
Principles of Database Systems
CSE 544p

Lecture #1

September 29, 2010

1 Dan Suciu -- p544 Fall 2010

Staff

• Instructor: Dan Suciu
– CSE 662, suciu@cs.washington.edu

Office hours: by appointment

• TAs:

– Jessica Leung joyleung@cs.washington.edu
– TA: Paramjit Singh Sandhu paramsan@cs.washington.edu

• Technical support:
– At UW: Fred Videon, fred@cs.washington.edu
– At MS: Matt McGinley

Dan Suciu -- p544 Fall 2010 2

mailto:suciu@cs.washington.edu
mailto:joyleung@cs.washington.edu
mailto:paramsan@cs.washington.edu
mailto:fred@cs.washington.edu

Communications

• Web page:
http://www.cs.washington.edu/p544
– Lectures will be available here

– Homework will be posted here

– Announcements may be posted here

• Mailing list:

– Announcements, group discussions

– Please subscribe

3 Dan Suciu -- p544 Fall 2010

http://www.cs.washington.edu/p544

Textbook(s)

Main textbook:

• Database Management Systems,
Ramakrishnan and Gehrke

Second textbook:

• Database Systems: The Complete Book,
Garcia-Molina, Ullman, Widom

4 Dan Suciu -- p544 Fall 2010

Course Format

• Lectures Wednesdays, 6:30-9:20

• 7 Homework Assignments

• Take-home Final

5 Dan Suciu -- p544 Fall 2010

Grading

• Homework: 70 %

• Take-home Final: 30%

6 Dan Suciu -- p544 Fall 2010

Homework Assignments

1. SQL

2. Conceptual design

3. JAVA/SQL

4. Transactions

5. Database tuning

6. XML/XPath/XQuery

7. Pig Latin, on AWS

7 Dan Suciu -- p544 Fall 2010

Due: Tuesdays’, by 11:59pm. Three late days per person

Take-home Final

• Posted on December 8, at 11:59pm

• Due on December 9, by 11:59pm

• No late days/hours/minutes/seconds

Dan Suciu -- p544 Fall 2010 8

December 9th is the day of your final

Software Tools
• SQL Server 2008

– You have access to http://msdnaa.cs.washington.edu
– Username is full @cs.washington.edu email address
– Doesn’t work ? Email ms-sw-admin@cs.washington.edu
– Download the client, connect to IPROJSRV (may need tunneling)
– OK to use you own server, just import IMDB (may need tunneling)

• Postgres: download from
– download http://www.postgresql.org/download/
– Is also installed on lab machines

• Xquery: download one interpreter from
– Zorba: http://www.zorba-xquery.com/ (I use this one: ½ day installation)
– Galax: http://galax.sourceforge.net/ (great in the past, seems less well maintained)
– Saxon: http://saxon.sourceforge.net/ (from apache; very popular)

• Pig Latin: download from
– http://hadoop.apache.org/pig/
– We will also run it on Amazon Web Services

Dan Suciu -- p544 Fall 2010 9

http://msdnaa.cs.washington.edu
http://msdnaa.cs.washington.edu
mailto:ms-sw-admin@cs.washington.edu
mailto:ms-sw-admin@cs.washington.edu
mailto:ms-sw-admin@cs.washington.edu
mailto:ms-sw-admin@cs.washington.edu
mailto:ms-sw-admin@cs.washington.edu
http://www.postgresql.org/download/
http://www.zorba-xquery.com/
http://www.zorba-xquery.com/
http://www.zorba-xquery.com/
http://galax.sourceforge.net/
http://saxon.sourceforge.net/
http://hadoop.apache.org/pig/

Rest of Today’s Lecture

• Overview of DBMS

• SQL

Dan Suciu -- p544 Fall 2010 10

Database

What is a database ?

Give examples of databases

11 Dan Suciu -- p544 Fall 2010

Database

What is a database ?

• A collection of files storing related data

Give examples of databases

• Accounts database; payroll database; UW’s
students database; Amazon’s products
database; airline reservation database

12 Dan Suciu -- p544 Fall 2010

Database Management System

What is a DBMS ?

Give examples of DBMS

13 Dan Suciu -- p544 Fall 2010

Database Management System

What is a DBMS ?

