Lecture 02: Conceptual Design

Wednesday, October 6, 2010

Nulls

- count(category) != count(*) WHY ?
- Office hours: Thursdays, 5-6pm

Announcements

- Homework 2 is posted: due October 19 ${ }^{\text {th }}$
- You need to create tables, import data:
- On SQL Server, in your own database, OR
- On postgres (we will use it for Project 2)
- Follow Web instructions for importing data
- Read book about CREATE TABLE, INSERT, DELETE, UPDATE

Discussion

SQL Databases v. NoSQL Databases, Mike Stonebraker

- What are "No-SQL Databases" ?
- What are the two main types of workloads in a database ? (X and Y)
- How can one improve performance of X ?
- Where does the time of a single server go ?
- What are "single-record transactions" ?

Outline

- E/R diagrams
- From E/R diagrams to relations

Database Design

- Why do we need it?
- Agree on structure of the database before deciding on a particular implementation.
- Consider issues such as:
- What entities to model
- How entities are related
- What constraints exist in the domain
- How to achieve good designs
- Several formalisms exists
- We discuss E/R diagrams

Entity / Relationship Diagrams

Objects \rightarrow entities
Classes $\rightarrow \quad$ entity sets
Product
Attributes:

Relationships

- first class citizens (not associated with classes)
- not necessarily binary

Product

Company

Person

Keys in E/R Diagrams

- Every entity set must have a key
- May be a multi-attribute key:

What is a Relation ?

- A mathematical definition:
- if A, B are sets, then a relation R is a subset of $A \times B$
- $A=\{1,2,3\}, B=\{a, b, c, d\}$,
$A \times B=\{(1, a),(1, b), \ldots,(3, d)\}$
$R=\{(1, a),(1, c),(3, b)\}$

- makes is a subset of Product \times Company:

Multiplicity of E/R Relations

- one-one:
- many-one

Dan Suciu -- CSEP544 Fall 2010

Notation in Class v.s. the Book

In class:

In the book:

Multi-way Relationships

Converting Multi-way Relationships to Binary

3. Design Principles

What's wrong?

Design Principles: What's Wrong?

Design Principles: What's Wrong?

From E/R Diagrams to Relational Schema

- Entity set \rightarrow relation
- Relationship \rightarrow relation

Entity Set to Relation

Product(prod-ID, category, price)

prod-ID	category	price
Gizmo55	Camera	99.99
Pokemn19	Toy	29.99

Create Table (SQL)

CREATE TABLE Product (prod-ID CHAR(30) PRIMARY KEY, category VARCHAR(20), price double)

Relationships to Relations

Create Table (SQL)

CREATE TABLE Shipment (name CHAR(30) REFERENCES Shipping-Co, prod-ID CHAR(30), cust-ID VARCHAR(20), date DATETIME,

PRIMARY KEY (name, prod-ID, cust-ID),
FOREIGN KEY (prod-ID, cust-ID)
REFERENCES Orders
)

Multi-way Relationships to Relations

Modeling Subclasses

Products
 Software products
 Educational products

Subclasses

Understanding Subclasses

- Think in terms of records:
- Product
field1
field2
- SoftwareProduct
field1
field2
- EducationalProduct
field3
field1
field2
field4
field5

Subclasses to Relations

Product

Name	Price	Category
Gizmo	99	gadget
Camera	49	photo
Toy	39	gadget

Modeling UnionTypes With Subclasses

FurniturePiece

Company

Say: each piece of furniture is owned either by a person, or by a company

Modeling Union Types with Subclasses

Say: each piece of furniture is owned either by a person, or by a company
Solution 1. Acceptable (What's wrong?)

Modeling Union Types with Subclasses

Solution 2: More faithful

Constraints in E/R Diagrams

Finding constraints is part of the modeling process. Commonly used constraints:

Keys: social security number uniquely identifies a person.
Single-value constraints: a person can have only one father.
Referential integrity constraints: if you work for a company, it must exist in the database.

Other constraints: peoples' ages are between 0 and 150.

Keys in E/R Diagrams

Underline:

Multi-attribute key

v.s.

Multiple keys

Not possible in E/R

Single Value Constraints

v. s.

Referential Integrity Constraints

Each product made by at most one company. Some products made by no company

Each product made by exactly one company.

Other Constraints

What does this mean?

Weak Entity Sets

Entity sets are weak when their key comes from other classes to which they are related.

