CSEP 544 Database Systems

Lecture 8: Overview of
Query Optimization
May 19, 2009

Announcements

- Homework 5 is due next week
- How is it going?
- Homework 6 (last) to be posted soon
- Rather short assignment, but start early in case you have questions
- Final will be take-home
- Posted on June $2^{\text {nd }}$, after last lecture
- Due by June $4^{\text {th }}$; electronic turn-in

Where We Are

- We are learning how a DBMS executes a query
- What we learned so far
- How data is stored and indexed: lecture 6
- Logical query plans and physical operators: lecture 7
- Today
- How to select logical \& physical query plans

> Note: Today's material contains more than Chapter 15 in the textbook!

Query Optimization Goal

- For a query
- There exists many logical and physical query plans
- Query optimizer needs to pick a good one

Query Optimization Algorithm

- Enumerate alternative plans
- Compute estimated cost of each plan
- Compute number of I/Os
- Compute CPU cost
- Choose plan with lowest cost
- This is called cost-based optimization CSEP544 - Spring 2009

Example

Suppliers(sid, sname, scity, sstate) Supplies(sid, pno, quantity)

- Some statistics
- T(Supplier) = 1000 records
- B(Supplier) $=100$ pages
- T(Supplies) $=10,000$ records
- B(Supplies) $=100$ pages
- $\mathrm{V}($ Supplier,scity $)=20, \mathrm{~V}($ Supplier,state $)=10$
- V(Supplies,pno) $=2,500$
- Both relations are clustered
- $M=10$

Physical Query Plan 1

Physical Query Plan 2

Physical Query Plan 3

(On the fly) (4) $\pi_{\text {sname }}$
(On the fly)
(3) $\sigma_{\text {scity }}=$ 'Seattle' $^{\prime} \wedge$ sstate $={ }^{\prime} W A^{\prime}$

Total cost

$$
=1(1)
$$

$$
+4(2)
$$

$$
+0(3)
$$

$$
+0(3)
$$

Total cost $\approx 5 \mathrm{I} / \mathrm{Os}$
(2) sid = sid (Index nested loop)

Suppliers
(Index lookup on pno) (Index lookup on sid)
Assume: clustered

Doesn't matter if clustered or not

Simplifications

- In the previous examples, we assumed that all index pages were in memory
- When this is not the case, we need to add the cost of fetching index pages from disk

Lessons

- Need to consider several physical plan
- even for one, simple logical plan
- No magic "best" plan: depends on the data
- In order to make the right choice
- need to have statistics over the data
- the B's, the T's, the V's

Outline

- Search space
- Algorithm for enumerating query plans
- Estimating the cost of a query plan

Relational Algebra Equivalences

- Selections
- Commutative: $\sigma_{\mathrm{c} 1}\left(\sigma_{\mathrm{c} 2}(\mathrm{R})\right)$ same as $\sigma_{\mathrm{c} 2}\left(\sigma_{\mathrm{c} 1}(\mathrm{R})\right)$
- Cascading: $\sigma_{\mathrm{c} 1 \wedge \mathrm{c} 2}(\mathrm{R})$ same as $\sigma_{\mathrm{c} 2}\left(\sigma_{\mathrm{c} 1}(\mathrm{R})\right)$
- Projections
- Joins
- Commutative : $R \bowtie S$ same as $S \bowtie R$
- Associative: $R \bowtie(S \bowtie T)$ same as $(R \bowtie S) \bowtie T$

Left-Deep Plans and Bushy Plans

Example: Simple Algebraic Laws

- Commutative and Associative Laws

$$
\begin{aligned}
& R \cup S=S \cup R, R \cup(S \cup T)=(R \cup S) \cup T \\
& R \bowtie S=S \bowtie R, R \bowtie(S \bowtie T)=(R \bowtie S) \bowtie T \\
& R \bowtie S=S \bowtie R, R \bowtie(S \bowtie T)=(R \bowtie S) \bowtie T
\end{aligned}
$$