• A big C program written by someone else that allows
us to manage efficiently a large database and allows
it to persist over long periods of time

Give examples of DBMS

• DB2 (IBM), SQL Server (MS), Oracle, Sybase

• MySQL, Postgres, …

14

SQL for Nerds, Greenspun, http://philip.greenspun.com/sql/ (Chap 1,2)
Dan Suciu -- p544 Fall 2010

http://philip.greenspun.com/sql/

Market Shares

From 2006 Gartner report:

• IBM: 21% market with $3.2BN in sales

• Oracle: 47% market with $7.1BN in sales

• Microsoft: 17% market with $2.6BN in sales

15 Dan Suciu -- p544 Fall 2010

An Example

The Internet Movie Database
http://www.imdb.com

• Entities:
Actors (800k), Movies (400k), Directors, …

• Relationships:
who played where, who directed what, …

16 Dan Suciu -- p544 Fall 2010

http://www.imdb.com/

Tables

17 Dan Suciu -- p544 Fall 2010

Actor: Cast:

Movie:

id fName lName gende

r

195428 Tom Hanks M

645947 Amy Hanks F

. . .

id Name year

337166 Toy Story 1995

.

pid mid

195428 337166

. . .

SQL

18

SELECT *

FROM Actor

Dan Suciu -- p544 Fall 2010

SQL

19

SELECT count(*)

FROM Actor

This is an aggregate query

Dan Suciu -- p544 Fall 2010

SQL

20

SELECT *

FROM Actor

WHERE lName = „Hanks‟

This is a selection query

Dan Suciu -- p544 Fall 2010

SQL

21

SELECT *

FROM Actor, Casts, Movie

WHERE lname='Hanks' and Actor.id = Casts.pid

 and Casts.mid=Movie.id and Movie.year=1995

This query has selections and joins

Dan Suciu -- p544 Fall 2010

817k actors, 3.5M casts, 380k movies;

How can it be so fast ?

22

How Can We Evaluate the Query ?

Actor: Cast: Movie:

id fNam

e

lName gende

r

. . . Hanks

. . .

id Name year

. . . 1995

. . .

pid mid

. . .

. . .

Plan 1: [in class]

Plan 2: [in class]

Dan Suciu -- p544 Fall 2010

23

Evaluating Tom Hanks

Actor Cast Movie

lName=„Hanks‟ year=1995

Actor Cast Movie

lName=„Hanks‟ year=1995

Dan Suciu -- p544 Fall 2010

Optimization and Query Execution

• Indexes: on Actor.lName, on Movie.year

• Query optimization
– Access path selection

– Join order

• Statistics

• Multiple implementations of joins

24 Dan Suciu -- p544 Fall 2010

Recovery

• Transfer $100 from account #4662 to #7199:

25 Dan Suciu -- p544 Fall 2010

X = Read(Account_1);
X.amount = X.amount - 100;
Write(Account_1, X);

Y = Read(Account_2);
Y.amount = Y.amount + 100;
Write(Account_2, Y);

Recovery

• Transfer $100 from account #4662 to #7199:

26

X = Read(Account_1);
X.amount = X.amount - 100;
Write(Account_1, X);

Y = Read(Account_2);
Y.amount = Y.amount + 100;
Write(Account_2, Y);

CRASH !

Dan Suciu -- p544 Fall 2010
What is the problem ?

Concurrency Control

• How to overdraft your account:

27

X = Read(Account);

if (X.amount > 100)
 { dispense_money();
 X.amount = X.amount – 100;
 }
else error(“Insufficient funds”);

X = Read(Account);

if (X.amount > 100)
 { dispense_money();
 X.amount = X.amount – 100;
 }
else error(“Insufficient funds”);

User 1

User 2

Dan Suciu -- p544 Fall 2010 What can go wrong ?

Transactions

• Recovery

• Concurrency control

ACID =
• Atomicity (= recovery)
• Consistency
• Isolation (= concurrency control)
• Durability

28 Dan Suciu -- p544 Fall 2010

Client/Server Database Architecture

• There is one single server that stores the database
(called DBMS or RDBMS):
– Usually a beefed-up system, e.g. IPROJSRV
– But can be your own desktop…
– … or a huge cluster running a parallel dbms

• Many clients running apps and connecting to DBMS
– E.g. Microsoft’s Management Studio
– Or psql (for postgres)
– Always: some else’s big Java or C++ program

• The client “talks” to the server using JDBC protocol

29 Dan Suciu -- p544 Fall 2010

Types of Usages for Databases

• OLTP (online-transaction-processing)

– Many updates

– Many “point queries”: retrieve the record with a
given key.

• Decision-Support

– Many aggregate/group-by queries.

– Sometimes called data warehouse

Dan Suciu -- p544 Fall 2010 30

SQL v.s. noSQL

• Reading for next time:
SQL Databases v. NoSQL Databases, by Mike
Stonebraker, CACM 53(4), 2010.

Dan Suciu -- p544 Fall 2010 31

Data Management

• Data Management is more than databases !

Here is an example of a problem:
• Alice sends Bob in random order all the numbers 1, 2, 3, …,

100000000000000000000
• She does not repeat any number
• But she misses exactly one
• Help Bob find out which one is missing !