Notice: we encountered this when converting multiway relationships to binary relationships

Handling Weak Entity Sets

How do we represent this with relations ?

Weak Entity Sets

Weak entity set = entity where part of the key comes from another

Convert to a relational schema (in class)

Design Theory

Schema Refinements = Normal Forms

- 1st Normal Form = all tables are flat
- 2nd Normal Form = obsolete
- Boyce Codd Normal Form = will study
- 3rd Normal Form = see book

First Normal Form (1NF)

- A database schema is in First Normal Form if all tables are flat Student

Student

Name	GPA	Courses
Alice	3.8	Math DB os Bob 3.7 Carol 3.9 OB
Oath		

Name	GPA
Alice	3.8
Bob	3.7
Carol	3.9

	Takes		Course
	Student	Course	
May need to add keys	Alice	Math	Course
	Carol	Math	Math
	Alice	DB	DB
	Bob	DB	OS
	Alice	OS	45
	Carol	OS	

Relational Schema Design

Conceptual Model:

Relational Model: plus FD's

Normalization:
Eliminates anomalies

Data Anomalies

When a database is poorly designed we get anomalies:

Redundancy: data is repeated
Updated anomalies: need to change in several places
Delete anomalies: may lose data when we don't want

Relational Schema Design

Recall set attributes (persons with several phones):

Name	SSN	PhoneNumber	City
Fred	$123-45-6789$	$206-555-1234$	Seattle
Fred	$123-45-6789$	$206-555-6543$	Seattle
Joe	$987-65-4321$	$908-555-2121$	Westfield

One person may have multiple phones, but lives in only one city

Anomalies:

- Redundancy = repeat data
- Update anomalies = Fred moves to "Bellevue"
- Deletion anomalies $=$ Joe deletes his phone number: what is his city?

Relation Decomposition

Break the relation into two:

- No more repeated data
- Easy to move Fred to "Bellevue" (how ?)
- Easy to delete all Joe's phone number (how ?)

Relational Schema Design (or Logical Design)

Main idea:

- Start with some relational schema
- Find out its functional dependencies
- Use them to design a better relational schema

Functional Dependencies

- A form of constraint
- hence, part of the schema
- Finding them is part of the database design
- Also used in normalizing the relations

Functional Dependencies

Definition:

If two tuples agree on the attributes

$$
\mathrm{A}_{1}, \mathrm{~A}_{2}, \ldots, \mathrm{~A}_{\mathrm{n}}
$$

then they must also agree on the attributes

$$
\mathrm{B}_{1}, \mathrm{~B}_{2}, \ldots, \mathrm{~B}_{\mathrm{m}}
$$

Formally:

$$
\mathrm{A}_{1}, \mathrm{~A}_{2}, \ldots, \mathrm{~A}_{\mathrm{n}} \rightarrow \mathrm{~B}_{1}, \mathrm{~B}_{2}, \ldots, \mathrm{~B}_{\mathrm{m}}
$$

When Does an FD Hold

Definition: $\quad A_{1}, \ldots, A_{m} \rightarrow B_{1}, \ldots, B_{n}$ holds in R if:
$\forall t, t^{\prime} \in R,\left(t . A_{1}=t^{\prime} . A_{1} \wedge \ldots \wedge t . A_{m}=t^{\prime} . A_{m} \Rightarrow t . B_{1}=t^{\prime} . B_{1} \wedge \ldots \wedge t . B_{n}=t^{\prime} . B_{n}\right)$ R

if t, t ' agree here then t, t agree here

Examples

An FD holds, or does not hold on an instance:

EmpID	Name	Phone	Position
E0045	Smith	1234	Clerk
E3542	Mike	9876	Salesrep
E1111	Smith	9876	Salesrep
E9999	Mary	1234	Lawyer

EmpID \rightarrow Name, Phone, Position
Position \rightarrow Phone
but not Phone \rightarrow Position

Example

EmpID	Name	Phone	Position
E0045	Smith	1234	Clerk
E3542	Mike	$9876 \leftarrow$	Salesrep
E1111	Smith	$9876 \leftarrow$	Salesrep
E9999	Mary	1234	Lawyer

Position \rightarrow Phone

Example

EmpID	Name	Phone	Position
E0045	Smith	$1234 \rightarrow$	Clerk
E3542	Mike	9876	Salesrep
E1111	Smith	9876	Salesrep
E9999	Mary	$1234 \rightarrow$	Lawyer

but not Phone \rightarrow Position

Example

FD's are constraints:
On some instances they hold
On others they don't

```
name }->\mathrm{ color
category }->\mathrm{ department
color, category }->\mathrm{ price
```

name	category	color	department	price
Gizmo	Gadget	Green	Toys	49
Tweaker	Gadget	Green	Toys	99

Does this instance satisfy all the FDs ?

