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Announcements

« Homework 5 is due next week
— How is it going?

 Homework 6 (last) to be posted soon

— Rather short assignment, but start early in case you
have questions

 Final will be take-home
— Posted on June 2nd. after last lecture
— Due by June 4th; electronic turn-in 2



Where We Are

 We are learning how a DBMS executes a query

* What we learned so far
— How data is stored and indexed: lecture 6
— Logical query plans and physical operators: lecture 7

* Today

— How to select logical & physical query plans

Note: Today’s material contains more
than Chapter 15 in the textbook !
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Query Optimization Goal

* For a query

— There exists many logical and physical query
plans

— Query optimizer needs to pick a good one
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Query Optimization Algorithm

 Enumerate alternative plans

« Compute estimated cost of each plan

— Compute number of I/Os
— Compute CPU cost

» Choose plan with lowest cost

— This is called cost-based optimization
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Example

Suppliers(sid, sname, scity, sstate)
Supplies(sid, pno, quantity)

« Some statistics
— T(Supplier) = 1000 records
— B(Supplier) = 100 pages
— T(Supplies) = 10,000 records
— B(Supplies) = 100 pages
— V(Supplier,scity) = 20, V(Supplier,state) = 10
— V(Supplies,pno) = 2,500
— Both relations are clustered

- M=10
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Physical Query Plan 1

(On the fly) i

sname Selection and project on-the-fly
-> No additional cost.

(On the fly)
o

scity="Seattle’ nsstate="WA' A pno=2

Total cost of plan is thus cost of join:

(Block-nested loop)

] = B(Supplier)+B(Supplier)*B(Supplies)/M
sid = sid =100+ 10*100
/ Xmoo 1/0s
Suppliers Supplies
(File scan) (File scan)
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Physical Query Plan 2

Total cost
(On the fly) T sname (4) =100 + 100 * 1/20 * 1/10 (1)

+ 100 + 100 * 1/2500 (2)

+2 (3)
(Sort-merge join) —~— (3) +0(4)
Sld sid Total cost = 204 1/0s

(Scan
write to T1) (Scan
(1) O scity="Seattle’ rnsstate="WA' (2) pnc\)N glte to T2

Suppliers Supplies

(File scan) (File scan)

CSEP544 - Spring 2009 8



Physical Query Plan 3

(Onthefly) 4) =

shame

Total cost
=1(1)
(On the fly) +4(2)
3) o scity="Seattle’ asstate="WA +0(3)
+ 0 (3)
Total cost = 51/0s
Sld sid - (Index nested loop)
(Use index) /tup'es
(1) Opno 2
Supplles Suppliers

(Index lookup on pno ) (Index lookup on sid)
Assume: clustered Doesn’t matter if clustered or not



Simplifications

* In the previous examples, we assumed
that all index pages were in memory

 When this is not the case, we need to
add the cost of fetching index pages
from disk
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Lessons

* Need to consider several physical plan
— even for one, simple logical plan

* No magic “best” plan: depends on the
data
 In order to make the right choice

— need to have statistics over the data
—the B's, the T's, the V's

CSEP544 - Spring 2009
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Outline

* Search space
 Algorithm for enumerating query plans

» Estimating the cost of a query plan
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Relational Algebra
Equivalences

 Selections

— Commutative: o,(0.,(R)) same as o,(0.(R))
— Cascading: o.4,»(R) same as o_,(0.4(R))

* Projections

e Joins
— Commutative : R X S same as S X R
— Associative: R} (S T)sameas (RXS)X T
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Left-Deep Plans and
Bushy Plans

/ < \R / \
R?’/ \R1 R3/ \R1 / \

Left-deep plan Bushy plan
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Example:
Simple Algebraic Laws

« Commutative and Associative Laws

RUS=SUR, RU(SUT)=(RUS)UT
RMS=SXR, RX(SXT)=(RXS)XT
RMS=SXR, RX(SXT)=(RXS)XT

* Distributive Laws
RM(SUT) = (RXS)U((RKT)
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Example:

Simple Algebraic Laws

» Laws involving selection:
O cannc(R) =0 ¢(0(R)) =0 ¢(R)N o (R)
O corc(R)=0¢(R)U o (R)
Oc(RXS)=0-(R)XS

* When C involves only attributes of R
0c(R=S)=0¢(R)-S
0c(RUS)=0(R)U0c(S)
Oc(RXS) =0-(R)XS
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Example:
Simple Algebraic Laws

