
Lecture 03:

Views and Constraints

Wednesday, October 13, 2010

Dan Suciu -- CSEP544 Fall 2010 1

2

Announcements

• HW1: was due yesterday

• HW2: due next Tuesday

Dan Suciu -- CSEP544 Fall 2010

Outline and Reading Material

• Constraints and triggers

– Book: 3.2, 3.3, 5.8

• Views

– Book: 3.6

– Answering queries using views: A survey,

A.Y. Halevy: Sections 1 and 2 (Section 3 is

optional)

Dan Suciu -- CSEP544 Fall 2010 3

Most of today’s material is NOT covered in the book.

Read the slides carefully

4

Constraints

• A constraint = a property that we’d like our
database to hold

• Enforce it by taking some actions:

– Forbid an update

– Or perform compensating updates

• Two approaches:

– Declarative integrity constraints

– Triggers

Dan Suciu -- CSEP544 Fall 2010

Integrity Constraints in SQL

• Keys, foreign keys

• Attribute-level constraints

• Tuple-level constraints

• Global constraints: assertions

The more complex the constraint, the
harder it is to check and to enforce

Dan Suciu -- CSEP544 Fall 2010 5

simple

complex

6

Keys

OR:

CREATE TABLE Product (

name CHAR(30) PRIMARY KEY,

price INT)

CREATE TABLE Product (

name CHAR(30),

price INT,

PRIMARY KEY (name))

Product(name, price)

Dan Suciu -- CSEP544 Fall 2010

7

Keys with Multiple Attributes

CREATE TABLE Product (

name CHAR(30),

category VARCHAR(20),

price INT,

PRIMARY KEY (name, category))

Name Category Price

Gizmo Gadget 10

Camera Photo 20

Gizmo Photo 30

Gizmo Gadget 40

Product(name, category, price)

8

Other Keys

(productID),

CREATE TABLE Product (
productID CHAR(10),
name CHAR(30),
category VARCHAR(20),
price INT,
PRIMARY KEY (productID),
UNIQUE (name, category))

There is at most one PRIMARY KEY;

there can be many UNIQUE
Dan Suciu -- CSEP544 Fall 2010

9

Foreign Key Constraints

CREATE TABLE Purchase (

buyer CHAR(30),

seller CHAR(30),

product CHAR(30) REFERENCES Product(name),

store VARCHAR(30))

Foreign key

Purchase(buyer, seller, product, store)

Product(name, price)

Dan Suciu -- CSEP544 Fall 2010

10

Name Category

Gizmo gadget

Camera Photo

OneClick Photo

ProdName Store

Gizmo Wiz

Camera Ritz

Camera Wiz

Product Purchase

Dan Suciu -- CSEP544 Fall 2010

Foreign Key Constraints

11

Purchase(buyer, seller, product, category, store)

Product(name, category, price)

CREATE TABLE Purchase(

buyer VARCHAR(50),

seller VARCHAR(50),

product CHAR(20),

category VAVRCHAR(20),

store VARCHAR(30),

FOREIGN KEY (product, category)

REFERENCES Product(name, category)

);

Dan Suciu -- CSEP544 Fall 2010

12

Name Category

Gizmo gadget

Camera Photo

OneClick Photo

ProdName Store

Gizmo Wiz

Camera Ritz

Camera Wiz

Product Purchase

What happens during updates

?

Types of updates:

• In Purchase: insert/update

• In Product: delete/update

13

What happens during updates

?
• SQL has three policies for maintaining

referential integrity:

• Reject violating modifications (default)

• Cascade: after a delete/update do a
delete/update

• Set-null set foreign-key field to NULL

Dan Suciu -- CSEP544 Fall 2010

Constraints on Attributes and

Tuples

14

CREATE TABLE Purchase (. . .
store VARCHAR(30) NOT NULL, . . .)

CREATE TABLE Product (. . .

price INT CHECK (price >0 and price < 999))

Attribute level constraints:

Tuple level constraints:

Dan Suciu -- CSEP544 Fall 2010 . . . CHECK (price * quantity < 10000) . . .

