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Announcements 

•  Homework 5 is due next week 
–  How is it going? 

•  Homework 6 (last) to be posted soon 
–  Rather short assignment, but start early in case you 

have questions 

•  Final will be take-home 
–  Posted on June 2nd, after last lecture 
–  Due by June 4th; electronic turn-in 2 



Where We Are 

•  We are learning how a DBMS executes a query 
•  What we learned so far 

–  How data is stored and indexed: lecture 6 
–  Logical query plans and physical operators: lecture 7 

•  Today 
–  How to select logical & physical query plans 
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Note: Today’s material contains more 
than Chapter 15 in the textbook ! 
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Query Optimization Goal 

•  For a query  
– There exists many logical and physical query 

plans 
– Query optimizer needs to pick a good one 
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Query Optimization Algorithm 

•  Enumerate alternative plans 

•  Compute estimated cost of each plan 
– Compute number of I/Os 
– Compute CPU cost 

•  Choose plan with lowest cost 
– This is called cost-based optimization 
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Example 

•  Some statistics 
–  T(Supplier) = 1000 records 
–  B(Supplier) = 100 pages 
–  T(Supplies) = 10,000 records 
–  B(Supplies) = 100 pages 
–  V(Supplier,scity) = 20, V(Supplier,state) = 10 
–  V(Supplies,pno) = 2,500 
–  Both relations are clustered 

•  M = 10 

Suppliers(sid, sname, scity, sstate) 
Supplies(sid, pno, quantity) 
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Physical Query Plan 1 

Suppliers Supplies 

sid = sid 

σ scity=‘Seattle’ ∧sstate=‘WA’ ∧ pno=2 

π sname 

(File scan) (File scan) 

(Block-nested loop) 

(On the fly) 

(On the fly) Selection and project on-the-fly 
-> No additional cost. 

Total cost of plan is thus cost of join: 
= B(Supplier)+B(Supplier)*B(Supplies)/M 
= 100 + 10 * 100 
= 1,100 I/Os 
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Suppliers Supplies 

sid = sid 

(1) σ scity=‘Seattle’ ∧sstate=‘WA’ 

π sname 

(File scan) (File scan) 

(Sort-merge join) 

(Scan 
write to T2) 

(On the fly) 

(2) σ pno=2 

(Scan 
 write to T1) 

Physical Query Plan 2 
Total cost 
= 100 + 100 * 1/20 * 1/10 (1) 
+ 100 + 100 * 1/2500 (2) 
+ 2 (3) 
+ 0 (4) 
Total cost  ≈  204 I/Os 

(3) 

(4) 



Supplies Suppliers 

sid = sid 

σ scity=‘Seattle’ ∧sstate=‘WA’ 

π sname 

(Index nested loop) 

(Index lookup on sid) 
Doesn’t matter if clustered or not 

(On the fly) 

(1) σ pno=2 

(Index lookup on pno ) 
Assume: clustered 

Physical Query Plan 3 
Total cost 
= 1 (1) 
+ 4 (2) 
+ 0 (3) 
+ 0 (3) 
Total cost  ≈  5 I/Os 

(Use index) 

(2) 

(3) 

(4) 

(On the fly) 

4 tuples 
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Simplifications 

•  In the previous examples, we assumed 
that all index pages were in memory 

•  When this is not the case, we need to 
add the cost of fetching index pages 
from disk 
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Lessons 

•  Need to consider several physical plan 
– even for one, simple logical plan 

•  No magic “best” plan: depends on the 
data 

•  In order to make the right choice 
– need to have statistics over the data 
–  the B’s, the T’s, the V’s 

CSEP544 - Spring 2009 



CSEP544 - Spring 2009 12 

Outline 

•  Search space 

•  Algorithm for enumerating query plans 

•  Estimating the cost of a query plan 
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Relational Algebra 
Equivalences 

•  Selections 
–  Commutative: σc1(σc2(R)) same as σc2(σc1(R)) 
–  Cascading:  σc1∧c2(R) same as σc2(σc1(R)) 

•  Projections 
•  Joins 

–  Commutative : R ⋈ S same as S ⋈ R  
–  Associative: R ⋈ (S ⋈ T) same as (R ⋈ S) ⋈ T  



Left-Deep Plans and 
Bushy Plans 
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R3 R1 R2 R4 R3 R1 