- Distributive Laws $R \bowtie(S \cup T)=(R \bowtie S) \cup(R \bowtie T)$

Example: Simple Algebraic Laws

- Laws involving selection:

$$
\begin{aligned}
& \sigma_{C A N D C^{\prime}}(R)=\sigma_{C}\left(\sigma_{C^{\prime}}(R)\right)=\sigma_{C}(R) \cap \sigma_{C^{\prime}}(R) \\
& \sigma_{C} O_{C^{\prime}}(R)=\sigma_{C}(R) \cup \sigma_{C^{\prime}}(R) \\
& \sigma_{C}(R \bowtie S)=\sigma_{C}(R) \bowtie S
\end{aligned}
$$

- When C involves only attributes of R

$$
\begin{aligned}
& \sigma_{C}(R-S)=\sigma_{C}(R)-S \\
& \sigma_{C}(R \cup S)=\sigma_{C}(R) \cup \sigma_{C}(S) \\
& \sigma_{C}(R \bowtie S)=\sigma_{C}(R) \bowtie S
\end{aligned}
$$

Example: Simple Algebraic Laws

- Example: R(A, B, C, D), S(E, F, G)

$$
\begin{aligned}
& \sigma_{F=3}\left(R \bowtie_{D=E} S\right)= \\
& \sigma_{A=5 \text { ANDG=9 }}\left(R \bowtie_{D=E} S\right)=
\end{aligned} ?
$$

Example: Simple Algebraic Laws

- Laws involving projections

$\Pi_{M}(R \bowtie S)=\Pi_{M}\left(\Pi_{\mathrm{P}}(\mathrm{R}) \bowtie \Pi_{\mathrm{Q}}(\mathrm{S})\right)$
$\Pi_{M}\left(\Pi_{N}(R)\right)=\Pi_{M, N}(R)$

- Example R(A,B,C,D), S(E, F, G)

$$
\Pi_{A, B, G}\left(R \bowtie_{D=E} S\right)=\Pi_{?}\left(\Pi_{?}(R) \bowtie_{D=E} \Pi_{?}(S)\right)
$$

Example:
 Simple Algebraic Laws

- Laws involving grouping and aggregation:
$\delta\left(\gamma_{\mathrm{A}, \operatorname{agg}(\mathrm{B})}(\mathrm{R})\right)=\gamma_{\mathrm{A}, \operatorname{agg}(\mathrm{B})}(\mathrm{R})$
$\gamma_{A, \operatorname{agg}(\mathrm{~B})}(\delta(\mathrm{R}))=\gamma_{\mathrm{A}, \operatorname{agg}(\mathrm{B})}(\mathrm{R})$ if agg is "duplicate insensitive"
- Which of the following are "duplicate insensitive" ? sum, count, avg, min, max

$$
\begin{aligned}
& \gamma_{A, \operatorname{agg}(D)}\left(R(A, B) \bowtie_{B=C} S(C, D)\right)= \\
& \quad \gamma_{A, a g(D)}\left(R(A, B) \bowtie_{B=C}\left(\gamma_{C, \operatorname{agg}(D)} S(C, D)\right)\right)
\end{aligned}
$$

Laws Involving Constratins

Foreign key
Product(pid, pname, price, cid) Company(cid, cname, city, state)
$\Pi_{\text {pid, price }}\left(\right.$ Product $\bowtie_{\text {cid=cid }}$ Company $)=\Pi_{\text {pid, price }}($ Product $)$

Need a second constraint for this law to hold. Which one?

Laws with Semijoins

Recall the definition of a semijoin:

- $R \ltimes S=\Pi_{A 1, \ldots, A_{n}}(R \bowtie S)$
- Where the schemas are:
- Input: R(A1, ..An), S(B1,...,Bm)
- Output: T(A1, ..,An)

Laws with Semijoins

Semijoins: a bit of theory (see Database Theory, AHV)

- Given a query: $\quad Q:-\Pi\left(\sigma\left(R_{1} \bowtie R_{2} \bowtie \ldots \bowtie R_{n}\right)\right)$
- A semijoin reducer for Q is

$$
\begin{aligned}
& \mathrm{R}_{\mathrm{i1}}:=\mathrm{R}_{11} \ltimes \mathrm{R}_{\mathrm{j} 1} \\
& \mathrm{R}_{\mathrm{i} 2}:=\mathrm{R}_{\mathrm{i} 2} \ltimes \mathrm{R}_{\mathrm{ij} 2} \\
& \mathrm{R}_{\mathrm{ip}}:=\mathrm{R}_{\mathrm{ip}} \ltimes \mathrm{R}_{\mathrm{ip}}
\end{aligned}
$$

such that the query is equivalent to:

$$
\text { Q :- } \Pi\left(\sigma\left(R_{k 1} \bowtie R_{k 2} \bowtie \ldots \bowtie R_{k n}\right)\right)
$$