15

CREATE TABLE Purchase (
prodName CHAR(30)

CHECK (prodName IN
SELECT Product.name
FROM Product),

date DATETIME NOT NULL)

What

is the difference from

Foreign-Key ?

Dan Suciu -- CSEP544 Fall 2010

16

General Assertions

CREATE ASSERTION myAssert CHECK

NOT EXISTS(

SELECT Product.name

FROM Product, Purchase

WHERE Product.name = Purchase.prodName

GROUP BY Product.name

HAVING count(*) > 200)

Dan Suciu -- CSEP544 Fall 2010

17

Comments on Constraints

• Can give them names, and alter later

• We need to understand exactly when
they are checked

• We need to understand exactly what
actions are taken if they fail

Dan Suciu -- CSEP544 Fall 2010

Semantic Optimization using

Constraints

18

SELECT Purchase.store

FROM Product, Purchase

WHERE Product.name=Purchase.product

Purchase(buyer, seller, product, store)

Product(name, price)

SELECT Purchase.store

FROM Purchase

Why ? and When ?

19

Triggers

Trigger = a procedure invoked by the
DBMS in response to an update to the
database

Some applications use triggers to enforce
integrity constraints

Trigger = Event + Condition + Action

Dan Suciu -- CSEP544 Fall 2010

20

Triggers in SQL

• Event = INSERT, DELETE, UPDATE

• Condition = any WHERE condition

– Refers to the old and the new values

• Action = more inserts, deletes, updates

– May result in cascading effects !

Dan Suciu -- CSEP544 Fall 2010

21

Example: Row Level Trigger

CREATE TRIGGER InsertPromotions AFTER UPDATE OF price ON Product

REFERENCING

OLD AS x

NEW AS y

FOR EACH ROW

WHEN (x.price > y.price)

INSERT INTO Promotions(name, discount)

VALUES x.name,

(x.price-y.price)*100/x.price

Event

Condition

Action

Warning: complex syntax and vendor specific.

Take away from the slides the main ideas, not the syntactic details

22

EVENTS

INSERT, DELETE, UPDATE

• Trigger can be:

– AFTER event

– INSTEAD of event

Dan Suciu -- CSEP544 Fall 2010

23

Scope

• FOR EACH ROW = trigger executed for
every row affected by update
– OLD ROW

– NEW ROW

• FOR EACH STATEMENT = trigger executed
once for the entire statement
– OLD TABLE

– NEW TABLE

Dan Suciu -- CSEP544 Fall 2010

24

Statement Level Trigger

CREATE TRIGGER avg-price INSTEAD OF UPDATE OF price ON Product

REFERENCING
OLD_TABLE AS OldStuff
NEW_TABLE AS NewStuff

FOR EACH STATEMENT
WHEN (1000 < (SELECT AVG (price)

FROM ((Product EXCEPT OldStuff) UNION NewStuff))
DELETE FROM Product

WHERE (name, price, company) IN OldStuff;
INSERT INTO Product

(SELECT * FROM NewStuff)

Dan Suciu -- CSEP544 Fall 2010

25

Trigers v.s. Constraints

Active database = a database with triggers

• Triggers can be used to enforce ICs

• Triggers are more general: alerts, log events

• But hard to understand: recursive triggers

• Syntax is vendor specific, and may vary
significantly
– Postgres has rules in addition to triggers

Dan Suciu -- CSEP544 Fall 2010

Views: Overview

• Virtual views

– Applications

– Technical challenges

• Materialized views

– Applications

– Technical challenges

Dan Suciu -- CSEP544 Fall 2010 26

27

Views

Views are relations, but may not be physically stored.