 Example: R(A, B, C, D), S(E, F, G)
O p=3(RX pg S) =

O a=5 AND G=9 (R X p=g S) =

CSEP544 - Spring 2009
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Example:
Simple Algebraic Laws

» Laws involving projections
[Iy(R X S) = I,(ITp(R) X Iy(S))
[y(ITy(R)) = Iy n(R)

- Example R(A,B,C,D), S(E, F, G)
ITp g 6(R X pg S) = IT5 (ITH(R) X pg T15(S))
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Example:
Simple Algebraic Laws

* Laws involving grouping and aggregation:

6(YA agg( B)(R)) = YA, agg(B)(R)
YA, aga®)(0(R)) = Ya agee)(R) if 2gg is “duplicate insensitive”

* Which of the following are “duplicate insensitive” ?
sum, count, avg, min, max

YA agg(D)(R(A B) X B=C S(C D))
YA agg(D) (R(A B) X B=C (YC agg(D)S(C D)))
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Laws Involving Constratins

Foreign key

P

Product(pid, pname, price, cid)
Company(cid, cname, city, state)

I_Ipid, price(PrOdU’Ct [X]cid=cid Company) - Hpid, price(PrOdUCt)

Need a second constraint for this law to hold. Which one ?
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Laws with Semijoins

Recall the definition of a semijoin:

 Where the schemas are:
— Input: R(A1,...An), S(B1,..., Bm)
— Qutput: T(A1,...,An)

CSEP544 - Spring 2009
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Laws with Semijoins

Semijoins: a bit of theory (see Database Theory, AHV)
» Givenagquery: |Q:-TI(o(R, MR,X...XR))

« A semijoin reducer for Q is Ri1 == Riy ¥ R;;
R, = Rp % Ry
Rlp = Rip a ij

such that the query is equivalent to:

Q:-T (0 (Ry XR,X...XR,.))

* A full reducer is such that no dangling tuples remain
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Laws with Semijoins

 Example:
Q(AE) :- TT, ¢(R(A,B) X Ry(B,C) X R4(C,D,E))

* A full reducer is:

R,'(B,C) := R,(B,C) % Ry(A,B)
R, (C,D,E) := Ry(C,D,E) x R,(B,C)
R,”(B,C) := R,(B,C) X R,(C,D,E)
R,(A,B) := R,(A,B) x R,”(B,C)

Q(AE) - TI, (R (A,B) X R,"(B,C) M R5'(C,D,E))

The new tables have only the tuples necessary to compute Q(E)




Laws with Semijoins

 Example:

Q(E) :- R1(A,B) X R2(B,C) X R3(A,C, E)

* Doesn'’t have a full reducer (we can reduce forever)

Theorem a query has a full reducer iff it is “acyclic”
[Database Theory, by Abiteboul, Hull, Vianu]
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Example with Semijoins

Emp(eid, ename, sal, did) [Chaudhuri’98]
Dept(did, dname, budget)

DeptAvgSal(did, avgsal) /* view */

View:

Query:

CREATE VIEW DepAvgSal As (
SELECT E.did, Avg(E.Sal) AS avgsal
FROM Emp E
GROUP BY E.did)

SELECT E.eid, E.sal

FROM Emp E, Dept D, DepAvgSal V

WHERE E.did = D.did AND E.did = V.did
AND E.age < 30 AND D.budget > 100k
AND E.sal > V.avgsal

Goal: compute only the necessary part of the view
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Example with Semijoins

Emp(eid, ename, sal, did) [Chaudhuri’98]
Dept(did, dname, budget)
DeptAvgSal(did, avgsal) /* view */

CREATE VIEW LimitedAvgSal As (

New view SELECT E.did, Avg(E.Sal) AS avgsal
FROM Emp E, Dept D

WHERE E.did = D.did AND D.buget > 100k
GROUP BY E.did)

uses a reducer:

SELECT E.eid, E.sal
New query: FROM Emp E, Dept D, LimitedAvgSal V
WHERE E.did = D.did AND E.did = V.did
AND E.age <30 AND D.budget > 100k
AND E.sal > V.avgsal 26




Example with Semijoins

Emp(eid, ename, sal, did) :
Dept(did, dname, budget) [Chaudhur1”98]

DeptAvgSal(did, avgsal) /* view */

Full reducer:

CREATE VIEW PartialResult AS
(SELECT E.eid, E.sal, E.did
FROM Emp E, Dept D
WHERE E.did=D.did AND E.age < 30
AND D.budget > 100k)

CREATE VIEW Filter AS
(SELECT DISTINCT P.did FROM PartialResult P)

CREATE VIEW LimitedAvgSal AS
(SELECT E.did, Avg(E.Sal) AS avgsal
FROM Emp E, Filter F
WHERE E.did = F.did GROUP BY E.did)




Example with Semijoins

New query:

SELECT P.eid, P.sal
FROM PartialResult P, LimitedDepAvgSal V
WHERE P.did = V.did AND P.sal > V.avgsal

CSEP544 - Spring 2009
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Search Space Challenges

* Search space is huge!
— Many possible equivalent trees
— Many implementations for each operator

— Many access paths for each relation
 File scan or index + matching selection condition

« Cannot consider ALL plans
— Heuristics: only partial plans with “low” cost
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Outline

« Search space

 Algorithms for enumerating query plans

» Estimating the cost of a query plan
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Key Decisions

* When selecting a plan, some of the
most important decisions include:

— Logical plan
* Which algebraic laws do we apply, and in which
context(s) ?
« What logical plans do we consider (left-deep,
bushy ?)
— Physical plan
* What join algorithms to use?
« What access paths to use (file scan or index)?s



Optimizers

* Heuristic-based optimizers:

— Apply greedily rules that always improve
» Typically: push selections down

— Very limited: no longer used today

« Cost-based optimizers

— Use a cost model to estimate the cost of
each plan

— Select the “cheapest” plan

CSEP544 - Spring 2009
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Representation of Partial
Plans

* Bottom-up optimization algorithms:

— A partial plan is an algebra tree that
computes only part of the query

* Top-down optimization algorithms:

— A partial plan is an algebra tree whose
leaves are either base relations, or queries
(without a plan yet)
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Examples of Partial Plans

R(A,B) SELECT *
S(B,C) FROMR,S, T
T(C,D) WHERE R.B=S.B and S.C=T.C and R.A<40

Bottom-up plans / 2 \
/™ /7N
S T R R S R

R
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Examples of Partial Plans

R(A,B)
S(B,C)
T(C,D)

Top-down plans

[

SELECT *

FROMR, S

WHERE R.B=S.B
and R.A<40

T

SELECT *
FROMR, S, T
WHERE R.B=S.B and S.C=T.C and R.A<40

/ N \ O <40
X
/ \ T SELECTRA, T.D
FROMR, S, T
S

WHERE R.B=S.B
and S.C=T.C

SELECT *
FROM R
WHERE R.A<40 35




Plan Enumeration Algorithms

* Dynamic programming
— Classical algorithm [1979]
— Limited to joins: join reordering algorithm
— Bottom-up
* Rule-based algorithm
— Database of rules (=algebraic laws)
— Usually: dynamic programming

— Usually: top-down
CSEP544 - Spring 2009
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Dynamic Programming

Originally proposed in System R [1979]
* Only handles single block queries:

SELECT list
FROM RI1,...,Rn
WHERE cond; AND cond, AND . ..AND cond,

* Heuristics: selections down, projections up
« Dynamic programming: join reordering

CSEP544 - Spring 2009
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Join Trees

R1TXR2X.... XRn

Join tree: / \
R3/ \R1 / \

A plan = a join tree
A partial plan = a subtree of a join tree

CSEP544 - Spring 2009
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Types of Join Trees

» Left deep:

\R4

<]
/
AN
/N\ R2
> R5
N\
R3 R1

CSEP544 - Spring 2009
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Types of Join Trees

* Bushy:

— Y
VAVNVAN
R

CSEP544 - Spring 2009
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Types of Join Trees

* Right deep:
Za
<]
s i
T

>
R5 /N
R2 R4
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Dynamic Programming

Join ordering:

* Given:aquery RT X R2X...XRn
* Find optimal order

* Assume we have a function cost() that
gives us the cost of every join tree

CSEP544 - Spring 2009
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Dynamic Programming

* For each subquery Q &{R1, ..., Rn}
compute the following:

— Size(Q) = the estimated size of Q
— Plan(Q) = a best plan for Q
— Cost(Q) = the estimated cost of that plan

CSEP544 - Spring 2009
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Dynamic Programming