Example

name \rightarrow color category \rightarrow department color, category \rightarrow price

name	category	color	department	price
Gizmo	Gadget	Green	Toys	49
Tweaker	Gadget	Black	Toys	99
Gizmo	Stationary	Green	Office-supp.	59

An Interesting Observation

If all these FDs are true:

name \rightarrow color
category \rightarrow department
color, category \rightarrow price

Then this FD also holds:

```
name, category }->\mathrm{ price
```


Goal: Find ALL Functional Dependencies

- Anomalies occur when certain "bad" FDs hold
- We know some of the FDs
- Need to find all FDs, then look for the bad ones

Armstrong's Rules (1/3)

$$
\mathrm{A}_{1}, \mathrm{~A}_{2}, \ldots, \mathrm{~A}_{\mathrm{n}} \rightarrow \mathrm{~B}_{1}, \mathrm{~B}_{2}, \ldots, \mathrm{~B}_{\mathrm{m}}
$$

Is equivalent to

Splitting rule and

Combing rule

$$
\begin{array}{|l}
\begin{array}{l}
\mathrm{A}_{1}, \mathrm{~A}_{2}, \ldots, \mathrm{~A}_{\mathrm{n}} \rightarrow \mathrm{~B}_{1} \\
\mathrm{~A}_{1}, \mathrm{~A}_{2}, \ldots, \mathrm{~A}_{\mathrm{n}} \rightarrow \mathrm{~B}_{2} \\
\ldots \\
\mathrm{~A}_{1}, \mathrm{~A}_{2}, \ldots, \mathrm{~A}_{\mathrm{n}} \rightarrow \mathrm{~B}_{\mathrm{m}}
\end{array} \quad \begin{array}{|l|l|l|l|l|l|l|l|l|}
\hline & \mathrm{AI} & \ldots & \mathrm{Am} & & \mathrm{Bl} & \ldots & \mathrm{Bm} & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline
\end{array} \\
\text { Dan Suciu -- CSEP544 Fall 2010 }
\end{array}
$$

Armstrong's Rules (2/3)

$$
\mathrm{A}_{1}, \mathrm{~A}_{2}, \ldots, \mathrm{~A}_{\mathrm{n}} \rightarrow \mathrm{~A}_{\mathrm{i}}
$$

Trivial Rule

where $\mathrm{i}=1,2, \ldots, \mathrm{n}$

Why?

Armstrong's Rules (3/3)

Transitive Closure Rule

If

$$
\mathrm{A}_{1}, \mathrm{~A}_{2}, \ldots, \mathrm{~A}_{\mathrm{n}} \rightarrow \mathrm{~B}_{1}, \mathrm{~B}_{2}, \ldots, \mathrm{~B}_{\mathrm{m}}
$$

and

$$
\mathrm{B}_{1}, \mathrm{~B}_{2}, \ldots, \mathrm{~B}_{\mathrm{m}} \rightarrow \mathrm{C}_{1}, \mathrm{C}_{2}, \ldots, \mathrm{C}_{\mathrm{p}}
$$

then

$$
\frac{\mathrm{A}_{1}, \mathrm{~A}_{2}, \ldots, \mathrm{~A}_{\mathrm{n}} \rightarrow \mathrm{C}_{1}, \mathrm{C}_{2}, \ldots, \mathrm{C}_{\mathrm{p}}}{\text { Why ? }}
$$

	A_{1}	\ldots	$\mathrm{~A}_{\mathrm{m}}$		B_{1}	\ldots	$\mathrm{~B}_{\mathrm{m}}$		C_{1}	\ldots	C_{p}	

Example (continued)

Start from the following FDs:

Infer the following FDs:

Inferred FD	Which Rule did we apply ?
4. name, category \rightarrow name	
5. name, category \rightarrow color	
6. name, category \rightarrow category	
7. name, category \rightarrow color, category	
8. name, category \rightarrow price	

Example (continued)

Answers:
2. category \rightarrow department
3. color, category \rightarrow price

Inferred FD	Which Rule did we apply ?
4. name, category \rightarrow name	Trivial rule
5. name, category \rightarrow color	Transitivity on 4, 1
6. name, category \rightarrow category	Trivial rule
7. name, category \rightarrow color, category	Split/combine on 5, 6
8. name, category \rightarrow price	Transitivity on 3, 7

THIS IS TOO HARD! Let's see an easier way.