For presenting different information to different users

Employee(ssn, name, department, project, salary)

Payroll has access to Employee, others only to Developers

CREATE VIEW Developers AS

SELECT name, project

FROM Employee

WHERE department = ‘Development’

Dan Suciu -- CSEP544 Fall 2010

28

CREATE VIEW CustomerPrice AS
SELECT x.customer, y.price
FROM Purchase x, Product y
WHERE x.product = y.pname

Example
Purchase(customer, product, store)
Product(pname, price)

CustomerPrice(customer, price) “virtual table”

Dan Suciu -- CSEP544 Fall 2010

29

SELECT u.customer, v.store

FROM CustomerPrice u, Purchase v

WHERE u.customer = v.customer AND

u.price > 100

We can later use the view:

Purchase(customer, product, store)
Product(pname, price)

CustomerPrice(customer, price)

Dan Suciu -- CSEP544 Fall 2010

30

Types of Views

• Virtual views:
– Used in databases

– Computed only on-demand – slow at runtime

– Always up to date

• Materialized views
– Used in data warehouses

– Pre-computed offline – fast at runtime

– May have stale data or expensive synchronization

Dan Suciu -- CSEP544 Fall 2010

31

Queries Over Virtual Views:

Query Modification

SELECT u.customer, v.store

FROM CustomerPrice u, Purchase v

WHERE u.customer = v.customer AND

u.price > 100

CREATE VIEW CustomerPrice AS

SELECT x.customer, y.price

FROM Purchase x, Product y

WHERE x.product = y.pname

View:

Query:

Purchase(customer, product, store)
Product(pname, price)

CustomerPrice(customer, price)

Dan Suciu -- CSEP544 Fall 2010

32

Queries Over Virtual Views:

Query Modification

SELECT u.customer, v.store

FROM (SELECT x.customer, y.price

FROM Purchase x, Product y

WHERE x.product = y.pname) u, Purchase v

WHERE u.customer = v.customer AND

u.price > 100

Modified query:

Dan Suciu -- CSEP544 Fall 2010

Purchase(customer, product, store)
Product(pname, price)

CustomerPrice(customer, price)

33

Queries Over Virtual Views:

Query Modification

SELECT x.customer, v.store

FROM Purchase x, Product y, Purchase v,

WHERE x.customer = v.customer AND

y.price > 100 AND

x.product = y.pname

Modified and unnested query:

Dan Suciu -- CSEP544 Fall 2010

Purchase(customer, product, store)
Product(pname, price)

CustomerPrice(customer, price)

34

Another Example

SELECT DISTINCT u.customer, v.store

FROM CustomerPrice u, Purchase v

WHERE u.customer = v.customer AND

u.price > 100

??

Dan Suciu -- CSEP544 Fall 2010

Purchase(customer, product, store)
Product(pname, price)

CustomerPrice(customer, price)

35

Answer

SELECT DISTINCT u.customer, v.store

FROM CustomerPrice u, Purchase v

WHERE u.customer = v.customer AND

u.price > 100

Dan Suciu -- CSEP544 Fall 2010

Purchase(customer, product, store)
Product(pname, price)

CustomerPrice(customer, price)

SELECT DISTINCT x.customer, v.store

FROM Purchase x, Product y, Purchase v,

WHERE x.customer = v.customer AND

y.price > 100 AND

x.product = y.pname

36

Applications of Virtual Views

• Physical data independence. E.g.
– Vertical data partitioning

– Horizontal data partitioning

• Security
– The view reveals only what the users are

allowed to know

Dan Suciu -- CSEP544 Fall 2010

Vertical Partitioning
SSN Name Address Resume Picture

234234 Mary Huston Clob1… Blob1…

345345 Sue Seattle Clob2… Blob2…

345343 Joan Seattle Clob3… Blob3…

234234 Ann Portland Clob4… Blob4…

Resumes

SSN Name Address

234234 Mary Huston

345345 Sue Seattle

. . .

