CSEP 544
Database Systems

Lecture 8: Overview of
Query Optimization
May 19, 2009

CSEP544 - Spring 2009

Announcements

« Homework 5 is due next week
— How is it going?

 Homework 6 (last) to be posted soon

— Rather short assignment, but start early in case you
have questions

 Final will be take-home
— Posted on June 2nd. after last lecture
— Due by June 4th; electronic turn-in 2

Where We Are

 We are learning how a DBMS executes a query

* What we learned so far
— How data is stored and indexed: lecture 6
— Logical query plans and physical operators: lecture 7

* Today

— How to select logical & physical query plans

Note: Today’s material contains more
than Chapter 15 in the textbook !

CSEP544 - Spring 2009 3

Query Optimization Goal

* For a query

— There exists many logical and physical query
plans

— Query optimizer needs to pick a good one

CSEP544 - Spring 2009 4

Query Optimization Algorithm

 Enumerate alternative plans

« Compute estimated cost of each plan

— Compute number of I/Os
— Compute CPU cost

» Choose plan with lowest cost

— This is called cost-based optimization
CSEP544 - Spring 2009

Example

Suppliers(sid, sname, scity, sstate)
Supplies(sid, pno, quantity)

« Some statistics
— T(Supplier) = 1000 records
— B(Supplier) = 100 pages
— T(Supplies) = 10,000 records
— B(Supplies) = 100 pages
— V(Supplier,scity) = 20, V(Supplier,state) = 10
— V(Supplies,pno) = 2,500
— Both relations are clustered

- M=10

CSE 444 - Spring 2009

Physical Query Plan 1

(On the fly) i

sname Selection and project on-the-fly
-> No additional cost.

(On the fly)
o

scity="Seattle’ nsstate="WA' A pno=2

Total cost of plan is thus cost of join:

(Block-nested loop)

] = B(Supplier)+B(Supplier)*B(Supplies)/M
sid = sid =100+ 10*100
/ Xmoo 1/0s
Suppliers Supplies
(File scan) (File scan)

CSEP544 - Spring 2009 7

Physical Query Plan 2

Total cost
(On the fly) T sname (4) =100 + 100 * 1/20 * 1/10 (1)

+ 100 + 100 * 1/2500 (2)

+2 (3)
(Sort-merge join) —~— (3) +0(4)
Sld sid Total cost = 204 1/0s

(Scan
write to T1) (Scan
(1) O scity="Seattle’ rnsstate="WA' (2) pnc\)N glte to T2

Suppliers Supplies

(File scan) (File scan)

CSEP544 - Spring 2009 8

Physical Query Plan 3

(Onthefly) 4) =

shame

Total cost
=1(1)
(On the fly) +4(2)
3) o scity="Seattle’ asstate="WA +0(3)
+ 0 (3)
Total cost = 51/0s
Sld sid - (Index nested loop)
(Use index) /tup'es
(1) Opno 2
Supplles Suppliers

(Index lookup on pno) (Index lookup on sid)
Assume: clustered Doesn’t matter if clustered or not

Simplifications

* In the previous examples, we assumed
that all index pages were in memory

 When this is not the case, we need to
add the cost of fetching index pages
from disk

CSEP544 - Spring 2009

10

Lessons

* Need to consider several physical plan
— even for one, simple logical plan

* No magic “best” plan: depends on the
data
 In order to make the right choice

— need to have statistics over the data
—the B's, the T's, the V's

CSEP544 - Spring 2009

11

Outline

* Search space
 Algorithm for enumerating query plans

» Estimating the cost of a query plan

CSEP544 - Spring 2009

12

Relational Algebra
Equivalences

 Selections

— Commutative: o,(0.,(R)) same as o,(0.(R))
— Cascading: o.4,»(R) same as o_,(0.4(R))

* Projections

e Joins
— Commutative : R X S same as S X R
— Associative: R} (S T)sameas (RXS)X T