After you solve it, make it a bit harder:
• Alice misses exactly ten numbers
• Help Bob find out which ones are missing !

32 Dan Suciu -- p544 Fall 2010

Accessing SQL Server

• SQL Server Management Studio

• Server Type = Database Engine

• Server Name = IPROJSRV

• Authentication = SQL Server Authentication
– Login = your UW email address (not the CSE email)

– Password = [in class]

• Must connect from within CSE, or must use tunneling

• Alternatively: install your own, get it from MSDNAA
(see earlier slide)

• Then play with IMDB, start working on HW 1

Dan Suciu -- p544 Fall 2010 33

34

Outline for Today

• Basics: we go quickly or skip slides, please read
the slides at home
– Datatypes in SQL
– Simple Queries in SQL
– Joins

• Subqueries: this is tough ! Please read the
relational calculus and tuple calculus in the
textbook (Chapter 4.3)

• Aggregates: separates pros from amateurs
• Nulls, Outer joins

Dan Suciu -- p544 Fall 2010

35

SQL

• Data Definition Language (DDL)

– Create/alter/delete tables and their attributes

– Following lectures...

• Data Manipulation Language (DML)

– Query one or more tables – discussed next !

– Insert/delete/modify tuples in tables

Dan Suciu -- p544 Fall 2010

36

Tables in SQL

PName Price Category Manufacturer

Gizmo $19.99 Gadgets GizmoWorks

Powergizmo $29.99 Gadgets GizmoWorks

SingleTouch $149.99 Photography Canon

MultiTouch $203.99 Household Hitachi

Product

Attribute names Table name

Tuples or rows

Key

Dan Suciu -- p544 Fall 2010

37

Data Types in SQL

• Atomic types:
– Characters: CHAR(20), VARCHAR(50)

– Numbers: INT, BIGINT, SMALLINT, FLOAT

– Others: MONEY, DATETIME, …

• Record (aka tuple)
– Has atomic attributes

• Table (relation)
– A set of tuples

Dan Suciu -- p544 Fall 2010

38

Simple SQL Query

PName Price Category Manufacturer

Gizmo $19.99 Gadgets GizmoWorks

Powergizmo $29.99 Gadgets GizmoWorks

SingleTouch $149.99 Photography Canon

MultiTouch $203.99 Household Hitachi

SELECT *

FROM Product

WHERE category=„Gadgets‟

Product

PName Price Category Manufacturer

Gizmo $19.99 Gadgets GizmoWorks

Powergizmo $29.99 Gadgets GizmoWorks “selection”
Dan Suciu -- p544 Fall 2010

39

Simple SQL Query

PName Price Category Manufacturer

Gizmo $19.99 Gadgets GizmoWorks

Powergizmo $29.99 Gadgets GizmoWorks

SingleTouch $149.99 Photography Canon

MultiTouch $203.99 Household Hitachi

SELECT PName, Price, Manufacturer

FROM Product

WHERE Price > 100

Product

PName Price Manufacturer

SingleTouch $149.99 Canon

MultiTouch $203.99 Hitachi

“selection” and

“projection”

Dan Suciu -- p544 Fall 2010

40

Details

• Case insensitive:

SELECT = Select = select

Product = product

BUT: ‘Seattle’ ≠ ‘seattle’

• Constants:

‘abc’ - yes

“abc” - no

Dan Suciu -- p544 Fall 2010

41

Eliminating Duplicates

SELECT DISTINCT category

FROM Product

Compare to:

SELECT category

FROM Product

Category

Gadgets

Gadgets

Photography

Household

Category

Gadgets

Photography

Household

Dan Suciu -- p544 Fall 2010

42

Ordering the Results

SELECT pname, price, manufacturer

FROM Product

WHERE category=„gizmo‟ AND price > 50

ORDER BY price, pname

Ties are broken by the second attribute on the ORDER BY list.

Ordering is ascending, unless you specify the DESC keyword.

Dan Suciu -- p544 Fall 2010

43

SELECT Category

FROM Product

ORDER BY PName

PName Price Category Manufacturer

Gizmo $19.99 Gadgets GizmoWorks

Powergizmo $29.99 Gadgets GizmoWorks

SingleTouch $149.99 Photography Canon

MultiTouch $203.99 Household Hitachi

?
SELECT DISTINCT category

FROM Product

ORDER BY category

SELECT DISTINCT category

FROM Product

ORDER BY PName

?