R4 

R2 

Left-deep plan Bushy plan 
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Example: 
Simple Algebraic Laws 

•  Commutative and Associative Laws 
R ∪ S = S ∪ R,  R ∪ (S ∪ T) = (R ∪ S) ∪ T 
R ⨝ S = S ⨝ R,  R ⨝ (S ⨝ T) = (R ⨝ S) ⨝ T 
R ⨝ S = S ⨝ R,  R ⨝ (S ⨝ T) = (R ⨝ S) ⨝ T 

•  Distributive Laws 
R ⨝ (S ∪ T)  =  (R ⨝ S) ∪ (R ⨝ T) 
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Example: 
Simple Algebraic Laws 

•  Laws involving selection: 
 σ C AND C’(R) = σ C(σ C’(R)) = σ C(R) ∩ σ C’(R) 
 σ C OR C’(R) = σ C(R) ∪ σ C’(R) 
 σ C (R ⨝ S) = σ C (R) ⨝ S  

•  When C involves only attributes of R 
 σ C (R – S) = σ C (R) – S 
 σ C (R ∪ S) = σ C (R) ∪ σ C (S) 
 σ C (R ⨝ S)  = σ C (R) ⨝ S 

CSEP544 - Spring 2009 
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Example: 
Simple Algebraic Laws 

•  Example:  R(A, B, C, D), S(E, F, G) 
 σ F=3 (R ⨝ D=E S) =                                     ? 
 σ A=5 AND G=9 (R ⨝ D=E S) =                         ? 
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Example: 
Simple Algebraic Laws 

•  Laws involving projections 
ΠM(R ⨝ S) = ΠM(ΠP(R) ⨝ ΠQ(S)) 
ΠM(ΠN(R)) = ΠM,N(R) 

•  Example R(A,B,C,D), S(E, F, G) 
ΠA,B,G(R ⨝ D=E S) = Π ? (Π?(R) ⨝ D=E Π?(S))  
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Example: 
Simple Algebraic Laws 

•  Laws involving grouping and aggregation: 
δ(γA, agg(B)(R)) = γA, agg(B)(R) 
γA, agg(B)(δ(R)) = γA, agg(B)(R) if agg is “duplicate insensitive” 

•  Which of the following are “duplicate insensitive” ? 
sum, count, avg, min, max 

γA, agg(D)(R(A,B) ⨝ B=C S(C,D)) =   
γA, agg(D)(R(A,B) ⨝ B=C (γC, agg(D)S(C,D))) 
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Laws Involving Constratins 
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Product(pid, pname, price, cid) 
Company(cid, cname, city, state) 

Foreign key 

Πpid, price(Product ⨝cid=cid Company) = Πpid, price(Product) 

Need a second constraint for this law to hold. Which one ? 
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Laws with Semijoins 

Recall the definition of a semijoin: 

•  R ⋉ S  = Π A1,…,An (R  ⨝  S) 

•  Where the schemas are: 
–  Input: R(A1,…An),  S(B1,…,Bm) 
– Output: T(A1,…,An) 

CSEP544 - Spring 2009 
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Laws with Semijoins 
Semijoins: a bit of theory (see Database Theory, AHV) 
•  Given a query: 

•  A semijoin reducer for Q is  

such that the query is equivalent to: 

•  A full reducer is such that no dangling tuples remain 

Q :- Π (σ (Rk1  ⨝ Rk2 ⨝ . . . ⨝ Rkn )) 

Ri1 := Ri1 ⋉  Rj1 
Ri2 := Ri2 ⋉  Rj2 

. . . . . 
Rip := Rip ⋉  Rjp 
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Q :- Π (σ (R1  ⨝ R2 ⨝ . . . ⨝ Rn )) 
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Laws with Semijoins 

•  Example: 

•  A full reducer is: 
Q(A,E) :- ΠA,E(R1(A,B) ⨝ R2(B,C) ⨝ R3(C,D,E)) 

R2’(B,C) := R2(B,C) ⋉ R1(A,B) 
R3’(C,D,E) := R3(C,D,E) ⋉ R2(B,C) 
R2’’(B,C) := R2’(B,C) ⋉ R3’(C,D,E) 
R1’(A,B) := R1(A,B) ⋉ R2’’(B,C) 

The new tables have only the tuples necessary to compute Q(E) 