CSEP544 - Spring 2009

13

Left-Deep Plans and
Bushy Plans

/ < \R / \
R?’/ \R1 R3/ \R1 / \

Left-deep plan Bushy plan

CSEP544 - Spring 2009 14

Example:
Simple Algebraic Laws

« Commutative and Associative Laws

RUS=SUR, RU(SUT)=(RUS)UT
RMS=SXR, RX(SXT)=(RXS)XT
RMS=SXR, RX(SXT)=(RXS)XT

* Distributive Laws
RM(SUT) = (RXS)U((RKT)

CSEP544 - Spring 2009 15

Example:

Simple Algebraic Laws

» Laws involving selection:
O cannc(R) =0 ¢(0(R)) =0 ¢(R)N o (R)
O corc(R)=0¢(R)U o (R)
Oc(RXS)=0-(R)XS

* When C involves only attributes of R
0c(R=S)=0¢(R)-S
0c(RUS)=0(R)U0c(S)
Oc(RXS) =0-(R)XS

CSEP544 - Spring 2009

16

Example:
Simple Algebraic Laws

 Example: R(A, B, C, D), S(E, F, G)
O p=3(RX pg S) =

O a=5 AND G=9 (R X p=g S) =

CSEP544 - Spring 2009

?
?

17

Example:
Simple Algebraic Laws

» Laws involving projections
[Iy(R X S) = I,(ITp(R) X Iy(S))
[y(ITy(R)) = Iy n(R)

- Example R(A,B,C,D), S(E, F, G)
ITp g 6(R X pg S) = IT5 (ITH(R) X pg T15(S))

CSEP544 - Spring 2009 18

Example:
Simple Algebraic Laws

* Laws involving grouping and aggregation:

6(YA agg(B)(R)) = YA, agg(B)(R)
YA, aga®)(0(R)) = Ya agee)(R) if 2gg is “duplicate insensitive”

* Which of the following are “duplicate insensitive” ?
sum, count, avg, min, max

YA agg(D)(R(A B) X B=C S(C D))
YA agg(D) (R(A B) X B=C (YC agg(D)S(C D)))

CSEP544 - Spring 2009 19

Laws Involving Constratins

Foreign key

P

Product(pid, pname, price, cid)
Company(cid, cname, city, state)

I_Ipid, price(PrOdU’Ct [X]cid=cid Company) - Hpid, price(PrOdUCt)

Need a second constraint for this law to hold. Which one ?

CSEP544 - Spring 2009 20

Laws with Semijoins

Recall the definition of a semijoin:

 Where the schemas are:
— Input: R(A1,...An), S(B1,..., Bm)
— Qutput: T(A1,...,An)

CSEP544 - Spring 2009

21

Laws with Semijoins

Semijoins: a bit of theory (see Database Theory, AHV)
» Givenagquery: |Q:-TI(o(R, MR,X...XR))

« A semijoin reducer for Q is Ri1 == Riy ¥ R;;
R, = Rp % Ry
Rlp = Rip a ij

such that the query is equivalent to:

Q:-T (0 (Ry XR,X...XR,.))

* A full reducer is such that no dangling tuples remain

CSEP544 - Spring 2009 22

Laws with Semijoins

 Example:
Q(AE) :- TT, ¢(R(A,B) X Ry(B,C) X R4(C,D,E))

* A full reducer is:

R,'(B,C) := R,(B,C) % Ry(A,B)
R, (C,D,E) := Ry(C,D,E) x R,(B,C)
R,”(B,C) := R,(B,C) X R,(C,D,E)
R,(A,B) := R,(A,B) x R,”(B,C)

Q(AE) - TI, (R (A,B) X R,"(B,C) M R5'(C,D,E))

The new tables have only the tuples necessary to compute Q(E)

Laws with Semijoins

 Example:

Q(E) :- R1(A,B) X R2(B,C) X R3(A,C, E)

* Doesn'’t have a full reducer (we can reduce forever)

Theorem a query has a full reducer iff it is “acyclic”
[Database Theory, by Abiteboul, Hull, Vianu]