» Step 1: For each {R} do:
- Size({R}) = B(R)
~ Plan({R}) = R
— Cost({Ri}) = (cost of scanning R)

CSEP544 - Spring 2009
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Dynamic Programming

« Step 2: Foreach Q &{R,, ..., R} of
cardinality i1 do:
— Size(Q) = estimate it recursively

— For every pair of subqueries Q’, Q”
s.t.Q=Q UQ"
compute cost(Plan(Q’) X Plan(Q”))
* Cost(Q) = the smallest such cost
* Plan(Q) = the corresponding plan

CSEP544 - Spring 2009
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Dynamic Programming

» Step 3: Return Plan({R,, ..., R.})

CSEP544 - Spring 2009
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Example

To illustrate, we will make the following
simplifications:
» Cost(P,xP,)=_Cost(P,) + Cost(P,) +
size(intermediate result(s))

— Size(intermediate result(s)) =
If P, = ajoin, then the size of the intermediate
result is size(P,), otherwise the size is 0
Similarly for P,

e Costofascan=0

CSEP544 - Spring 2009
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Example

c RXSXTNXU
* Number of tuples: 2000, 5000, 3000, 1000
« Size estimation: T(A x B) = 0.01*T(A)*T(B)

CSEP544 - Spring 2009
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Subquery

Size

Cost

Plan

RS

RT

RU

ST

SU

TU

RST

RSU

RTU

STU

RSTU
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Subquery Size Cost Plan
RS 100k 0 RS
RT 60k 0 RT
RU 20k 0 RU
ST 150k 0 ST
SU 50k 0 SU
TU 30k 0 TU

RST 3M 60k (RT)S
RSU IM 20k (RU)S
RTU 0.6M 20k (RU)T
STU 1.5M 30k (TU)S
RSTU 30M 60k+50k=110k (RT)(SU)
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Reducing the Search Space

« Left-linear trees v.s. Bushy trees
« Trees without cartesian product
Example: R(A,B) X S(B,C) X T(C,D)

Plan: (R(A,B) X T(C,D)) X S(B,C) has a cartesian product
— most query optimizers will not consider it
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Dynamic Programming:
Summary

* Handles only join queries:
— Selections are pushed down (i.e. early)
— Projections are pulled up (i.e. late)

* Takes exponential time in general, BUT:
— Left linear joins may reduce time
— Non-cartesian products may reduce time further

CSEP544 - Spring 2009
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Rule-Based Optimizers

Extensible collection of rules
Rule = Algebraic law with a direction

Algorithm for firing these rules

Generate many alternative plans, in some
order

Prune by cost

Volcano (later SQL Sever)
Starburst (later DB2)

53



Completing the
Physical Query Plan

» Choose algorithm for each operator
— How much memory do we have ?
— Are the input operand(s) sorted ?

» Access path selection for base tables

 Decide for each intermediate result:
— To materialize
— To pipeline

CSEP544 - Spring 2009
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Access Path Selection

* Access path: a way to retrieve tuples from a table

— Afile scan
— An index plus a matching selection condition

Index matches selection condition if it can be used to
retrieve just tuples that satisfy the condition

— Example: Supplier(sid,sname,scity,sstate)

— B+-tree index on (scity,sstate)

* matches scity='Seattle’
* does not match sid=3, does not match sstate="WA’

CSEP544 - Spring 2009
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Access Path Selection

Supplier(sid,sname,scity,sstate)

Selection condition: sid > 300 A scity="Seattle’
Indexes: B+-tree on sid and B+-tree on scity
Which access path should we use?

We should pick the most selective access path
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Access Path Selectivity

* Access path selectivity is the number of pages
retrieved if we use this access path
— Most selective retrieves fewest pages

* As we saw earlier, for equality predicates
— Selection on equality: o,_,(R)
— V(R, a) = # of distinct values of attribute a
— 1/V(R,a) is thus the reduction factor
— Clustered index on a: cost B(R)/V(R,a)
— Unclustered index on a: cost T(R)/V(R,a)
— (we are ignoring I/O cost of index pages for simplicity)

CSEP544 - Spring 2009
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Materialize Intermediate
Results Between Operators

@shTable < S \

repeat read(R, x)

y < join(HashTable, x)
/ X\ write(V1, y)
HashTable < T

repeat read(V1,y)

z < join(HashTable, y)
/ \ write(V2, z)
HashTable < U

repeat read(V2, z)
u < join(HashTable, z)

/ >\ \\ write(Answer, u) /
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Materialize Intermediate
Results Between Operators

Question in class
Given B(R), B(S), B(T), B(U)
« What is the total cost of the plan ?