SSN Resume

234234 Clob1…

345345 Clob2…

SSN Picture

234234 Blob1…

345345 Blob2…

T1 T2 T3

38

Vertical Partitioning

CREATE VIEW Resumes AS

SELECT T1.ssn, T1.name, T1.address,

T2.resume, T3.picture

FROM T1,T2,T3

WHERE T1.ssn=T2.ssn and T2.ssn=T3.ssn

Dan Suciu -- CSEP544 Fall 2010

39

Vertical Partitioning

SELECT address

FROM Resumes

WHERE name = ‘Sue’

Which of the tables T1, T2, T3 will

be queried by the system ?

Dan Suciu -- CSEP544 Fall 2010

40

Vertical Partitioning

When to do this:

• When some fields are large, and rarely
accessed
– E.g. Picture

• In distributed databases
– Customer personal info at one site, customer

profile at another

• In data integration
– T1 comes from one source

– T2 comes from a different source

Dan Suciu -- CSEP544 Fall 2010

41

Horizontal Partitioning

SSN Name City Country

234234 Mary Huston USA

345345 Sue Seattle USA

345343 Joan Seattle USA

234234 Ann Portland USA

-- Frank Calgary Canada

-- Jean Montreal Canada

Customers

SSN Name City Country

234234 Mary Huston USA

CustomersInHuston

SSN Name City Country

345345 Sue Seattle USA

345343 Joan Seattle USA

CustomersInSeattle

SSN Name City Country

-- Frank Calgary Canada

-- Jean Montreal Canada

CustomersInCanada

42

Horizontal Partitioning

CREATE VIEW Customers AS
CustomersInHuston

UNION ALL
CustomersInSeattle

UNION ALL
. . .

Dan Suciu -- CSEP544 Fall 2010

43

Horizontal Partitioning

SELECT name

FROM Cusotmers

WHERE city = ‘Seattle’

Which tables are inspected by the system ?

WHY ???
Dan Suciu -- CSEP544 Fall 2010

44

Horizontal Partitioning

SELECT name

FROM Cusotmers

WHERE city = ‘Seattle’

Now even humans

can’t tell which table

contains customers

in Seattle

Dan Suciu -- CSEP544 Fall 2010

CREATE VIEW Customers AS

CustomersInXXX

UNION ALL

CustomersInYYY

UNION ALL

. . .

45

Horizontal Partitioning

CREATE VIEW Customers AS
(SELECT * FROM CustomersInHuston
WHERE city = ‘Huston’)

UNION ALL
(SELECT * FROM CustomersInSeattle
WHERE city = ‘Seattle’)

UNION ALL
. . .

Better:

Dan Suciu -- CSEP544 Fall 2010

46

Horizontal Partitioning

SELECT name

FROM Cusotmers

WHERE city = ‘Seattle’

SELECT name

FROM CusotmersInSeattle

Dan Suciu -- CSEP544 Fall 2010

47

Horizontal Partitioning

Applications:

• Optimizations:

– E.g. archived applications and active

applications

• Distributed databases

• Data integration

Dan Suciu -- CSEP544 Fall 2010

48

Views and Security

Name Address Balance

Mary Huston 450.99

Sue Seattle -240

Joan Seattle 333.25

Ann Portland -520

Fred is
allowed to
see this

Customers:

Fred is not
allowed to
see this

Dan Suciu -- CSEP544 Fall 2010

CREATE VIEW PublicCustomers

SELECT Name, Address

FROM Customers

49

Views and Security

Name Address Balance

Mary Huston 450.99

Sue Seattle -240

Joan Seattle 333.25

Ann Portland -520

Customers: John is
not allowed
to see >0
balances

Dan Suciu -- CSEP544 Fall 2010

CREATE VIEW BadCreditCustomers

SELECT *

FROM Customers

WHERE Balance < 0

Technical Challenges in

Virtual Views

• Simplifying queries over virtual views

• Updating virtual views

50Dan Suciu -- CSEP544 Fall 2010

Simplifying Queries over

Virtual Views

• Query un-nesting

• Query minimization

51Dan Suciu -- CSEP544 Fall 2010

52

Set v.s. Bag Semantics

SELECT DISTINCT a,b,c

FROM R, S, T

WHERE . . .