CSEP544 - Spring 2009

24

Example with Semijoins

Emp(eid, ename, sal, did) [Chaudhuri’98]
Dept(did, dname, budget)

DeptAvgSal(did, avgsal) /* view */

View:

Query:

CREATE VIEW DepAvgSal As (
SELECT E.did, Avg(E.Sal) AS avgsal
FROM Emp E
GROUP BY E.did)

SELECT E.eid, E.sal

FROM Emp E, Dept D, DepAvgSal V

WHERE E.did = D.did AND E.did = V.did
AND E.age < 30 AND D.budget > 100k
AND E.sal > V.avgsal

Goal: compute only the necessary part of the view

25

Example with Semijoins

Emp(eid, ename, sal, did) [Chaudhuri’98]
Dept(did, dname, budget)
DeptAvgSal(did, avgsal) /* view */

CREATE VIEW LimitedAvgSal As (

New view SELECT E.did, Avg(E.Sal) AS avgsal
FROM Emp E, Dept D

WHERE E.did = D.did AND D.buget > 100k
GROUP BY E.did)

uses a reducer:

SELECT E.eid, E.sal
New query: FROM Emp E, Dept D, LimitedAvgSal V
WHERE E.did = D.did AND E.did = V.did
AND E.age <30 AND D.budget > 100k
AND E.sal > V.avgsal 26

Example with Semijoins

Emp(eid, ename, sal, did) :
Dept(did, dname, budget) [Chaudhur1”98]

DeptAvgSal(did, avgsal) /* view */

Full reducer:

CREATE VIEW PartialResult AS
(SELECT E.eid, E.sal, E.did
FROM Emp E, Dept D
WHERE E.did=D.did AND E.age < 30
AND D.budget > 100k)

CREATE VIEW Filter AS
(SELECT DISTINCT P.did FROM PartialResult P)

CREATE VIEW LimitedAvgSal AS
(SELECT E.did, Avg(E.Sal) AS avgsal
FROM Emp E, Filter F
WHERE E.did = F.did GROUP BY E.did)

Example with Semijoins

New query:

SELECT P.eid, P.sal
FROM PartialResult P, LimitedDepAvgSal V
WHERE P.did = V.did AND P.sal > V.avgsal

CSEP544 - Spring 2009

28

Search Space Challenges

* Search space is huge!
— Many possible equivalent trees
— Many implementations for each operator

— Many access paths for each relation
 File scan or index + matching selection condition

« Cannot consider ALL plans
— Heuristics: only partial plans with “low” cost

CSEP544 - Spring 2009 29

Outline

« Search space

 Algorithms for enumerating query plans

» Estimating the cost of a query plan

CSEP544 - Spring 2009 30

Key Decisions

* When selecting a plan, some of the
most important decisions include:

— Logical plan
* Which algebraic laws do we apply, and in which
context(s) ?
« What logical plans do we consider (left-deep,
bushy ?)
— Physical plan
* What join algorithms to use?
« What access paths to use (file scan or index)?s

Optimizers

* Heuristic-based optimizers:

— Apply greedily rules that always improve
» Typically: push selections down

— Very limited: no longer used today

« Cost-based optimizers

— Use a cost model to estimate the cost of
each plan

— Select the “cheapest” plan

CSEP544 - Spring 2009

32

Representation of Partial
Plans

* Bottom-up optimization algorithms:

— A partial plan is an algebra tree that
computes only part of the query

* Top-down optimization algorithms:

— A partial plan is an algebra tree whose
leaves are either base relations, or queries
(without a plan yet)

CSEP544 - Spring 2009 33

Examples of Partial Plans

R(A,B) SELECT *
S(B,C) FROMR,S, T
T(C,D) WHERE R.B=S.B and S.C=T.C and R.A<40

Bottom-up plans / 2 \
/™ /7N
S T R R S R

R

34

Examples of Partial Plans

R(A,B)
S(B,C)
T(C,D)