Q(A,E) :- ΠA,E(R1’(A,B) ⨝ R2’’(B,C) ⨝ R3’(C,D,E)) 
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Laws with Semijoins 
•  Example:  

•  Doesn’t have a full reducer (we can reduce forever) 

Theorem a query has a full reducer iff it is “acyclic” 
[Database Theory, by Abiteboul, Hull, Vianu] 

Q(E) :- R1(A,B) ⨝ R2(B,C) ⨝ R3(A,C, E) 
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Example with Semijoins 
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CREATE VIEW DepAvgSal As ( 
 SELECT E.did, Avg(E.Sal) AS avgsal 
 FROM Emp E 
 GROUP BY E.did) 

[Chaudhuri’98] Emp(eid, ename, sal, did) 
Dept(did, dname, budget) 
DeptAvgSal(did, avgsal) /* view */ 

SELECT E.eid, E.sal 
FROM Emp E, Dept D, DepAvgSal V 
WHERE E.did = D.did AND E.did = V.did 

 AND E.age < 30 AND D.budget > 100k 
 AND E.sal > V.avgsal 

View: 

Query: 

Goal: compute only the necessary part of the view 



Example with Semijoins 
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CREATE VIEW LimitedAvgSal As ( 
 SELECT E.did, Avg(E.Sal) AS avgsal 
 FROM Emp E, Dept D 

             WHERE E.did = D.did AND D.buget > 100k 
 GROUP BY E.did) 

[Chaudhuri’98] 

New view 
uses a reducer: 

Emp(eid, ename, sal, did) 
Dept(did, dname, budget) 
DeptAvgSal(did, avgsal) /* view */ 

SELECT E.eid, E.sal 
FROM Emp E, Dept D, LimitedAvgSal V 
WHERE E.did = D.did AND E.did = V.did 

 AND E.age < 30 AND D.budget > 100k 
 AND E.sal > V.avgsal 

New query: 



Example with Semijoins 
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CREATE VIEW PartialResult AS 
 (SELECT E.eid, E.sal, E.did 
 FROM Emp E, Dept D 
 WHERE E.did=D.did AND E.age < 30 
 AND D.budget > 100k) 

CREATE VIEW Filter AS 
 (SELECT DISTINCT P.did FROM PartialResult P) 

CREATE VIEW LimitedAvgSal AS 
 (SELECT E.did, Avg(E.Sal) AS avgsal 
 FROM Emp E, Filter F 
 WHERE E.did = F.did GROUP BY E.did) 

[Chaudhuri’98] 

Full reducer: 

Emp(eid, ename, sal, did) 
Dept(did, dname, budget) 
DeptAvgSal(did, avgsal) /* view */ 
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Example with Semijoins 

SELECT P.eid, P.sal 
FROM PartialResult P, LimitedDepAvgSal V 
WHERE P.did = V.did AND P.sal > V.avgsal 
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New query: 



Search Space Challenges 

•  Search space is huge! 
– Many possible equivalent trees 
– Many implementations for each operator 
– Many access paths for each relation 

•  File scan or index + matching selection condition 

•  Cannot consider ALL plans 
– Heuristics: only partial plans with “low” cost 
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Outline 

•  Search space 

•  Algorithms for enumerating query plans 

•  Estimating the cost of a query plan 



Key Decisions 

•  When selecting a plan, some of the 
most important decisions include: 
– Logical plan  

•  Which algebraic laws do we apply, and in which 
context(s) ? 

•  What logical plans do we consider (left-deep, 
bushy ?) 

– Physical plan 
•  What join algorithms to use? 
•  What access paths to use (file scan or index)? 31 



Optimizers 

•  Heuristic-based optimizers: 
– Apply greedily rules that always improve 

•  Typically: push selections down 
– Very limited: no longer used today 

•  Cost-based optimizers 
– Use a cost model to estimate the cost of 

each plan 
– Select the “cheapest” plan 
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Representation of Partial 
Plans 

•  Bottom-up optimization algorithms: 
– A partial plan is an algebra tree that 

computes only part of the query 

•  Top-down optimization algorithms: 
– A partial plan is an algebra tree whose 

leaves are either base relations, or queries 
(without a plan yet) 
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Examples of Partial Plans 

34 

SELECT * 
FROM R, S, T 
WHERE R.B=S.B and S.C=T.C and R.A<40 

R(A,B) 
S(B,C) 
T(C,D) 

⨝ σA<40 

Bottom-up plans 

R S T 

⨝ 

S σA<40 

R 

⨝ 

R S 

⨝ 

S σA<40 

R 

⨝ 

T 

….. 