?
Dan Suciu -- p544 Fall 2010

44

Keys and Foreign Keys

PName Price Category Manufacturer

Gizmo $19.99 Gadgets GizmoWorks

Powergizmo $29.99 Gadgets GizmoWorks

SingleTouch $149.99 Photography Canon

MultiTouch $203.99 Household Hitachi

Product

Company

CName StockPrice Country

GizmoWorks 25 USA

Canon 65 Japan

Hitachi 15 Japan

Key

Foreign

key

Dan Suciu -- p544 Fall 2010

45

Joins

Product (PName, Price, Category, Manufacturer)

Company (CName, stockPrice, Country)

Find all products under $200 manufactured in

Japan;

return their names and prices.

SELECT PName, Price

FROM Product, Company

WHERE Manufacturer=CName AND Country=„Japan‟

 AND Price <= 200

Join

between Product

and Company

Dan Suciu -- p544 Fall 2010

46

Joins

PName Price Category Manufacturer

Gizmo $19.99 Gadgets GizmoWorks

Powergizmo $29.99 Gadgets GizmoWorks

SingleTouch $149.99 Photography Canon

MultiTouch $203.99 Household Hitachi

Product Company

Cname StockPrice Country

GizmoWorks 25 USA

Canon 65 Japan

Hitachi 15 Japan

PName Price

SingleTouch $149.99

SELECT PName, Price

FROM Product, Company

WHERE Manufacturer=CName AND Country=„Japan‟

 AND Price <= 200

Dan Suciu -- p544 Fall 2010

47

Tuple Variables

SELECT DISTINCT pname, address

FROM Person, Company

WHERE worksfor = cname

Which

address ?

Person(pname, address, worksfor)

Company(cname, address)

SELECT DISTINCT Person.pname, Company.address

FROM Person, Company

WHERE Person.worksfor = Company.cname

SELECT DISTINCT x.pname, y.address

FROM Person AS x, Company AS y

WHERE x.worksfor = y.cname
Dan Suciu -- p544 Fall 2010

48

In Class

Product (pname, price, category, manufacturer)

Company (cname, stockPrice, country)

Find all Chinese companies that manufacture

products both in the „toy‟ category

SELECT cname

FROM

WHERE

Dan Suciu -- p544 Fall 2010

49

In Class

Product (pname, price, category, manufacturer)

Company (cname, stockPrice, country)

Find all Chinese companies that manufacture

products both in the „electronic‟ and „toy‟ categories

SELECT cname

FROM

WHERE

Dan Suciu -- p544 Fall 2010

50

Meaning (Semantics) of SQL Queries

SELECT a1, a2, …, ak
FROM R1 AS x1, R2 AS x2, …, Rn AS xn
WHERE Conditions

Answer = {}

for x1 in R1 do

 for x2 in R2 do

 …..

 for xn in Rn do

 if Conditions

 then Answer = Answer {(a1,…,ak)}

return Answer

Dan Suciu -- p544 Fall 2010

51

SELECT DISTINCT R.A

FROM R, S, T

WHERE R.A=S.A OR R.A=T.A

Using the Formal Semantics

If S ≠ ∅ and T ≠ ∅

then returns R (S T)

else returns ∅

What do these queries compute ?

SELECT DISTINCT R.A

FROM R, S

WHERE R.A=S.A

Returns R S

Dan Suciu -- p544 Fall 2010

52

Joins Introduce Duplicates

Product (pname, price, category, manufacturer)

Company (cname, stockPrice, country)

Find all countries that manufacture some product in

the „Gadgets‟ category.

SELECT Country

FROM Product, Company

WHERE Manufacturer=CName AND Category=„Gadgets‟

Dan Suciu -- p544 Fall 2010

53

Joins Introduce Duplicates

Name Price Category Manufacturer

Gizmo $19.99 Gadgets GizmoWorks

Powergizmo $29.99 Gadgets GizmoWorks

SingleTouch $149.99 Photography Canon

MultiTouch $203.99 Household Hitachi

Product Company
Cname StockPrice Country

GizmoWorks 25 USA

Canon 65 Japan

Hitachi 15 Japan

Country

 USA

USA

Duplicates !

Remember to
add DISTINCT

SELECT Country

FROM Product, Company

WHERE Manufacturer=CName AND Category=„Gadgets‟

Dan Suciu -- p544 Fall 2010

54

Subqueries

• A subquery is another SQL query nested inside a
larger query

• Such inner-outer queries are called nested queries

• A subquery may occur in:
1. A SELECT clause

2. A FROM clause

3. A WHERE clause

Dan Suciu -- p544 Fall 2010

Rule of thumb: avoid writing nested queries when possible;
keep in mind that sometimes it’s impossible

55

1. Subqueries in SELECT

Product (pname, price, company)

Company(cname, city)

For each product return the city where it is manufactured

SELECT X.pname, (SELECT Y.city
 FROM Company Y
 WHERE Y.cname=X.company)

FROM Product X

What happens if the subquery returns more than one city ?