— Cost =

 How much main memory do we need ?
— M=

CSEP544 - Spring 2009
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Pipeline Between Operators

/HashTabIe1 &S \
HashTable2 € T
HashTable3 < U

Q repeat read(R, x)
y < join(HashTable1, x)

z < join(HashTable2, y)
u < join(HashTable3, z)
write(Answer, u) /

\
/K
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Pipeline Between Operators

Question in class
Given B(R), B(S), B(T), B(U)
« What is the total cost of the plan ?

— Cost =

 How much main memory do we need ?
— M=

CSEP544 - Spring 2009
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Pipeline in Bushy Trees

A
VX 7

/Y ’///\
S T | X Y
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Example

* Logical plan is:

/ \
K blocks U(y.2)
/ \ 10,000 blocks

X,Y)
5, OOO blocks 10, OOO bIocks

* Main memory M = 101 buffers

CSEP544 - Spring 2009
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Example

M =101

/ \
K blocks U(y.2)
/ \ 10,000 blocks

X,Y)
5, OOO blocks 10, OOO blocks

Naive evaluation:
« 2 partitioned hash-joins
« Cost 3B(R) + 3B(S) + 4k + 3B(U) = 75000 + 4k

CSEP544 - Spring 2009
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Example

M =101

/ \
K blocks U(y.2)
/ \ 10,000 blocks

(X,y)
5, OOO blocks 10, OOO blocks

Smarter:

Step 1: hash R on x into 100 buckets, each of 50 blocks; to disk
Step 2: hash S on x into 100 buckets; to disk

Step 3: read each R, in memory (50 buffer) join with S, (1 buffer); hash
result on y into 50 buckets (50 buffers) -- here we pipeline

Cost so far: 3B(R) + 3B(S) 65



Example

M =101

/ \
K blocks U(y.2)
/ \ 10,000 blocks

9, OOO blocks 10,000 bl)ocks
Continuing:
 How large are the 50 buckets ony ? Answer: k/50.
« If k <= 50 then keep all 50 buckets in Step 3 in memory, then:
« Step 4: read U from disk, hash on y and join with memory

* Total cost: 3B(R) + 3B(S) + B(U) = 55,000 66



Example

M =101

/ \
K blocks U(y.2)
/ \ 10,000 blocks

(X,y)
5, OOO blocks 10, OOO blocks

Continuing:

If 50 < k <= 5000 then send the 50 buckets in Step 3 to disk
— Each bucket has size k/50 <= 100

Step 4: partition U into 50 buckets
Step 5: read each partition and join in memory
Total cost: 3B(R) + 3B(S) + 2k + 3B(U) = 75,000 + 2k

67



Example

M =101

/ \
K blocks U(y.2)
/ \ 10,000 blocks

R(w, X,Y)
Continuing: 5 oo blocks 10, ooo blocks

. If k > 5000 then materialize instead of pipeline
« 2 partitioned hash-joins
« Cost 3B(R) + 3B(S) + 4k + 3B(U) = 75000 + 4k
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Outline

« Search space
 Algorithms for enumerating query plans

» Estimating the cost of a query plan
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Computing the Cost of a Plan

« Collect statistical summaries of stored data
« Estimate size in a bottom-up fashion

« Estimate cost by using the estimated size
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Statistics on Base Data

* Collected information for each relation
— Number of tuples (cardinality)
— Indexes, number of keys in the index
— Number of physical pages, clustering info

— Statistical information on attributes
 Min value, max value, number distinct values
» Histograms

— Correlations between columns (hard)
» Collection approach: periodic, using sampling
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Size Estimation

Estimating the size of a projection

» Easy: T(I1 (R)) = T(R)

* This is because a projection doesn't
eliminate duplicates

CSEP544 - Spring 2009
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Size Estimation for Selection

Estimating the size of a selection
* S= OA=C(R)
— T(S) can be anything from 0 to T(R) - V(R,A) + 1
— Estimate: T(S) = T(R)/V(R,A)
— When V(R,A) is not available, estimate T(S) = T(R)/10

*+ S= OA<C(R)
— T(S) can be anything from 0 to T(R)
— Estimate: T(S) = (c - Low(R, A))/(High(R,A) - Low(R,A))T(R)
— When Low, High unavailable, estimate T(S) = T(R)/3
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Size Estimation for Selection

What if we have an index on multiple attributes?
« Example selection S=0,_,1 , ,= 2(R)

How to compute the selectivity?