Examples of Partial Plans 
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SELECT * 
FROM R, S, T 
WHERE R.B=S.B and S.C=T.C and R.A<40 

R(A,B) 
S(B,C) 
T(C,D) 

⨝ σA<40 

Top-down plans 

T 
⨝ 

S 

⨝ 

T 

….. 

SELECT R.A, T.D 
FROM R, S, T 
WHERE R.B=S.B 
        and S.C=T.C 

SELECT * 
FROM R, S 
WHERE R.B=S.B 
        and R.A < 40 SELECT * 

FROM R 
WHERE R.A < 40 



Plan Enumeration Algorithms 

•  Dynamic programming 
– Classical algorithm [1979] 
– Limited to joins: join reordering algorithm 
– Bottom-up 

•  Rule-based algorithm 
– Database of rules (=algebraic laws) 
– Usually: dynamic programming 
– Usually: top-down 
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Dynamic Programming 
Originally proposed in System R [1979] 
•  Only handles single block queries: 

•  Heuristics: selections down, projections up 
•  Dynamic programming: join reordering 

SELECT list�
FROM    R1, …, Rn�
WHERE cond1 AND cond2 AND . . . AND condk
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Join Trees 
•  R1 ⨝ R2 ⨝ …. ⨝ Rn 
•  Join tree: 

•  A plan = a join tree 
•  A partial plan = a subtree of a join tree 

R3 R1 R2 R4 
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Types of Join Trees 

•  Left deep: 

R3 R1 

R5 

R2 

R4 
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Types of Join Trees 

•  Bushy: 

R3 

R1 

R2 R4 

R5 
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Types of Join Trees 

•  Right deep: 

R3 

R1 
R5 

R2 R4 
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Dynamic Programming 

Join ordering: 
•  Given: a query  R1 ⨝ R2 ⨝ . . . ⨝ Rn 
•  Find optimal order 

•  Assume we have a function cost() that 
gives us the cost of every join tree 

CSEP544 - Spring 2009 
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Dynamic Programming 

•  For each subquery Q ⊆{R1, …, Rn} 
compute the following: 
– Size(Q) = the estimated size of Q 
– Plan(Q) = a best plan for Q 
– Cost(Q) = the estimated cost of that plan 
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Dynamic Programming 

•  Step 1: For each {Ri} do: 
– Size({Ri}) = B(Ri) 
– Plan({Ri}) = Ri 
– Cost({Ri}) = (cost of scanning Ri) 
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Dynamic Programming 

•  Step 2: For each Q ⊆{R1, …, Rn} of 
cardinality i do: 
– Size(Q) = estimate it recursively 
– For every pair of subqueries Q’, Q’’  

s.t. Q = Q’ ∪ Q’’ 
compute cost(Plan(Q’) ⨝ Plan(Q’’)) 
•  Cost(Q) = the smallest such cost 
•  Plan(Q) = the corresponding plan 
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Dynamic Programming 

•  Step 3: Return Plan({R1, …, Rn}) 

CSEP544 - Spring 2009 
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Example 

To illustrate, we will make the following 
simplifications: 

•  Cost(P1 ⨝ P2) = Cost(P1) + Cost(P2) + 
                       size(intermediate result(s)) 
–  Size(intermediate result(s)) =  

If P1 = a join, then the size of the intermediate 
result is size(P1), otherwise the size is 0 
Similarly for P2 

•  Cost of a scan = 0 
CSEP544 - Spring 2009 
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Example 

•  R ⨝ S ⨝ T ⨝ U 
•  Number of tuples: 2000, 5000, 3000, 1000 
•  Size estimation: T(A ⨝ B) = 0.01*T(A)*T(B) 

CSEP544 - Spring 2009 
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Subquery Size Cost Plan

RS

RT

RU

ST

SU

TU

RST

RSU

RTU

STU

RSTU
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Subquery Size Cost Plan