- A full reducer is such that no dangling tuples remain

Laws with Semijoins

- Example:

$$
Q(A, E):-\Pi_{A, E}\left(R_{1}(A, B) \bowtie R_{2}(B, C) \bowtie R_{3}(C, D, E)\right)
$$

- A full reducer is:

$$
\begin{aligned}
& R_{2}{ }^{\prime}(B, C):=R_{2}(B, C) \ltimes R_{1}(A, B) \\
& R_{3}^{\prime}{ }^{\prime}(C, D, E):=R_{3}(C, D, E) \ltimes R_{2}(B, C) \\
& R_{2}^{\prime \prime}(B, C):=R_{2}^{\prime}(B, C) \ltimes R_{3}{ }^{\prime}(C, D, E) \\
& R_{1}^{\prime}(A, B):=R_{1}(A, B) \ltimes R_{2}^{\prime \prime}(B, C)
\end{aligned}
$$

$$
Q(A, E):-\Pi_{A, E}\left(R_{1}{ }^{\prime}(A, B) \bowtie R_{2}{ }^{\prime \prime}(B, C) \bowtie R_{3}{ }^{\prime}(C, D, E)\right)
$$

The new tables have only the tuples necessary to compute $Q(E)$

Laws with Semijoins

- Example:

$$
Q(E):-R 1(A, B) \bowtie R 2(B, C) \bowtie R 3(A, C, E)
$$

- Doesn't have a full reducer (we can reduce forever)

Theorem a query has a full reducer iff it is "acyclic" [Database Theory, by Abiteboul, Hull, Vianu]

Example with Semijoins

Emp(eid, ename, sal, did)
Dept(did, dname, budget)
DeptAvgSal(did, avgsal) /* view */
View:

> | CREATE VIEW DepAvgSal As (|
| :--- |
| SELECT E.did, Avg(E.Sal) AS avgsal |
| FROM Emp E |
| GROUP BY E.did) |

Query:
SELECT E.eid, E.sal
FROM Emp E, Dept D, DepAvgSal V
WHERE E.did = D.did AND E.did $=$ V.did
AND E.age < 30 AND D.budget > 100k
AND E.sal > V.avgsal

Goal: compute only the necessary part of the view

Example with Semijoins

Emp(eid, ename, sal, did)
Dept(did, dname, budget)
DeptAvgSal(did, avgsal) /* view */
[Chaudhuri'98]

New view uses a reducer:

New query:

CREATE VIEW LimitedAvgSal As (SELECT E.did, Avg(E.Sal) AS avgsal FROM Emp E, Dept D
 WHERE E.did = D.did AND D.buget > 100k GROUP BY E.did)

> SELECT E.eid, E.sal
> FROM Emp E, Dept D, LimitedAvgSal V WHERE E.did = D.did AND E.did = V.did AND E.age < 30 AND D.budget > 100k AND E.sal > V.avgsal

Example with Semijoins

Emp(eid, ename, sal, did)
Dept(did, dname, budget)
[Chaudhuri'98]
DeptAvgSal(did, avgsal) /* view */
CREATE VIEW PartialResult AS
(SELECT E.eid, E.sal, E.did
FROM Emp E, Dept D
WHERE E.did=D.did AND E.age < 30
AND D.budget > 100k)
CREATE VIEW Filter AS
(SELECT DISTINCT P.did FROM PartialResult P)
CREATE VIEW LimitedAvgSal AS
(SELECT E.did, Avg(E.Sal) AS avgsal
FROM Emp E, Filter F
WHERE E.did = F.did GROUP BY E.did)

Example with Semijoins

New query:

SELECT P.eid, P.sal
FROM PartialResult P, LimitedDepAvgSal V WHERE P.did = V.did AND P.sal > V.avgsal

Search Space Challenges

- Search space is huge!
- Many possible equivalent trees
- Many implementations for each operator
- Many access paths for each relation
- File scan or index + matching selection condition
- Cannot consider ALL plans
- Heuristics: only partial plans with "low" cost

Outline

- Search space
- Algorithms for enumerating query plans
- Estimating the cost of a query plan