« Assume attributes are independent
+ T(S)=T(R) 7 (V(R,a)* V(R,b))

CSEP544 - Spring 2009
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Example

Selection condition: sid > 300 A scity=‘Seattle’
— Index I1: B+-tree on sid clustered
— Index 12: B+-tree on scity unclustered

Let's assume

— V(Supplier,scity) = 20

— Max(Supplier, sid) = 1000, Min(Supplier,sid)=1
— B(Supplier) = 100, T(Supplier) = 1000

Cost I1: B(R) * (Max-v)/(Max-Min) = 100*700/999 ~ 70
Cost 12: T(R) * 1/V(Supplier,scity) = 1000/20 = 50

CSEP544 - Spring 2009
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Size Estimation for Join

Estimating the size of a natural join, R X, S

* When the set of A values are disjoint,
then TR X, S)=0

« When A is a key in S and a foreign key in
R, then T(R X, S) = T(R)

 When A has a unique value, the same in
Rand S, then T(R X, S) = T(R) T(S)

Estimation seems hopelessly hard ! 76




Size Estimation for Join

Assumptions:

« Containment of values: if V(R,A) <= V(S,A), then the
set of A values of R is included in the set of A values
of S

— Note: this indeed holds when A is a foreign key in R, and a
key in S

* Preservation of values: for any other attribute B,
V(R X, S, B) =V(R, B) (orV(S, B))
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Size Estimation for Join

Assume V(R,A) <= V(S A)

 Then each tuple tin R joins some tuple(s) in S
— How many ?

— On average T(S)/V(S,A)
— t will contribute T(S)/V(S,A) tuples in R X, S
» Hence T(R M, S) = T(R) T(S)/ V(S,A)

In general: T(R X, S) = T(R) T(S) / max(V(R,A),V(S,A))

CSEP544 - Spring 2009
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Size Estimation for Join

Example:

« T(R)=10000, T(S)=20000
* V(R,A) =100, V(S,A) =200
* How largeis R X, S ?

Answer: T(R X, S) = 10000 20000/200 =
1M
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Size Estimation for Join

Joins on more than one attribute:
« T(RX AB S) =

T(R) T(S)/(max(V(R,A),V(S,A))"max(V(R,B),V(S,B)))
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Computing Cost of an
Operator

* The cost of executing an operator
depends

— On the operator implementation
— On the input data

* We learned how to compute this in the

previous lecture, so we do not repeat it
here

CSEP544 - Spring 2009
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Histograms

» Statistics on data maintained by the
RDBMS

* Makes size estimation much more
accurate (hence, cost estimations are
more accurate)

CSEP544 - Spring 2009
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Histograms

Employee(ssn, name, salary, phone)

* Maintain a histogram on salary:

Salary:

0..20k

20k..40k

40k..60k

60k..80k

80k..100k

> 100k

Tuples

200

800

5000

12000

6500

500

« T(Employee) = 25000, but now we know the
distribution
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Employee(ssn, name, salary, phone)

. Eqwidth

* Eqgdepth

Histograms

Salary | 0.20 | 20.40 | 40..60 | 60..80 | 80..100
Tuples 2 104 9739 152 3
Salary | 0.44 | 44.48 | 48.50 | 50..56 |55..100
Tuples | 1800 2000 2100 2200 1900
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Example

Employee(ssn, name, salary, phone)

Salary | 0.44 | 44.48 | 48.50 | 50..56 |55..100
Tuples | 1800 2000 2100 2200 1900

Estimate the size of: S = O,,1y>-46 and satary<=70(EMployee)
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Example

Employee(ssn, name, salary, phone)

Salary | 0.44 | 44.48 | 48.50 | 50..56 |55..100
Tuples | 1800 2000 2100 2200 1900

Estimate the size of: S = O,,1y>-46 and satary<=70(EMployee)

Answer: T(S) =2000*3/4 + 2100 + 2200 + 1900*16/46
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Summary of Query
Optimization

* Three parts:
— search space, algorithms, size/cost estimation

* This lecture discussed some of the issues

— Lecture has more material than either
textbook, however:

— You won't be able to write an optimizer
tomorrow !

— There is no good text on rule-based optimizer
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