SELECT a,b,c

FROM R, S, T

WHERE . . .

Set semantics

Bag semantics

Dan Suciu -- CSEP544 Fall 2010

53

Unnesting: Sets/Sets

SELECT DISTINCT a,b,c
FROM (SELECT DISTINCT u,v

FROM R,S
WHERE …), T

WHERE . . .

SELECT DISTINCT a,b,c
FROM R, S, T
WHERE . . .

Dan Suciu -- CSEP544 Fall 2010

54

Unnesting: Sets/Bags

SELECT DISTINCT a,b,c
FROM (SELECT u,v

FROM R,S
WHERE …), T

WHERE . . .

SELECT DISTINCT a,b,c
FROM R, S, T
WHERE . . .

Dan Suciu -- CSEP544 Fall 2010

55

Unnesting: Bags/Bags

SELECT a,b,c
FROM (SELECT u,v

FROM R,S
WHERE …), T

WHERE . . .

SELECT a,b,c
FROM R, S, T
WHERE . . .

Dan Suciu -- CSEP544 Fall 2010

56

Unnesting: Bags/Sets

SELECT a,b,c
FROM (SELECT DISTINCT u,v

FROM R,S
WHERE …), T

WHERE . . .

NO

Dan Suciu -- CSEP544 Fall 2010

Query Minimization

• Replace a query Q with Q’ having fewer tables

in the FROM clause

• When Q has fewest number of tables in the

FROM clause, then we say it is minimized

• Usually (but not always) users write queries

that are already minimized

• But the result of rewriting a query over view is

often not minimized

Dan Suciu -- CSEP544 Fall 2010 57

58

Query Minimization under Bag

Semantics

Rule 1: If:

• x, y are tuple variables over the same
table and:

• The condition x.key = y.key is in the
WHERE clause

Then combine x, y into a single variable

query

Dan Suciu -- CSEP544 Fall 2010

Query Minimization under Bag

Semantics

SELECT y.name, x.date

FROM Order x, Product y, Order z

WHERE x.pid = y.pid and y.price < 99 and y.pid = z.pid

and x.cid = z.cid and z.weight > 150

Order(cid, pid, weight, date)

Product(pid, name, price)

SELECT y.name, x.date

FROM Order x, Product y

WHERE x.pid = y.pid and y.price < 99

and x.weight > 150

What constraints

do we need to have

for this optimization ?

60

Query Minimization under Bag

Semantics

Rule 2: If

• x ranges over S, y ranges over T, and

• The condition x.fk = y.key is in the
WHERE clause, and

• there is a not null constraint on x.fk

• y is not used anywhere else, and

Then remove T (and y) from the query

Dan Suciu -- CSEP544 Fall 2010

Query Minimization under Bag

Semantics
Order(cid, pid, weight, date)

Product(pid, name, price)

SELECT x.cid, x.date

FROM Order x

WHERE x.weight > 20

SELECT x.cid, x.date

FROM Order x, Product y

WHERE x.pid = y.pid and x.weight > 20

Q: Where do we

encounter non-

minimized queries ?

What constraints

do we need to have

for this optimization ?

Query Minimization under Bag

Semantics

CREATE VIEW CheapOrders AS
SELECT x.cid,x.pid,x.date,y.name,y.price
FROM Order x, Product y
WHERE x.pid = y.pid and y.price < 99

CREATE VIEW HeavyOrders AS
SELECT a.cid,a.pid,a.date,b.name,b.price
FROM Order a, Product b
WHERE a.pid = b.pid and a.weight > 150

Order(cid, pid, weight, date)

Product(pid, name, price)

SELECT u.cid

FROM CheapOrders u,

HeavyOrders v

WHERE u.pid = v.pid

and u.cid = v.cid

A: in queries resulting

from view inlining

Customers who ordered

cheap, heavy products

Query Minimization

CREATE VIEW CheapOrders AS
SELECT x.cid,x.pid,x.date,y.name,y.price
FROM Order x, Product y
WHERE x.pid = y.pid and y.price < 99