Key Decisions

- When selecting a plan, some of the most important decisions include:
- Logical plan
- Which algebraic laws do we apply, and in which context(s)?
- What logical plans do we consider (left-deep, bushy ?)
- Physical plan
- What join algorithms to use?
- What access paths to use (file scan or index)? ${ }_{31}$

Optimizers

- Heuristic-based optimizers:
- Apply greedily rules that always improve
- Typically: push selections down
- Very limited: no longer used today
- Cost-based optimizers
- Use a cost model to estimate the cost of each plan
- Select the "cheapest" plan

Representation of Partial Plans

- Bottom-up optimization algorithms:
- A partial plan is an algebra tree that computes only part of the query
- Top-down optimization algorithms:
- A partial plan is an algebra tree whose leaves are either base relations, or queries (without a plan yet)

Examples of Partial Plans

R(A,B)
S(B,C)
T(C,D)

SELECT *
FROM R, S, T
WHERE R.B=S.B and S.C=T.C and R.A <40

Bottom-up plans

Examples of Partial Plans

R(A,B)
S(B,C)
T(C,D)

SELECT *
FROM R, S, T
WHERE R.B=S.B and S.C=T.C and R.A<40
Top-down plans

Plan Enumeration Algorithms

- Dynamic programming
- Classical algorithm [1979]
- Limited to joins: join reordering algorithm
- Bottom-up
- Rule-based algorithm
- Database of rules (=algebraic laws)
- Usually: dynamic programming
- Usually: top-down

Dynamic Programming

Originally proposed in System R [1979]

- Only handles single block queries:

```
SELECT list
FROM R1,...,Rn
WHERE cond, AND cond 2 AND . . . AND cond (
```

- Heuristics: selections down, projections up
- Dynamic programming: join reordering

Join Trees

- $\mathrm{R} 1 \bowtie \mathrm{R} 2 \bowtie \ldots . . \mathrm{Rn}^{2}$
- Join tree:

- A plan = a join tree
- A partial plan = a subtree of a join tree

Types of Join Trees

- Left deep:

Types of Join Trees

- Bushy:

Types of Join Trees

- Right deep:

Dynamic Programming

Join ordering:

- Given: a query R1 $\mathrm{R} 2 \bowtie \ldots \bowtie$ Rn
- Find optimal order
- Assume we have a function cost() that gives us the cost of every join tree

Dynamic Programming

- For each subquery $\mathrm{Q} \subseteq\{\mathrm{R} 1, \ldots, \mathrm{Rn}\}$ compute the following:
$-\operatorname{Size}(Q)=$ the estimated size of Q
- Plan(Q) = a best plan for Q
$-\operatorname{Cost}(Q)=$ the estimated cost of that plan

Dynamic Programming

- Step 1: For each $\left\{R_{i}\right\}$ do:
$-\operatorname{Size}\left(\left\{R_{i}\right\}\right)=B\left(R_{i}\right)$
$-\operatorname{Plan}\left(\left\{R_{i}\right\}\right)=R_{i}$
$-\operatorname{Cost}\left(\left\{R_{i}\right\}\right)=\left(\right.$ cost of scanning $\left.R_{i}\right)$

Dynamic Programming

- Step 2: For each $Q \subseteq\left\{R_{1}, \ldots, R_{n}\right\}$ of cardinality i do:
- Size(Q) = estimate it recursively
- For every pair of subqueries Q', Q"
s.t. $Q=$ Q' \cup Q"
compute $\operatorname{cost}\left(P l a n\left(Q^{\prime}\right) \bowtie \operatorname{Plan}\left(Q^{\prime \prime}\right)\right)$
- $\operatorname{Cost}(\mathrm{Q})=$ the smallest such cost
- Plan(Q) = the corresponding plan

Dynamic Programming

- Step 3: Return Plan(\{ $\left.\left.R_{1}, \ldots, R_{n}\right\}\right)$

Example

To illustrate, we will make the following simplifications:

- $\operatorname{Cost}\left(\mathrm{P}_{1} \bowtie \mathrm{P}_{2}\right)=\operatorname{Cost}\left(\mathrm{P}_{1}\right)+\operatorname{Cost}\left(\mathrm{P}_{2}\right)+$ size(intermediate result(s))
- Size(intermediate result(s)) = If $P_{1}=a$ join, then the size of the intermediate result is $\operatorname{size}\left(P_{1}\right)$, otherwise the size is 0 Similarly for P_{2}
- Cost of a scan = 0