Top-down plans

[

SELECT *

FROMR, S

WHERE R.B=S.B
and R.A<40

T

SELECT *
FROMR, S, T
WHERE R.B=S.B and S.C=T.C and R.A<40

/ N \ O <40
X
/ \ T SELECTRA, T.D
FROMR, S, T
S

WHERE R.B=S.B
and S.C=T.C

SELECT *
FROM R
WHERE R.A<40 35

Plan Enumeration Algorithms

* Dynamic programming
— Classical algorithm [1979]
— Limited to joins: join reordering algorithm
— Bottom-up
* Rule-based algorithm
— Database of rules (=algebraic laws)
— Usually: dynamic programming

— Usually: top-down
CSEP544 - Spring 2009

36

Dynamic Programming

Originally proposed in System R [1979]
* Only handles single block queries:

SELECT list
FROM RI1,...,Rn
WHERE cond; AND cond, AND . ..AND cond,

* Heuristics: selections down, projections up
« Dynamic programming: join reordering

CSEP544 - Spring 2009

37

Join Trees

R1TXR2X.... XRn

Join tree: / \
R3/ \R1 / \

A plan = a join tree
A partial plan = a subtree of a join tree

CSEP544 - Spring 2009

38

Types of Join Trees

» Left deep:

\R4

<]
/
AN
/N\ R2
> R5
N\
R3 R1

CSEP544 - Spring 2009

39

Types of Join Trees

* Bushy:

— Y
VAVNVAN
R

CSEP544 - Spring 2009

40

Types of Join Trees

* Right deep:
Za
<]
s i
T

>
R5 /N
R2 R4

CSEP544 - Spring 2009

41

Dynamic Programming

Join ordering:

* Given:aquery RT X R2X...XRn
* Find optimal order

* Assume we have a function cost() that
gives us the cost of every join tree

CSEP544 - Spring 2009

42

Dynamic Programming

* For each subquery Q &{R1, ..., Rn}
compute the following:

— Size(Q) = the estimated size of Q
— Plan(Q) = a best plan for Q
— Cost(Q) = the estimated cost of that plan

CSEP544 - Spring 2009

43

Dynamic Programming

» Step 1: For each {R} do:
- Size({R}) = B(R)
~ Plan({R}) = R
— Cost({Ri}) = (cost of scanning R)

CSEP544 - Spring 2009

44

Dynamic Programming

« Step 2: Foreach Q &{R,, ..., R} of
cardinality i1 do:
— Size(Q) = estimate it recursively

— For every pair of subqueries Q’, Q”
s.t.Q=Q UQ"
compute cost(Plan(Q’) X Plan(Q”))
* Cost(Q) = the smallest such cost
* Plan(Q) = the corresponding plan

CSEP544 - Spring 2009

45

Dynamic Programming

» Step 3: Return Plan({R,, ..., R.})

CSEP544 - Spring 2009

46

Example

To illustrate, we will make the following
simplifications:
» Cost(P,xP,)=_Cost(P,) + Cost(P,) +
size(intermediate result(s))

— Size(intermediate result(s)) =
If P, = ajoin, then the size of the intermediate
result is size(P,), otherwise the size is 0
Similarly for P,

e Costofascan=0

CSEP544 - Spring 2009

47

Example

c RXSXTNXU
* Number of tuples: 2000, 5000, 3000, 1000
« Size estimation: T(A x B) = 0.01*T(A)*T(B)

CSEP544 - Spring 2009

48

Subquery

Size

Cost

Plan

RS

RT

RU

ST

SU

TU

RST

RSU

RTU

STU

RSTU

49

Subquery Size Cost Plan
RS 100k 0 RS
RT 60k 0 RT
RU 20k 0 RU
ST 150k 0 ST
SU 50k 0 SU
TU 30k 0 TU

RST 3M 60k (RT)S
RSU IM 20k (RU)S
RTU 0.6M 20k (RU)T
STU 1.5M 30k (TU)S
RSTU 30M 60k+50k=110k (RT)(SU)

