - Spring 2009

CSEP544 - Spring 2009 81

Computing Cost of an
Operator

•  The cost of executing an operator
depends
– On the operator implementation
– On the input data

•  We learned how to compute this in the
previous lecture, so we do not repeat it
here

82

Histograms

•  Statistics on data maintained by the
RDBMS

•  Makes size estimation much more
accurate (hence, cost estimations are
more accurate)

CSEP544 - Spring 2009

83

Histograms

•  Maintain a histogram on salary:

•  T(Employee) = 25000, but now we know the
distribution

Salary: 0..20k 20k..40k 40k..60k 60k..80k 80k..100k > 100k

Tuples 200 800 5000 12000 6500 500

CSEP544 - Spring 2009

Employee(ssn, name, salary, phone)

84

Histograms

•  Eqwidth

•  Eqdepth

Salary 0..20 20..40 40..60 60..80 80..100
Tuples 2 104 9739 152 3

Salary 0..44 44..48 48..50 50..56 55..100
Tuples 1800 2000 2100 2200 1900

CSEP544 - Spring 2009

Employee(ssn, name, salary, phone)

Example

CSEP544 - Spring 2009 85

Estimate the size of: S = σsalary>=46 and salary<=70(Employee)

Salary 0..44 44..48 48..50 50..56 55..100
Tuples 1800 2000 2100 2200 1900

Employee(ssn, name, salary, phone)

Example

CSEP544 - Spring 2009 86

Estimate the size of: S = σsalary>=46 and salary<=70(Employee)

Salary 0..44 44..48 48..50 50..56 55..100
Tuples 1800 2000 2100 2200 1900

Employee(ssn, name, salary, phone)

Answer: T(S) = 2000*3/4 + 2100 + 2200 + 1900*16/46

Summary of Query
Optimization

•  Three parts:
– search space, algorithms, size/cost estimation

•  This lecture discussed some of the issues
– Lecture has more material than either

textbook, however:
– You won’t be able to write an optimizer

tomorrow !
– There is no good text on rule-based optimizer

CSEP544 - Spring 2009 87