Example

- $R \bowtie S \bowtie T \bowtie U$
- Number of tuples: 2000, 5000, 3000, 1000
- Size estimation: $T(A \bowtie B)=0.01^{*} T(A) * T(B)$

Subquery	Size	Cost	Plan
RS			
RT			
RU			
ST			
SU			
TU			
RSU			
RTU			
RSTU			
RTU			

Subquery	Size	Cost	Plan
RS	100k	0	RS
RT	60k	0	RT
RU	20k	0	RU
ST	150k	0	ST
SU	50k	0	SU
TU	30k	0	TU
RST	3M	60k	(RT)S
RSU	1M	20k	(RU)S
RTU	0.6 M	20k	(RU)T
STU	1.5 M	30k	(TU)S
RSTU	30M	$60 \mathrm{k}+50 \mathrm{k}=110 \mathrm{k}$	(RT)(SU)

Reducing the Search Space

- Left-linear trees v.s. Bushy trees
- Trees without cartesian product

Example: $R(A, B) \bowtie S(B, C) \bowtie T(C, D)$

Plan: $(R(A, B) \bowtie T(C, D)) \bowtie S(B, C)$ has a cartesian product

- most query optimizers will not consider it

Dynamic Programming: Summary

- Handles only join queries:
- Selections are pushed down (i.e. early)
- Projections are pulled up (i.e. late)
- Takes exponential time in general, BUT:
- Left linear joins may reduce time
- Non-cartesian products may reduce time further

Rule-Based Optimizers

- Extensible collection of rules

Rule = Algebraic law with a direction

- Algorithm for firing these rules

Generate many alternative plans, in some order
Prune by cost

- Volcano (later SQL Sever)
- Starburst (later DB2)

Completing the Physical Query Plan

- Choose algorithm for each operator
- How much memory do we have?
- Are the input operand(s) sorted?
- Access path selection for base tables
- Decide for each intermediate result:
- To materialize
- To pipeline

Access Path Selection

- Access path: a way to retrieve tuples from a table
- A file scan
- An index plus a matching selection condition
- Index matches selection condition if it can be used to retrieve just tuples that satisfy the condition
- Example: Supplier(sid,sname,scity,sstate)
- B+-tree index on (scity,sstate)
- matches scity='Seattle'
- does not match sid=3, does not match sstate='WA'

Access Path Selection

- Supplier(sid,sname,scity,sstate)
- Selection condition: sid > $300 \wedge$ scity=‘Seattle’
- Indexes: B+-tree on sid and B+-tree on scity
- Which access path should we use?
- We should pick the most selective access path

Access Path Selectivity

- Access path selectivity is the number of pages retrieved if we use this access path
- Most selective retrieves fewest pages
- As we saw earlier, for equality predicates
- Selection on equality: $\sigma_{a=v}(R)$
$-V(R, a)=\#$ of distinct values of attribute a
$-1 / V(R, a)$ is thus the reduction factor
- Clustered index on a : cost $B(R) / V(R, a)$
- Unclustered index on a : cost $T(R) / V(R, a)$
- (we are ignoring I/O cost of index pages for simplicity)

Materialize Intermediate Results Between Operators

Materialize Intermediate Results Between Operators

Question in class

Given $B(R), B(S), B(T), B(U)$

- What is the total cost of the plan ?
- Cost =
- How much main memory do we need?
$-M=$

Pipeline Between Operators

Pipeline Between Operators

Question in class

Given $B(R), B(S), B(T), B(U)$

- What is the total cost of the plan ?
- Cost =
- How much main memory do we need?
- $M=$

Pipeline in Bushy Trees

Example

- Logical plan is:

- Main memory M = 101 buffers

Example

Naïve evaluation:

- 2 partitioned hash-joins
- Cost $3 \mathrm{~B}(\mathrm{R})+3 \mathrm{~B}(\mathrm{~S})+4 \mathrm{k}+3 \mathrm{~B}(\mathrm{U})=75000+4 \mathrm{k}$

Example

$$
M=101
$$

Smarter:

- Step 1: hash R on x into 100 buckets, each of 50 blocks; to disk
- Step 2: hash S on x into 100 buckets; to disk
- Step 3: read each R_{i} in memory (50 buffer) join with S_{i} (1 buffer); hash result on y into 50 buckets (50 buffers) -- here we pipeline
- Cost so far: $3 \mathrm{~B}(\mathrm{R})+3 \mathrm{~B}(\mathrm{~S})$

Example

$$
M=101
$$

Continuing:

- How large are the 50 buckets on y ? Answer: k/50.
- If $k<=50$ then keep all 50 buckets in Step 3 in memory, then:
- Step 4: read U from disk, hash on y and join with memory
- Total cost: $3 B(R)+3 B(S)+B(U)=55,000$

Example

$$
M=101
$$

Continuing:

- If $50<k<=5000$ then send the 50 buckets in Step 3 to disk
- Each bucket has size k/50 <= 100
- Step 4: partition U into 50 buckets
- Step 5: read each partition and join in memory
- Total cost: $3 \mathrm{~B}(\mathrm{R})+3 \mathrm{~B}(\mathrm{~S})+2 \mathrm{k}+3 \mathrm{~B}(\mathrm{U})=75,000+2 \mathrm{k}$

Example

$M=101$

Continuing: $\begin{gathered}R(w, x) \\ 5,000 \text { blocks } 10,000 \text { blocks }\end{gathered}$

- If k > 5000 then materialize instead of pipeline
- 2 partitioned hash-joins
- Cost $3 \mathrm{~B}(\mathrm{R})+3 \mathrm{~B}(\mathrm{~S})+4 \mathrm{k}+3 \mathrm{~B}(\mathrm{U})=75000+4 \mathrm{k}$

Outline

- Search space
- Algorithms for enumerating query plans
- Estimating the cost of a query plan

Computing the Cost of a Plan

- Collect statistical summaries of stored data
- Estimate size in a bottom-up fashion
- Estimate cost by using the estimated size

Statistics on Base Data

- Collected information for each relation
- Number of tuples (cardinality)
- Indexes, number of keys in the index
- Number of physical pages, clustering info
- Statistical information on attributes
- Min value, max value, number distinct values
- Histograms
- Correlations between columns (hard)
- Collection approach: periodic, using sampling

Size Estimation

Estimating the size of a projection

- Easy: $T\left(\Pi_{L}(R)\right)=T(R)$
- This is because a projection doesn't eliminate duplicates

Size Estimation for Selection

Estimating the size of a selection

- $S=\sigma_{A=c}(R)$
- $T(S)$ can be anything from 0 to $T(R)-V(R, A)+1$
- Estimate: $T(S)=T(R) / V(R, A)$
- When $V(R, A)$ is not available, estimate $T(S)=T(R) / 10$
- $S=\sigma_{A<c}(R)$
- $T(S)$ can be anything from 0 to $T(R)$
- Estimate: $T(S)=(c-\operatorname{Low}(R, A)) /(\operatorname{High}(R, A)-\operatorname{Low}(R, A)) T(R)$
- When Low, High unavailable, estimate $T(S)=T(R) / 3$

Size Estimation for Selection

What if we have an index on multiple attributes?

- Example selection $S=\sigma_{a=v 1 \wedge b=v 2}(R)$

How to compute the selectivity?

- Assume attributes are independent
- $T(S)=T(R) /(V(R, a) * V(R, b))$

Example

- Selection condition: sid > 300 ^ scity=‘Seattle’
- Index I1: B+-tree on sid clustered
- Index I2: B+-tree on scity unclustered
- Let's assume
- V(Supplier,scity) $=20$
- Max(Supplier, sid) = 1000, Min(Supplier,sid)=1
- $\mathrm{B}($ Supplier $)=100, \mathrm{~T}($ Supplier $)=1000$
- Cost I1: $B(R)$ * (Max-v)/(Max-Min) $=100 * 700 / 999 \approx 70$
- Cost I2: $\mathrm{T}(\mathrm{R}) * 1 / \mathrm{V}($ Supplier,scity $)=1000 / 20=50$

Size Estimation for Join

Estimating the size of a natural join, $R \bowtie_{A} S$

- When the set of A values are disjoint, then $T\left(R \bowtie_{A} S\right)=0$
- When A is a key in S and a foreign key in R, then $T\left(R \bowtie_{A} S\right)=T(R)$
- When A has a unique value, the same in R and S, then $T\left(R \bowtie_{A} S\right)=T(R) T(S)$

Estimation seems hopelessly hard!