50

Reducing the Search Space

« Left-linear trees v.s. Bushy trees
« Trees without cartesian product
Example: R(A,B) X S(B,C) X T(C,D)

Plan: (R(A,B) X T(C,D)) X S(B,C) has a cartesian product
— most query optimizers will not consider it

CSEP544 - Spring 2009 51

Dynamic Programming:
Summary

* Handles only join queries:
— Selections are pushed down (i.e. early)
— Projections are pulled up (i.e. late)

* Takes exponential time in general, BUT:
— Left linear joins may reduce time
— Non-cartesian products may reduce time further

CSEP544 - Spring 2009

52

Rule-Based Optimizers

Extensible collection of rules
Rule = Algebraic law with a direction

Algorithm for firing these rules

Generate many alternative plans, in some
order

Prune by cost

Volcano (later SQL Sever)
Starburst (later DB2)

53

Completing the
Physical Query Plan

» Choose algorithm for each operator
— How much memory do we have ?
— Are the input operand(s) sorted ?

» Access path selection for base tables

 Decide for each intermediate result:
— To materialize
— To pipeline

CSEP544 - Spring 2009

54

Access Path Selection

* Access path: a way to retrieve tuples from a table

— Afile scan
— An index plus a matching selection condition

Index matches selection condition if it can be used to
retrieve just tuples that satisfy the condition

— Example: Supplier(sid,sname,scity,sstate)

— B+-tree index on (scity,sstate)

* matches scity='Seattle’
* does not match sid=3, does not match sstate="WA’

CSEP544 - Spring 2009

55

Access Path Selection

Supplier(sid,sname,scity,sstate)

Selection condition: sid > 300 A scity="Seattle’
Indexes: B+-tree on sid and B+-tree on scity
Which access path should we use?

We should pick the most selective access path

CSEP544 - Spring 2009 56

Access Path Selectivity

* Access path selectivity is the number of pages
retrieved if we use this access path
— Most selective retrieves fewest pages

* As we saw earlier, for equality predicates
— Selection on equality: o,_,(R)
— V(R, a) = # of distinct values of attribute a
— 1/V(R,a) is thus the reduction factor
— Clustered index on a: cost B(R)/V(R,a)
— Unclustered index on a: cost T(R)/V(R,a)
— (we are ignoring I/O cost of index pages for simplicity)

CSEP544 - Spring 2009

o7

Materialize Intermediate
Results Between Operators

@shTable < S \

repeat read(R, x)

y < join(HashTable, x)
/ X\ write(V1, y)
HashTable < T

repeat read(V1,y)

z < join(HashTable, y)
/ \ write(V2, z)
HashTable < U

repeat read(V2, z)
u < join(HashTable, z)

/ >\ \\ write(Answer, u) /

CSEP544 - Spring 2009 58

Materialize Intermediate
Results Between Operators

Question in class
Given B(R), B(S), B(T), B(U)
« What is the total cost of the plan ?

— Cost =

 How much main memory do we need ?
— M=

CSEP544 - Spring 2009

59

Pipeline Between Operators

/HashTabIe1 &S \
HashTable2 € T
HashTable3 < U

Q repeat read(R, x)
y < join(HashTable1, x)

z < join(HashTable2, y)
u < join(HashTable3, z)
write(Answer, u) /

\
/K

CSEP544 - Spring 2009 60

Pipeline Between Operators

Question in class
Given B(R), B(S), B(T), B(U)
« What is the total cost of the plan ?

— Cost =

 How much main memory do we need ?
— M=

CSEP544 - Spring 2009

61

Pipeline in Bushy Trees

A
VX 7

/Y ’///\
S T | X Y

62

Example

* Logical plan is:

/ \
K blocks U(y.2)
/ \ 10,000 blocks

X,Y)
5, OOO blocks 10, OOO bIocks

* Main memory M = 101 buffers

CSEP544 - Spring 2009

63

Example

M =101

/ \
K blocks U(y.2)
/ \ 10,000 blocks

X,Y)
5, OOO blocks 10, OOO blocks

Naive evaluation:
« 2 partitioned hash-joins
« Cost 3B(R) + 3B(S) + 4k + 3B(U) = 75000 + 4k