Dan Suciu -- p544 Fall 2010

56

1. Subqueries in SELECT

Product (pname, price, company)

Company(cname, city)

Whenever possible, don‟t use a nested queries:

= We have

“unnested”

the query
Dan Suciu -- p544 Fall 2010

SELECT pname, (SELECT city FROM Company WHERE cname=company)

FROM Product

SELECT pname, city

FROM Product, Company

WHERE cname=company

57

1. Subqueries in SELECT

Product (pname, price, company)

Company(cname, city)

Compute the number of products made in each city

SELECT DISTINCT city, (SELECT count(*)
 FROM Product
 WHERE cname=company)

FROM Company

Better: we can unnest by using a GROUP BY (next lecture)

Dan Suciu -- p544 Fall 2010

58

2. Subqueries in FROM

Product (pname, price, company)

Company(cname, city)

Find all products whose prices is > 20 and < 30

SELECT X.city
FROM (SELECT * FROM Product AS Y WHERE Y.price > 20) AS X

WHERE X.price < 30

Unnest this query !

Dan Suciu -- p544 Fall 2010

59

3. Subqueries in WHERE

Product (pname, price, company)

Company(cname, city)

Find all cities that make some products with price < 100

SELECT DISTINCT Company.city

FROM Company

WHERE EXISTS (SELECT *
 FROM Product
 WHERE company = cname and Produc.price < 100)

Existential quantifiers

Using EXISTS:

Dan Suciu -- p544 Fall 2010

60

3. Subqueries in WHERE

Product (pname, price, company)

Company(cname, city)

Find all cities that make some products with price < 100

Existential quantifiers

Predicate Calculus (a.k.a. First Order Logic)

Dan Suciu -- p544 Fall 2010

{ y | ∃x. Company(x,y) ∧ (∃z. ∃p. Product(z,p,x) ∧ p < 100) }

61

3. Subqueries in WHERE

Product (pname, price, company)

Company(cname, city)

Find all cities that make some products with price < 100

SELECT DISTINCT Company.city

FROM Company

WHERE Company.cname IN (SELECT Product.company
 FROM Product
 WHERE Produc.price < 100)

Existential quantifiers

Using IN

Dan Suciu -- p544 Fall 2010

62

3. Subqueries in WHERE

Product (pname, price, company)

Company(cname, city)

Find all cities that make some products with price < 100

SELECT DISTINCT Company.city

FROM Company

WHERE 100 > ANY (SELECT price
 FROM Product
 WHERE company = cname)

Existential quantifiers

Using ANY:

Dan Suciu -- p544 Fall 2010

63

3. Subqueries in WHERE

Product (pname, price, company)

Company(cname, city)

Find all cities that make some products with price < 100

SELECT DISTINCT Company.cname

FROM Company, Product

WHERE Company.cname = Product.company and Product.price < 100

Existential quantifiers are easy !

Existential quantifiers

Now let‟s unnest it:

Dan Suciu -- p544 Fall 2010

64

3. Subqueries in WHERE

Product (pname, price, company)

Company(cname, city)

Universal quantifiers are hard !

Find all cities with companies

 that make only products with price < 100

Universal quantifiers

Dan Suciu -- p544 Fall 2010

65

3. Subqueries in WHERE

Product (pname, price, company)

Company(cname, city)

Universal quantifiers

Predicate Calculus (a.k.a. First Order Logic)

Dan Suciu -- p544 Fall 2010

{ y | ∃x. Company(x,y) ∧ (∀z. ∀p. Product(z,p,x) p < 100) }

Find all cities with companies

 that make only products with price < 100

66

3. Subqueries in WHERE

Dan Suciu -- p544 Fall 2010

{ y | ∃x. Company(x,y) ∧ (∀z. ∀p. Product(z,p,x) p < 100) }

De Morgan‟s Laws:

¬(A ∧ B) = ¬A ∨ ¬B

¬(A ∨ B) = ¬A ∧ ¬B

¬∀x. P(x) = ∃x. ¬ P(x)

¬∃x. P(x) = ∀x. ¬ P(x)

{ y | ∃x. Company(x,y) ∧ ¬ (∃z∃p. Product(z,p,x) ∧ p ≥ 100) }

{ y | ∃x. Company(x,y)) } −

{ y | ∃x. Company(x,y) ∧ (∃z∃p. Product(z,p,x) ∧ p ≥ 100) }

¬(A B) = A ∧ ¬B

=

=

67

3. Subqueries in WHERE

2. Find all companies s.t. all their products have price < 100

1. Find the other companies: i.e. s.t. some product 100

Dan Suciu -- p544 Fall 2010

SELECT DISTINCT Company.city

FROM Company

WHERE Company.cname IN (SELECT Product.company
 FROM Product
 WHERE Produc.price >= 100