RS 100k 0 RS

RT 60k 0 RT

RU 20k 0 RU

ST 150k 0 ST

SU 50k 0 SU

TU 30k 0 TU

RST 3M 60k (RT)S

RSU 1M 20k (RU)S

RTU 0.6M 20k (RU)T

STU 1.5M 30k (TU)S

RSTU 30M 60k+50k=110k (RT)(SU)
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Reducing the Search Space  
•  Left-linear trees v.s. Bushy trees 

•  Trees without cartesian product 

Example:  R(A,B) ⨝ S(B,C) ⨝ T(C,D) 

Plan: (R(A,B) ⨝ T(C,D)) ⨝ S(B,C) has a cartesian product 
– most query optimizers will not consider it 

CSEP544 - Spring 2009 
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Dynamic Programming: 
Summary 

•  Handles only join queries: 
–  Selections are pushed down (i.e. early) 
–  Projections are pulled up (i.e. late) 

•  Takes exponential time in general, BUT: 
–  Left linear joins may reduce time 
–  Non-cartesian products may reduce time further 

CSEP544 - Spring 2009 
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Rule-Based Optimizers 

•  Extensible collection of rules 
Rule = Algebraic law with a direction 

•  Algorithm for firing these rules 
Generate many alternative plans, in some 

order 
Prune by cost 

•  Volcano (later SQL Sever) 
•  Starburst (later DB2) 
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Completing the  
Physical Query Plan 

•  Choose algorithm for each operator 
– How much memory do we have ? 
– Are the input operand(s) sorted ? 

•  Access path selection for base tables 
•  Decide for each intermediate result: 

– To materialize 
– To pipeline 

CSEP544 - Spring 2009 
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Access Path Selection 
•  Access path: a way to retrieve tuples from a table 

–  A file scan 
–  An index plus a matching selection condition 

•  Index matches selection condition if it can be used to 
retrieve just tuples that satisfy the condition 
–  Example: Supplier(sid,sname,scity,sstate) 
–  B+-tree index on (scity,sstate)  

•  matches scity=‘Seattle’ 
•  does not match sid=3, does not match sstate=‘WA’ 
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Access Path Selection 
•  Supplier(sid,sname,scity,sstate) 

•  Selection condition: sid > 300 ∧ scity=‘Seattle’ 

•  Indexes: B+-tree on sid and B+-tree on scity 

•  Which access path should we use? 

•  We should pick the most selective access path 
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Access Path Selectivity 
•  Access path selectivity is the number of pages 

retrieved if we use this access path 
–  Most selective retrieves fewest pages 

•  As we saw earlier, for equality predicates 
–  Selection on equality: σa=v(R) 
–  V(R, a) = # of distinct values of attribute a 
–  1/V(R,a) is thus the reduction factor 
–  Clustered index on a:  cost B(R)/V(R,a) 
–  Unclustered index on a: cost T(R)/V(R,a) 
–  (we are ignoring I/O cost of index pages for simplicity) 
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Materialize Intermediate 
Results Between Operators 

⋈ 

⋈ 

⋈ T 

R S 

U 

HashTable  S 
repeat  read(R, x) 

 y  join(HashTable, x) 
 write(V1, y) 

HashTable  T 
repeat  read(V1, y) 

 z  join(HashTable, y) 
 write(V2, z) 

HashTable  U 
repeat  read(V2, z) 

 u  join(HashTable, z) 
 write(Answer, u) 

V1 

V2 

CSEP544 - Spring 2009 
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Materialize Intermediate 
Results Between Operators 

Question in class 

Given B(R), B(S), B(T), B(U) 

•  What is the total cost of the plan ? 
–  Cost =  

•  How much main memory do we need ? 
–  M =  
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60

Pipeline Between Operators 

⋈ 

⋈ 

⋈ T 

R S 

U 

HashTable1  S 
HashTable2  T 
HashTable3  U 
repeat  read(R, x) 

 y  join(HashTable1, x)  
 z  join(HashTable2, y) 
 u  join(HashTable3, z) 
 write(Answer, u) 
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Pipeline Between Operators 
Question in class 

Given B(R), B(S), B(T), B(U) 

•  What is the total cost of the plan ? 
–  Cost =  

•  How much main memory do we need ? 
–  M =  

CSEP544 - Spring 2009 
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Pipeline in Bushy Trees 