CSEP544 - Spring 2009

64

Example

M =101

/ \
K blocks U(y.2)
/ \ 10,000 blocks

(X,y)
5, OOO blocks 10, OOO blocks

Smarter:

Step 1: hash R on x into 100 buckets, each of 50 blocks; to disk
Step 2: hash S on x into 100 buckets; to disk

Step 3: read each R, in memory (50 buffer) join with S, (1 buffer); hash
result on y into 50 buckets (50 buffers) -- here we pipeline

Cost so far: 3B(R) + 3B(S) 65

Example

M =101

/ \
K blocks U(y.2)
/ \ 10,000 blocks

9, OOO blocks 10,000 bl)ocks
Continuing:
 How large are the 50 buckets ony ? Answer: k/50.
« If k <= 50 then keep all 50 buckets in Step 3 in memory, then:
« Step 4: read U from disk, hash on y and join with memory

* Total cost: 3B(R) + 3B(S) + B(U) = 55,000 66

Example

M =101

/ \
K blocks U(y.2)
/ \ 10,000 blocks

(X,y)
5, OOO blocks 10, OOO blocks

Continuing:

If 50 < k <= 5000 then send the 50 buckets in Step 3 to disk
— Each bucket has size k/50 <= 100

Step 4: partition U into 50 buckets
Step 5: read each partition and join in memory
Total cost: 3B(R) + 3B(S) + 2k + 3B(U) = 75,000 + 2k

67

Example

M =101

/ \
K blocks U(y.2)
/ \ 10,000 blocks

R(w, X,Y)
Continuing: 5 oo blocks 10, ooo blocks

. If k > 5000 then materialize instead of pipeline
« 2 partitioned hash-joins
« Cost 3B(R) + 3B(S) + 4k + 3B(U) = 75000 + 4k

68

Outline

« Search space
 Algorithms for enumerating query plans

» Estimating the cost of a query plan

CSEP544 - Spring 2009 69

Computing the Cost of a Plan

« Collect statistical summaries of stored data
« Estimate size in a bottom-up fashion

« Estimate cost by using the estimated size

CSEP544 - Spring 2009 70

Statistics on Base Data

* Collected information for each relation
— Number of tuples (cardinality)
— Indexes, number of keys in the index
— Number of physical pages, clustering info

— Statistical information on attributes
 Min value, max value, number distinct values
» Histograms

— Correlations between columns (hard)
» Collection approach: periodic, using sampling

CSEP544 - Spring 2009 71

Size Estimation

Estimating the size of a projection

» Easy: T(I1 (R)) = T(R)

* This is because a projection doesn't
eliminate duplicates

CSEP544 - Spring 2009

72

Size Estimation for Selection

Estimating the size of a selection
* S= OA=C(R)
— T(S) can be anything from 0 to T(R) - V(R,A) + 1
— Estimate: T(S) = T(R)/V(R,A)
— When V(R,A) is not available, estimate T(S) = T(R)/10

*+ S= OA<C(R)
— T(S) can be anything from 0 to T(R)
— Estimate: T(S) = (c - Low(R, A))/(High(R,A) - Low(R,A))T(R)
— When Low, High unavailable, estimate T(S) = T(R)/3

CSEP544 - Spring 2009 73

Size Estimation for Selection

What if we have an index on multiple attributes?
« Example selection S=0,_,1 , ,= 2(R)

How to compute the selectivity?