SELECT DISTINCT Company.city

FROM Company

WHERE Company.cname NOT IN (SELECT Product.company
 FROM Product
 WHERE Produc.price >= 100

68

3. Subqueries in WHERE

Product (pname, price, company)

Company(cname, city)

Find all cities with companies

 that make only products with price < 100

Universal quantifiers

Using EXISTS:

Dan Suciu -- p544 Fall 2010

SELECT DISTINCT Company.city

FROM Company

WHERE NOT EXISTS (SELECT *
 FROM Product
 WHERE company = cname and Produc.price >= 100)

69

3. Subqueries in WHERE

Product (pname, price, company)

Company(cname, city)

SELECT DISTINCT Company.city

FROM Company

WHERE 100 > ALL (SELECT price
 FROM Product
 WHERE company = cname)

Universal quantifiers

Using ALL:

Dan Suciu -- p544 Fall 2010

Find all cities with companies

 that make only products with price < 100

70

Question for Database Fans
and their Friends

• Can we unnest the universal
quantifier query ?

Dan Suciu -- p544 Fall 2010

71

Monotone Queries
• A query Q is monotone if:

– Whenever we add tuples to one or more of the tables…

– … the answer to the query cannot contain fewer tuples

• Fact: all unnested queries are monotone
– Proof: using the “nested for loops” semantics

• Fact: A query a universal quantifier is not monotone

• Consequence: we cannot unnest a query with a
universal quantifier

Dan Suciu -- p544 Fall 2010

72

Queries that must be nested

• Queries with universal quantifiers or with
negation

• The drinkers-bars-beers example next

• This is a famous example from textbook on
databases by Ullman

Dan Suciu -- p544 Fall 2010

Rule of Thumb:

Non-monotone queries cannot be
unnested. In particular, queries with a
universal quantifier cannot be unnested

73

The drinkers-bars-beers example

Find drinkers that frequent some bar that serves some beer they like.

Find drinkers that frequent only bars that serves some beer they like.

Find drinkers that frequent only bars that serves only beer they like.

Challenge: write these in SQL

Find drinkers that frequent some bar that serves only beers they like.

Dan Suciu -- p544 Fall 2010

Likes(drinker, beer)

Frequents(drinker, bar)

Serves(bar, beer)

x: y. z. Frequents(x, y)Serves(y,z)Likes(x,z)

x: y. Frequents(x, y) (z. Serves(y,z)Likes(x,z))

x: y. Frequents(x, y) z.(Serves(y,z) Likes(x,z))

x: y. Frequents(x, y)z.(Serves(y,z) Likes(x,z))

74

Aggregation

SELECT count(*)

FROM Product

WHERE year > 1995

Except count, all aggregations apply to a single attribute

SELECT avg(price)

FROM Product

WHERE maker=„Toyota‟

SQL supports several aggregation operations:

 sum, count, min, max, avg

Dan Suciu -- p544 Fall 2010

75

COUNT applies to duplicates, unless otherwise stated:

SELECT Count(category)

FROM Product

WHERE year > 1995

same as Count(*)

We probably want:

SELECT Count(DISTINCT category)

FROM Product

WHERE year > 1995

Aggregation: Count

Dan Suciu -- p544 Fall 2010

76

Purchase(product, date, price, quantity)

More Examples

SELECT Sum(price * quantity)

FROM Purchase

SELECT Sum(price * quantity)

FROM Purchase

WHERE product = „bagel‟

What do

they mean ?

Dan Suciu -- p544 Fall 2010

77

Simple Aggregations
Purchase

SELECT Sum(price * quantity)

FROM Purchase

WHERE product = „Bagel‟
90 (= 60+30)

Product Price Quantity

Bagel 3 20

Bagel 1.50 20

Banana 0.5 50

Banana 2 10

Banana 4 10

Dan Suciu -- p544 Fall 2010

78

Grouping and Aggregation

Purchase(product, price, quantity)

SELECT product, Sum(quantity) AS TotalSales

FROM Purchase

WHERE price > 1

GROUP BY product

Let‟s see what this means…

Find total quantities for all sales over $1, by product.