⋈ 

⋈ 

⋈ 

X R S 

⋈ 

⋈ Z

Y 

⋈ 

V 

T 

⋈ 

I 
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Example 

•  Logical plan is: 

•  Main memory M = 101 buffers 

R(w,x) 
5,000 blocks 

S(x,y) 
10,000 blocks 

U(y,z) 
10,000 blocks 

k blocks 

CSEP544 - Spring 2009 



64

Example 

Naïve evaluation:  
•  2 partitioned hash-joins 
•  Cost 3B(R) + 3B(S) + 4k + 3B(U) = 75000 + 4k 

R(w,x) 
5,000 blocks 

S(x,y) 
10,000 blocks 

U(y,z) 
10,000 blocks 

k blocks 

M = 101 

CSEP544 - Spring 2009 
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Example 

Smarter: 
•  Step 1: hash R on x into 100 buckets, each of 50 blocks; to disk 
•  Step 2: hash S on x into 100 buckets; to disk 
•  Step 3: read each Ri in memory (50 buffer) join with Si (1 buffer); hash 

result on y into 50 buckets (50 buffers)   -- here we pipeline 
•  Cost so far: 3B(R) + 3B(S) 

R(w,x) 
5,000 blocks 

S(x,y) 
10,000 blocks 

U(y,z) 
10,000 blocks 

k blocks 

M = 101 
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Example 

Continuing: 
•  How large are the 50 buckets on y ?  Answer: k/50. 
•  If k <= 50 then keep all 50 buckets in Step 3 in memory, then: 
•  Step 4: read U from disk, hash on y and join with memory 
•  Total cost: 3B(R) + 3B(S) + B(U) = 55,000 

R(w,x) 
5,000 blocks 

S(x,y) 
10,000 blocks 

U(y,z) 
10,000 blocks 

k blocks 

M = 101 
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Example 

Continuing: 
•  If 50 < k <= 5000 then send the 50 buckets in Step 3 to disk 

–  Each bucket has size k/50 <= 100 
•  Step 4: partition U into 50 buckets 
•  Step 5: read each partition and join in memory 
•  Total cost: 3B(R) + 3B(S) + 2k + 3B(U) = 75,000 + 2k 

R(w,x) 
5,000 blocks 

S(x,y) 
10,000 blocks 

U(y,z) 
10,000 blocks 

k blocks 

M = 101 
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Example 

Continuing: 
•  If k > 5000 then materialize instead of pipeline 
•  2 partitioned hash-joins 
•  Cost 3B(R) + 3B(S) + 4k + 3B(U) = 75000 + 4k 

R(w,x) 
5,000 blocks 

S(x,y) 
10,000 blocks 

U(y,z) 
10,000 blocks 

k blocks 

M = 101 
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Outline 

•  Search space 

•  Algorithms for enumerating query plans 

•  Estimating the cost of a query plan 



CSEP544 - Spring 2009 70 

Computing the Cost of a Plan 

•  Collect statistical summaries of stored data 

•  Estimate size in a bottom-up fashion 

•  Estimate cost by using the estimated size 
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Statistics on Base Data 

•  Collected information for each relation 
–  Number of tuples (cardinality) 
–  Indexes, number of keys in the index 
–  Number of physical pages, clustering info 
–  Statistical information on attributes 

•  Min value, max value, number distinct values 
•  Histograms 

–  Correlations between columns (hard) 

•  Collection approach: periodic, using sampling 
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Size Estimation 

Estimating the size of a projection 
•  Easy: T(ΠL(R)) = T(R) 
•  This is because a projection doesn’t 

eliminate duplicates 
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Size Estimation for Selection 
Estimating the size of a selection 
•  S = σA=c(R) 

–  T(S) can be anything from 0 to T(R) – V(R,A) + 1 
–  Estimate: T(S) = T(R)/V(R,A) 
–  When V(R,A) is not available, estimate T(S) = T(R)/10 

•  S = σA<c(R) 
–  T(S) can be anything from 0 to T(R) 
–  Estimate: T(S) = (c - Low(R, A))/(High(R,A) - Low(R,A))T(R) 
–  When Low, High unavailable, estimate T(S) = T(R)/3 
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Size Estimation for Selection 

What if we have an index on multiple attributes? 
•  Example selection S=σa=v1 ∧ b= v2(R)  