Closure of a set of Attributes

Given a set of attributes A_{1}, \ldots, A_{n}

The closure, $\left\{\mathrm{A}_{1}, \ldots, \mathrm{~A}_{\mathrm{n}}\right\}^{+}=$the set of attributes B s.t. $\mathrm{A}_{1}, \ldots, \mathrm{~A}_{\mathrm{n}} \rightarrow \mathrm{B}$

Example:

Closures:

> | name \rightarrow color |
| :--- |
| category \rightarrow department |
| color, category \rightarrow price |

name $^{+}=\{$name, color $\}$
$\{\text { name, category }\}^{+}=\{$name, category, color, department, price $\}$
color $^{+}=\{$color $\}$

Closure Algorithm

$X=\{A 1, \ldots, A n\}$.

Repeat until X doesn't change do:
if $\quad \mathrm{B}_{1}, \ldots, \mathrm{~B}_{\mathrm{n}} \rightarrow \mathrm{C}$ is a FD and $\mathrm{B}_{1}, \ldots, \mathrm{~B}_{\mathrm{n}}$ are all in X then add C to X .
$\{\text { name, category }\}^{+}=$ \{

Example:
name \rightarrow color
category \rightarrow department color, category \rightarrow price

Hence: name, category \rightarrow color, department, price

Example

In class:
R(A,B,C,D,E,F)

$$
\begin{aligned}
& \mathrm{A}, \mathrm{~B} \rightarrow \mathrm{C} \\
& \mathrm{~A}, \mathrm{D} \rightarrow \mathrm{E} \\
& \mathrm{~B} \\
& \mathrm{~A}, \mathrm{~F}
\end{aligned} \mathrm{C}_{\mathrm{D}} \mathrm{~B}
$$

Compute $\{\mathrm{A}, \mathrm{B}\}^{+} \quad \mathrm{X}=\{\mathrm{A}, \mathrm{B}$,

Compute $\{\mathrm{A}, \mathrm{F}\}^{+} \quad \mathrm{X}=\{\mathrm{A}, \mathrm{F}$,

Why Do We Need Closure

- With closure we can find all FD's easily
- To check if $X \rightarrow A$
- Compute X $^{+}$
- Check if $A \in X^{+}$

Using Closure to Infer ALL FDs

Example:

$$
\left\lvert\, \begin{array}{lll|}
\mathrm{A}, \mathrm{~B} & \rightarrow & \mathrm{C} \\
\mathrm{~A}, \mathrm{D} & \rightarrow & \mathrm{~B} \\
\mathrm{~B} & \rightarrow & \mathrm{D} \\
\hline
\end{array}\right.
$$

Step 1: Compute X^{+}, for every X :

$$
\begin{aligned}
& \mathrm{A}+=\mathrm{A}, \mathrm{~B}+=\mathrm{BD}, \mathrm{C}+=\mathrm{C}, \mathrm{D}+=\mathrm{D} \\
& \mathrm{AB}+=\mathrm{ABCD}, \mathrm{AC}+=\mathrm{AC}, \mathrm{AD}+=\mathrm{ABCD}, \\
& \mathrm{BC}+=\mathrm{BCD}, \mathrm{BD}+=\mathrm{BD}, \mathrm{CD}+=\mathrm{CD} \\
& \mathrm{ABC}+=\mathrm{ABD}+=\mathrm{ACD}^{+}=\mathrm{ABCD} \text { (no need to compute}- \text { why ?) } \\
& \mathrm{BCD}^{+}=\mathrm{BCD}, \quad \mathrm{ABCD}+=\mathrm{ABCD}
\end{aligned}
$$

Step 2: Enumerate all FD's $\mathrm{X} \rightarrow \mathrm{Y}$, s.t. $\mathrm{Y} \subseteq \mathrm{X}^{+}$and $\mathrm{X} \cap \mathrm{Y}=\varnothing$:

$$
\mathrm{AB} \rightarrow \mathrm{CD}, \mathrm{AD} \rightarrow \mathrm{BC}, \mathrm{ABC} \rightarrow \mathrm{D}, \mathrm{ABD} \rightarrow \mathrm{C}, \mathrm{ACD} \rightarrow \mathrm{~B}
$$