« Assume attributes are independent
+ T(S)=T(R) 7 (V(R,a)* V(R,b))

CSEP544 - Spring 2009

74

Example

Selection condition: sid > 300 A scity=‘Seattle’
— Index I1: B+-tree on sid clustered
— Index 12: B+-tree on scity unclustered

Let's assume

— V(Supplier,scity) = 20

— Max(Supplier, sid) = 1000, Min(Supplier,sid)=1
— B(Supplier) = 100, T(Supplier) = 1000

Cost I1: B(R) * (Max-v)/(Max-Min) = 100*700/999 ~ 70
Cost 12: T(R) * 1/V(Supplier,scity) = 1000/20 = 50

CSEP544 - Spring 2009

75

Size Estimation for Join

Estimating the size of a natural join, R X, S

* When the set of A values are disjoint,
then TR X, S)=0

« When A is a key in S and a foreign key in
R, then T(R X, S) = T(R)

 When A has a unique value, the same in
Rand S, then T(R X, S) = T(R) T(S)

Estimation seems hopelessly hard ! 76

Size Estimation for Join

Assumptions:

« Containment of values: if V(R,A) <= V(S,A), then the
set of A values of R is included in the set of A values
of S

— Note: this indeed holds when A is a foreign key in R, and a
key in S

* Preservation of values: for any other attribute B,
V(R X, S, B) =V(R, B) (orV(S, B))

CSEP544 - Spring 2009 77

Size Estimation for Join

Assume V(R,A) <= V(S A)

 Then each tuple tin R joins some tuple(s) in S
— How many ?

— On average T(S)/V(S,A)
— t will contribute T(S)/V(S,A) tuples in R X, S
» Hence T(R M, S) = T(R) T(S)/ V(S,A)

In general: T(R X, S) = T(R) T(S) / max(V(R,A),V(S,A))

CSEP544 - Spring 2009

78

Size Estimation for Join

Example:

« T(R)=10000, T(S)=20000
* V(R,A) =100, V(S,A) =200
* How largeis R X, S ?

Answer: T(R X, S) = 10000 20000/200 =
1M

CSEP544 - Spring 2009 79

Size Estimation for Join

Joins on more than one attribute:
« T(RX AB S) =

T(R) T(S)/(max(V(R,A),V(S,A))"max(V(R,B),V(S,B)))

CSEP544 - Spring 2009 80

Computing Cost of an
Operator

* The cost of executing an operator
depends

— On the operator implementation
— On the input data

* We learned how to compute this in the

previous lecture, so we do not repeat it
here

CSEP544 - Spring 2009

81

Histograms

» Statistics on data maintained by the
RDBMS

* Makes size estimation much more
accurate (hence, cost estimations are
more accurate)

CSEP544 - Spring 2009

82

Histograms

Employee(ssn, name, salary, phone)

* Maintain a histogram on salary:

Salary:

0..20k

20k..40k

40k..60k

60k..80k

80k..100k

> 100k

Tuples

200

800

5000

12000

6500

500

« T(Employee) = 25000, but now we know the
distribution

CSEP544 - Spring 2009

83

Employee(ssn, name, salary, phone)

. Eqwidth

* Eqgdepth

Histograms

Salary | 0.20 | 20.40 | 40..60 | 60..80 | 80..100
Tuples 2 104 9739 152 3
Salary | 0.44 | 44.48 | 48.50 | 50..56 |55..100
Tuples | 1800 2000 2100 2200 1900

CSEP544 - Spring 2009

84

Example

Employee(ssn, name, salary, phone)

Salary | 0.44 | 44.48 | 48.50 | 50..56 |55..100
Tuples | 1800 2000 2100 2200 1900

Estimate the size of: S = O,,1y>-46 and satary<=70(EMployee)

CSEP544 - Spring 2009

Example

Employee(ssn, name, salary, phone)

Salary | 0.44 | 44.48 | 48.50 | 50..56 |55..100
Tuples | 1800 2000 2100 2200 1900

Estimate the size of: S = O,,1y>-46 and satary<=70(EMployee)

Answer: T(S) =2000*3/4 + 2100 + 2200 + 1900*16/46

CSEP544 - Spring 2009

Summary of Query
Optimization

* Three parts:
— search space, algorithms, size/cost estimation

* This lecture discussed some of the issues

— Lecture has more material than either
textbook, however:

— You won't be able to write an optimizer
tomorrow !

— There is no good text on rule-based optimizer

CSEP544 - Spring 2009 87