How to compute the selectivity? 
•  Assume attributes are independent 
•  T(S) = T(R)  /  (V(R,a) *  V(R,b)) 
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Example 
•  Selection condition: sid > 300 ∧ scity=‘Seattle’ 

–  Index I1: B+-tree on sid clustered 
–  Index I2: B+-tree on scity unclustered 

•  Let’s assume  
–  V(Supplier,scity) = 20 
–  Max(Supplier, sid) = 1000, Min(Supplier,sid)=1 
–  B(Supplier) = 100, T(Supplier) = 1000 

•  Cost I1: B(R) * (Max-v)/(Max-Min) = 100*700/999 ≈ 70 
•  Cost I2: T(R) * 1/V(Supplier,scity) = 1000/20 = 50 
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Size Estimation for Join 

Estimating the size of a natural join, R ⨝A S 
•  When the set of A values are disjoint, 

then T(R ⨝A S) = 0 
•  When A is a key in S and a foreign key in 

R, then T(R ⨝A S) = T(R) 
•  When A has a unique value, the same in 

R and S, then T(R ⨝A S) = T(R) T(S) 

Estimation seems hopelessly hard ! 
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Size Estimation for Join 
Assumptions: 
•  Containment of values: if V(R,A) <= V(S,A), then the 

set of A values of R is included in the set of A values 
of S 
–  Note: this indeed holds when A is a foreign key in R, and a 

key in S 

•  Preservation of values: for any other attribute B,  
V(R ⨝A S, B) = V(R, B)   (or V(S, B)) 
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Size Estimation for Join 
Assume V(R,A) <= V(S,A) 
•  Then each tuple t in R joins some tuple(s) in S 

–  How many ? 
–  On average T(S)/V(S,A) 
–  t will contribute T(S)/V(S,A) tuples in R ⨝A S 

•  Hence T(R ⨝A S) = T(R) T(S) / V(S,A) 

In general: T(R ⨝A S) = T(R) T(S) / max(V(R,A),V(S,A)) 
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Size Estimation for Join 

Example: 
•  T(R) = 10000,  T(S) = 20000 
•  V(R,A) = 100,  V(S,A) = 200 
•  How large is R ⨝A S  ? 

Answer: T(R ⨝A S) = 10000 20000/200 = 
1M 
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Size Estimation for Join 

Joins on more than one attribute: 
•  T(R ⨝A,B S) =  

T(R) T(S)/(max(V(R,A),V(S,A))*max(V(R,B),V(S,B))) 
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Computing Cost of an 
Operator 

•  The cost of executing an operator 
depends 
– On the operator implementation 
– On the input data 

•  We learned how to compute this in the 
previous lecture, so we do not repeat it 
here 
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Histograms 

•  Statistics on data maintained by the 
RDBMS 

•  Makes size estimation much more 
accurate (hence, cost estimations are 
more accurate) 
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Histograms 

•  Maintain a histogram on salary: 

•  T(Employee) = 25000, but now we know the 
distribution 

Salary: 0..20k 20k..40k 40k..60k 60k..80k 80k..100k > 100k

Tuples 200 800 5000 12000 6500 500
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Histograms 

•  Eqwidth 

•  Eqdepth 

Salary 0..20 20..40 40..60 60..80 80..100
Tuples 2 104 9739 152 3

Salary 0..44 44..48 48..50 50..56 55..100
Tuples 1800 2000 2100 2200 1900
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Example 
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Estimate the size of:  S = σsalary>=46 and salary<=70(Employee) 

Salary 0..44 44..48 48..50 50..56 55..100
Tuples 1800 2000 2100 2200 1900

Employee(ssn, name, salary, phone) 



Example 

CSEP544 - Spring 2009 86 

Estimate the size of:  S = σsalary>=46 and salary<=70(Employee) 

Salary 0..44 44..48 48..50 50..56 55..100
Tuples 1800 2000 2100 2200 1900

Employee(ssn, name, salary, phone) 

Answer: T(S) = 2000*3/4 + 2100 + 2200 + 1900*16/46 



Summary of Query 
Optimization 

•  Three parts: 
– search space, algorithms, size/cost estimation 

•  This lecture discussed some of the issues 
– Lecture has more material than either 

textbook, however: 
– You won’t be able to write an optimizer 

tomorrow ! 
– There is no good text on rule-based optimizer 
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