Another Example

- Enrollment(student, major, course, room, time)
student \rightarrow major
major, course \rightarrow room
course \rightarrow time

What else can we infer ? [in class, or at home]

Keys

- A superkey is a set of attributes A_{1}, \ldots, A_{n} s.t. for any other attribute B, we have $A_{1}, \ldots, A_{n} \rightarrow$ B
- A key is a minimal superkey
- I.e. set of attributes which is a superkey and for which no subset is a superkey

Computing (Super)Keys

- Compute X^{+}for all sets X
- If $X^{+}=$all attributes, then X is a key
- List only the minimal X's

Example

Product(name, price, category, color)

```
name, category }->\mathrm{ price
category }->\mathrm{ color
```

What is the key?

Example

Product(name, price, category, color)

```
name, category }->\mathrm{ price
category }->\mathrm{ color
```

What is the key?
(name, category) $+=$ name, category, price, color
Hence (name, category) is a key

Examples of Keys

Enrollment(student, address, course, room, time)

student \rightarrow address
room, time \rightarrow course
student, course \rightarrow room, time

(find keys at home)

Eliminating Anomalies

Main idea:

- $X \rightarrow A$ is $O K$ if X is a (super)key
- $X \rightarrow A$ is not OK otherwise

Example

Name	SSN	PhoneNumber	City
Fred	$123-45-6789$	$206-555-1234$	Seattle
Fred	$123-45-6789$	$206-555-6543$	Seattle
Joe	$987-65-4321$	$908-555-2121$	Westfield
Joe	$987-65-4321$	$908-555-1234$	Westfield

SSN \rightarrow Name, City

What the key?\}

Example

Name	SSN	PhoneNumber	City
Fred	$123-45-6789$	$206-555-1234$	Seattle
Fred	$123-45-6789$	$206-555-6543$	Seattle
Joe	$987-65-4321$	$908-555-2121$	Westfield
Joe	$987-65-4321$	$908-555-1234$	Westfield

SSN \rightarrow Name, City

What the key?
\{SSN, PhoneNumber \}
Hence SSN \rightarrow Name, City is a "bad" dependency 80

Key or Keys ?

Can we have more than one key ?

Given $R(A, B, C)$ define FD's s.t. there are two or more keys

Key or Keys ?

Can we have more than one key ?

Given $R(A, B, C)$ define FD's s.t. there are two or more keys

$$
\begin{array}{|l|l|}
\hline \mathrm{AB} \rightarrow \mathrm{C} \\
\mathrm{BC} \rightarrow \mathrm{~A}
\end{array} \quad \text { or } \quad \begin{aligned}
& \mathrm{A} \rightarrow \mathrm{BC} \\
& \mathrm{~B} \rightarrow \mathrm{AC}
\end{aligned}
$$

what are the keys here?
Can you design FDs such that there are three keys?

Boyce-Codd Normal Form

A simple condition for removing anomalies from relations:
A relation R is in BCNF if:

- If $\mathrm{A}_{1}, \ldots, \mathrm{~A}_{\mathrm{n}} \rightarrow \mathrm{B}$ is a non-trivial dependency
- in R, then $\left\{A_{1}, \ldots, A_{n}\right\}$ is a superkey for R

In other words: there are no "bad" FDs

Equivalently:
$\forall \mathrm{X}$, either $\left(\mathrm{X}^{+}=\mathrm{X}\right) \quad$ or $\quad\left(\mathrm{X}^{+}=\right.$all attributes $)$ Dan Suciu -- CSEP544 Fall 2010

BCNF Decomposition Alaorithm

repeat

choose $\mathrm{A}_{1}, \ldots, \mathrm{~A}_{\mathrm{m}} \rightarrow \mathrm{B}_{1}, \ldots, \mathrm{~B}_{\mathrm{n}}$ that violates BNCF
split R into $\mathrm{R}_{1}\left(\mathrm{~A}_{1}, \ldots, \mathrm{~A}_{\mathrm{m}}, \mathrm{B}_{1}, \ldots, \mathrm{~B}_{\mathrm{n}}\right)$ and $\mathrm{R}_{2}\left(\mathrm{~A}_{1}, \ldots, \mathrm{~A}_{\mathrm{m}}\right.$, [others]) continue with both R_{1} and R_{2}
until no more violations

Is there a
 2-attribute
 relation that is
 not in BCNF ?