Dan Suciu -- p544 Fall 2010

79

Grouping and Aggregation

1. Compute the FROM and WHERE clauses.

2. Group by the attributes in the GROUPBY

3. Compute the SELECT clause, including aggregates.

Dan Suciu -- p544 Fall 2010

80

1&2. FROM-WHERE-GROUPBY

Product Price Quantity

Bagel 3 20

Bagel 1.50 20

Banana 0.5 50

Banana 2 10

Banana 4 10

Dan Suciu -- p544 Fall 2010

81

3. SELECT

SELECT product, Sum(quantity) AS TotalSales

FROM Purchase

WHERE price > 1

GROUP BY product

Product TotalSales

Bagel 40

Banana 20

Product Price
Quantit

y

Bagel 3 20

Bagel 1.50 20

Banana 0.5 50

Banana 2 10

Banana 4 10

Dan Suciu -- p544 Fall 2010

82

GROUP BY v.s. Nested Quereis

SELECT product, Sum(quantity) AS TotalSales

FROM Purchase

WHERE price > 1

GROUP BY product

SELECT DISTINCT x.product, (SELECT Sum(y.quantity)

 FROM Purchase y

 WHERE x.product = y.product

 AND price > 1)

 AS TotalSales

FROM Purchase x

WHERE price > 1

Why twice ?
Dan Suciu -- p544 Fall 2010

83

Another Example

SELECT product,

 sum(quantity) AS SumSales

 max(price) AS MaxQuantity

FROM Purchase

GROUP BY product

What does

it mean ?

Rule of thumb:

Every group in a GROUP BY is non-empty !

If we want to include empty groups in the
output, then we need either a subquery, or
a left outer join (see later)

Dan Suciu -- p544 Fall 2010

84

HAVING Clause

SELECT product, Sum(quantity)

FROM Purchase

WHERE price > 1

GROUP BY product

HAVING Sum(quantity) > 30

Same query, except that we consider only products that had

at least 100 buyers.

HAVING clause contains conditions on aggregates.

Dan Suciu -- p544 Fall 2010

85

General form of Grouping and
Aggregation

SELECT S

FROM R1,…,Rn

WHERE C1

GROUP BY a1,…,ak

HAVING C2

S = may contain attributes a1,…,ak and/or any aggregates but NO

OTHER ATTRIBUTES

C1 = is any condition on the attributes in R1,…,Rn

C2 = is any condition on aggregate expressions

Why ?

Dan Suciu -- p544 Fall 2010

86

General form of Grouping and
Aggregation

Evaluation steps:

1. Evaluate FROM-WHERE, apply condition C1

2. Group by the attributes a1,…,ak
3. Apply condition C2 to each group (may have aggregates)

4. Compute aggregates in S and return the result

SELECT S

FROM R1,…,Rn

WHERE C1

GROUP BY a1,…,ak

HAVING C2

Dan Suciu -- p544 Fall 2010

87

Advanced SQLizing

1. Unnesting Aggregates

2. Finding witnesses

Dan Suciu -- p544 Fall 2010

88

Unnesting Aggregates

Product (pname, price, company)

Company(cname, city)

Find the number of companies in each city

SELECT DISTINCT city, (SELECT count(*)
 FROM Company Y
 WHERE X.city = Y.city)
FROM Company X

SELECT city, count(*)
FROM Company
GROUP BY city

Equivalent queries

Note: no need for DISTINCT

(DISTINCT is the same as GROUP BY)
Dan Suciu -- p544 Fall 2010

89

Unnesting Aggregates

Product (pname, price, company)

Company(cname, city)

Find the number of products made in each city

SELECT DISTINCT X.city, (SELECT count(*)
 FROM Product Y, Company Z
 WHERE Y.cname=Z.company
 AND Z.city = X.city)
FROM Company X

SELECT X.city, count(*)
FROM Company X, Product Y
WHERE X.cname=Y.company
GROUP BY X.city

They are NOT

equivalent !

(WHY?)
Dan Suciu -- p544 Fall 2010

90

More Unnesting

• Find authors who wrote 10 documents:

• Attempt 1: with nested queries

SELECT DISTINCT Author.name

FROM Author

WHERE count(SELECT Wrote.url

 FROM Wrote

 WHERE Author.login=Wrote.login)

 > 10

This is

SQL by

a novice

Author(login,name)

Wrote(login,url)

Dan Suciu -- p544 Fall 2010

91

More Unnesting

• Find all authors who wrote at least 10
documents:

• Attempt 2: SQL style (with GROUP BY)

SELECT Author.name

FROM Author, Wrote

WHERE Author.login=Wrote.login

GROUP BY Author.name

HAVING count(wrote.url) > 10

This is

SQL by

an expert

Dan Suciu -- p544 Fall 2010

92

Finding Witnesses

Store(sid, sname)

Product(pid, pname, price, sid)

For each store,

find its most expensive products

Dan Suciu -- p544 Fall 2010

93

Finding Witnesses

SELECT Store.sid, max(Product.price)