Size Estimation for Join

Assumptions:

- Containment of values: if $\mathrm{V}(\mathrm{R}, \mathrm{A})<=\mathrm{V}(\mathrm{S}, \mathrm{A})$, then the set of A values of R is included in the set of A values of S
- Note: this indeed holds when A is a foreign key in R, and a key in S
- Preservation of values: for any other attribute B, $\mathrm{V}\left(\mathrm{R} \bowtie_{A} \mathrm{~S}, \mathrm{~B}\right)=\mathrm{V}(\mathrm{R}, \mathrm{B}) \quad($ or $\mathrm{V}(\mathrm{S}, \mathrm{B}))$

Size Estimation for Join

Assume $\mathrm{V}(\mathrm{R}, \mathrm{A})$ <= $\mathrm{V}(\mathrm{S}, \mathrm{A})$

- Then each tuple tin R joins some tuple(s) in S
- How many?
- On average $T(S) / V(S, A)$
- t will contribute $T(S) / V(S, A)$ tuples in $R \bowtie_{A} S$
- Hence $T\left(R \bowtie_{A} S\right)=T(R) T(S) / V(S, A)$

In general: $T\left(R \bowtie_{A} S\right)=T(R) T(S) / \max (V(R, A), V(S, A))$

Size Estimation for Join

Example:

- $T(R)=10000, T(S)=20000$
- $V(R, A)=100, V(S, A)=200$
- How large is $R \bowtie_{A} S$?

Answer: $T\left(R \bowtie_{A} S\right)=1000020000 / 200=$ 1M

Size Estimation for Join

Joins on more than one attribute:

- $T\left(R \bowtie_{A, B} S\right)=$
$T(R) T(S) /\left(\max (V(R, A), V(S, A))^{*} \max (V(R, B), V(S, B))\right)$

Computing Cost of an Operator

- The cost of executing an operator depends
- On the operator implementation
- On the input data
- We learned how to compute this in the previous lecture, so we do not repeat it here

Histograms

- Statistics on data maintained by the RDBMS
- Makes size estimation much more accurate (hence, cost estimations are more accurate)

Histograms

Employee(ssn, name, salary, phone)

- Maintain a histogram on salary:

Salary:	$0 . .20 \mathrm{k}$	$20 \mathrm{k} . .40 \mathrm{k}$	$40 \mathrm{k} . .60 \mathrm{k}$	$60 \mathrm{k} . .80 \mathrm{k}$	$80 \mathrm{k} . .100 \mathrm{k}$	$>100 \mathrm{k}$
Tuples	200	800	5000	12000	6500	500

- T (Employee) $=25000$, but now we know the distribution

Histograms

Employee(ssn, name, salary, phone)

- Eqwidth | Salary | $0 . .20$ | $20 . .40$ | $40 . .60$ | $60 . .80$ | $80 . .100$ |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Tuples | 2 | 104 | 9739 | 152 | 3 |
- Eqdepth

Salary	$0 . .44$	$44 . .48$	$48 . .50$	$50 . .56$	$55 . .100$
Tuples	1800	2000	2100	2200	1900

Example

Employee(ssn, name, salary, phone)

Salary	$0 . .44$	$44 . .48$	$48 . .50$	$50 . .56$	$55 . .100$
Tuples	1800	2000	2100	2200	1900

Estimate the size of: $S=\sigma_{\text {salary }>=46 \text { and salary }<=70}($ Employee $)$

Example

Employee(ssn, name, salary, phone)

Salary	$0 . .44$	$44 . .48$	$48 . .50$	$50 . .56$	$55 . .100$
Tuples	1800	2000	2100	2200	1900

Estimate the size of: $S=\sigma_{\text {salary }}>=46$ and salary $<=70($ Employee $)$

Answer: $\mathrm{T}(\mathrm{S})=2000 * 3 / 4+2100+2200+1900 * 16 / 46$

Summary of Query Optimization

- Three parts:
- search space, algorithms, size/cost estimation
- This lecture discussed some of the issues
- Lecture has more material than either textbook, however:
- You won't be able to write an optimizer tomorrow!
- There is no good text on rule-based optimizer