In practice, we have a better algorithm (coming ${ }^{84}$ up)

Example

Name	SSN	PhoneNumber	City
Fred	$123-45-6789$	$206-555-1234$	Seattle
Fred	$123-45-6789$	$206-555-6543$	Seattle
Joe	$987-65-4321$	$908-555-2121$	Westfield
Joe	$987-65-4321$	$908-555-1234$	Westfield

SSN \rightarrow Name, City

What the key?
\{SSN, PhoneNumber \}
use SSN \rightarrow Name, City
to split

Example

Name	SSN	City
SSN \rightarrow Name, City		
	$123-45-6789$	Seattle
Joe	$987-65-4321$	Westfield

SSN	PhoneNumber
$123-45-6789$	$206-555-1234$
$123-45-6789$	$206-555-6543$
$987-65-4321$	$908-555-2121$
$987-65-4321$	$908-555-1234$
	Redundancy $?$
Update?	
Delete?	

Example Decomposition

Person(name, SSN, age, hairColor, phoneNumber)

SSN \rightarrow name, age
age \rightarrow hairColor

Decompose in BCNF (in class):

BCNF Decomposition Algorithm

BCNF_Decompose(R)
find X s.t.: $\mathrm{X} \neq \mathrm{X}^{+} \neq[$all attributes $]$
if (not found) then " R is in BCNF"
let $\mathrm{Y}=\mathrm{X}^{+}-\mathrm{X}$
let $\mathrm{Z}=$ [all attributes $]-\mathrm{X}^{+}$ decompose R into $\mathrm{R} 1(\mathrm{X} \cup \mathrm{Y})$ and $\mathrm{R} 2(\mathrm{X} \cup \mathrm{Z})$ continue to decompose recursively R1 and R2

Find X s.t.: $\mathrm{X} \neq \mathrm{X}^{+} \neq[$all attributes $]$

Example BCNF Decomposition

Person(name, SSN, age, hairColor, phoneNumber)

SSN \rightarrow name, age
age \rightarrow hairColor

Find X s.t.: $\mathrm{X} \neq \mathrm{X}^{+} \neq[$all attributes $]$

Example BCNF Decomposition

Person(name, SSN, age, hairColor, phoneNumber)

SSN \rightarrow name, age
age \rightarrow hairColor

What are the keys?

Iteration 1: Person: SSN+ = SSN, name, age, hairColor
Decompose into: P(SSN, name, age, hairColor) Phone(SSN, phoneNumber)

Iteration 2: P: age+ = age, hairColor
Decompose: People(SSN, name, age)
Hair(age, hairColor)
Phone(SSN, phoneNumber)

R(A,B,C,D)

Example

$$
\begin{aligned}
& \mathrm{A} \rightarrow \mathrm{~B} \\
& \mathrm{~B} \rightarrow \mathrm{C}
\end{aligned}
$$

R(A,B,C,D) $\mathrm{A}^{+}=\mathrm{ABC} \neq \mathrm{ABCD}$

R(A,B,C,D)

Example

$$
\begin{aligned}
& A \rightarrow B \\
& B \rightarrow C
\end{aligned}
$$

What happens if in R we first pick B^{+}? Or AB^{+}?
Dan Suciu -- CSEP544 Fall 2010

Decompositions in General

$$
\begin{aligned}
& \mathrm{R}_{1}=\text { projection of } \mathrm{R} \text { on } \mathrm{A}_{1}, \ldots, \mathrm{~A}_{\mathrm{n}}, \mathrm{~B}_{1}, \ldots, \mathrm{~B}_{\mathrm{m}} \\
& \mathrm{R}_{2}=\text { projection of } \mathrm{R} \text { on } \mathrm{A}_{1}, \ldots, \mathrm{~A}_{\mathrm{n}}, \mathrm{C}_{1}, \ldots, \mathrm{C}_{\mathrm{p}}
\end{aligned}
$$

Theory of Decomposition

Sometimes it is correct:

Lossless decomposition

Incorrect Decomposition

Sometimes it is not:

Decompositions in General

$$
\text { If } \mathrm{A}_{1}, \ldots, \mathrm{~A}_{\mathrm{n}} \rightarrow \mathrm{~B}_{1}, \ldots, \mathrm{~B}_{\mathrm{m}}
$$

Then the decomposition is lossless
Note: don't need $A_{1}, \ldots, A_{n} \rightarrow C_{1}, \ldots, C_{p}$