FROM Store, Product

WHERE Store.sid = Product.sid

GROUP BY Store.sid

Finding the maximum price is easy…

But we need the witnesses, i.e. the products with max price

Dan Suciu -- p544 Fall 2010

94

Finding Witnesses

SELECT Store.sname, Product.pname

FROM Store, Product,

 (SELECT Store.sid AS sid, max(Product.price) AS p

 FROM Store, Product

 WHERE Store.sid = Product.sid

 GROUP BY Store.sid, Store.sname) X

WHERE Store.sid = Product.sid

 and Store.sid = X.sid and Product.price = X.p

To find the witnesses, compute the maximum price

in a subquery

Dan Suciu -- p544 Fall 2010

95

Finding Witnesses

There is a more concise solution here:

SELECT Store.sname, x.pname

FROM Store, Product x

WHERE Store.sid = x.sid and

 x.price >=

 ALL (SELECT y.price

 FROM Product y

 WHERE Store.sid = y.sid)

Dan Suciu -- p544 Fall 2010

96

NULLS in SQL

• Whenever we don’t have a value, we can put a NULL

• Can mean many things:

– Value does not exists

– Value exists but is unknown

– Value not applicable

– Etc.

• The schema specifies for each attribute if can be null
(nullable attribute) or not

• How does SQL cope with tables that have NULLs ?

Dan Suciu -- p544 Fall 2010

97

Null Values

• If x= NULL then 4*(3-x)/7 is still NULL

• If x= NULL then x=‘Joe’ is UNKNOWN

• In SQL there are three boolean values:

FALSE = 0

UNKNOWN = 0.5

TRUE = 1

Dan Suciu -- p544 Fall 2010

98

Null Values

• C1 AND C2 = min(C1, C2)

• C1 OR C2 = max(C1, C2)

• NOT C1 = 1 – C1

Rule in SQL: include only tuples that yield TRUE

SELECT *
FROM Person
WHERE (age < 25) AND
 (height > 6 OR weight > 190)

E.g.

age=20

heigth=NULL

weight=200

Dan Suciu -- p544 Fall 2010

99

Null Values

Unexpected behavior:

Some Persons are not included !

SELECT *

FROM Person

WHERE age < 25 OR age >= 25

Dan Suciu -- p544 Fall 2010

100

Null Values

Can test for NULL explicitly:
– x IS NULL

– x IS NOT NULL

Now it includes all Persons

SELECT *
FROM Person
WHERE age < 25 OR age >= 25 OR age IS NULL

Dan Suciu -- p544 Fall 2010

Outerjoins

101

SELECT Product.name, Purchase.store

FROM Product JOIN Purchase ON

 Product.name = Purchase.prodName

SELECT Product.name, Purchase.store

FROM Product, Purchase

WHERE Product.name = Purchase.prodName

Same as:

But Products that never sold will be lost !

Product(name, category)
Purchase(prodName,
store) An “inner join”:

Dan Suciu -- p544 Fall 2010

Outerjoins

102

 SELECT Product.name, Purchase.store

 FROM Product LEFT OUTER JOIN Purchase ON

 Product.name = Purchase.prodName

Product(name, category)
Purchase(prodName,
store)

If we want the never-sold products, need an “outerjoin”:

Dan Suciu -- p544 Fall 2010

103

Name Category

Gizmo gadget

Camera Photo

OneClick Photo

ProdName Store

Gizmo Wiz

Camera Ritz

Camera Wiz

Name Store

Gizmo Wiz

Camera Ritz

Camera Wiz

OneClick NULL

Product Purchase

Dan Suciu -- p544 Fall 2010

104

Application

Compute, for each product, the total number of sales in ‘September’
 Product(name, category)
 Purchase(prodName, month, store)

 SELECT Product.name, count(*)

 FROM Product, Purchase

 WHERE Product.name = Purchase.prodName

 and Purchase.month = „September‟

 GROUP BY Product.name

What‟s wrong ?
Dan Suciu -- p544 Fall 2010

105

Application

Compute, for each product, the total number of sales in ‘September’
 Product(name, category)
 Purchase(prodName, month, store)

 SELECT Product.name, count(store)

 FROM Product LEFT OUTER JOIN Purchase ON

 Product.name = Purchase.prodName

 and Purchase.month = „September‟

 GROUP BY Product.name

Now we also get the products who sold in 0 quantity
Dan Suciu -- p544 Fall 2010

106

Outer Joins

• Left outer join:
– Include the left tuple even if there’s no match

• Right outer join:
– Include the right tuple even if there’s no match

• Full outer join:
– Include the both left and right tuples even if there’s no

match

Dan Suciu -- p544 Fall 2010