CREATE VIEW HeavyOrders AS
SELECT a.cid,a.pid,a.date,b.name,b.price
FROM Order a, Product b
WHERE a.pid = b.pid and a.weight > 150

Order(cid, pid, weight, date)

Product(pid, name, price)

SELECT u.cid

FROM CheapOrders u,

HeavyOrders v

WHERE u.pid = v.pid

and u.cid = v.cid

SELECT a.cid

FROM Order x, Product y

Order a, Product b

WHERE

Redundant Orders and Products

SELECT a.cid

FROM Order x, Product y, Order a, Product b

WHERE x.pid = y.pid and a.pid = b.pid

and y.price < 99 and a.weight > 150

and x.cid = a.cid and x.pid = a.pid

SELECT x.cid

FROM Order x, Product y, Product b

WHERE x.pid = y.pid and x.pid = b.pid

and y.price < 99 and x.weight > 150

x = a

SELECT x.cid

FROM Order x, Product y

WHERE x.pid = y.pid and

y.price < 99 and x.weight > 150

y = b

Query Minimization under Set

Semantics

• Rules 1 and 2 still apply

• Rule 3 involves homomorphisms

65Dan Suciu -- CSEP544 Fall 2010

Definition of a Homomorphism

A homomorphism from Q’ to Q

is a mapping h : {y1, …, ym} � {x1, …, xk}

such that:

(a) If h(yi) = xj, then Ri’ = Rj

(b) C logically implies h(C’) and

(c) h(A’) = A

SELECT A

FROM R1 x1, …, Rk xk

WHERE C

SELECT A’

FROM R1’ y1, …, Rm’ ym

WHERE C’

Q Q’

Definition of a Homomorphism

Theorem If there exists a homomorphism

from Q’ to Q, then every answer returned by Q

is also returned by Q’.

We say that Q is contained in Q’

If there exists a homomorphism from Q’ to Q,
and a homomorphism from Q to Q’,
then Q and Q’ are equivalent

Find Homomorphism

Dan Suciu -- CSEP544 Fall 2010 68

SELECT x.cid

FROM Order x,

Product y

WHERE x.pid = y.pid

and y.price < 99

and x.weight > 150

Q

0

SELECT x.cid

FROM Order x,

Product y,

Order z

WHERE x.pid = y.pid

and y.pid = z.pid

and y.price < 99

and x.weight > 150

and z.weight > 100

Q’

Order(cid, pid, weight, date)

Product(pid, name, price)

Homomorphism Q  Q’

Dan Suciu -- CSEP544 Fall 2010 69

SELECT x.cid

FROM Order x,

Product y

WHERE x.pid = y.pid

and y.price < 99

and x.weight > 150

Q

0

SELECT x.cid

FROM Order x,

Product y,

Order z

WHERE x.pid = y.pid

and y.pid = z.pid

and y.price < 99

and x.weight > 150

and z.weight > 100

Q’

Order(cid, pid, weight, date)

Product(pid, name, price)

Every answer to Q

is also an answer to Q’

WHY ?

Homomorphism Q � Q’

Dan Suciu -- CSEP544 Fall 2010 70

SELECT x.cid

FROM Order x,

Product y

WHERE x.pid = y.pid

and y.price < 99

and x.weight > 150

Q

0

SELECT x.cid

FROM Order x,

Product y,

Order z

WHERE x.pid = y.pid

and y.pid = z.pid

and y.price < 99

and x.weight > 150

and z.weight > 100

Q’

Order(cid, pid, weight, date)

Product(pid, name, price)

Q and Q’ are equivalent !

Query Minimization under Set

Semantics
SELECT DISTINCT x.pid

FROM Product x, Product y, Product z

WHERE x.category = y.category and y.price > 100

and x.category = z.category and z.price > 500

and z.weight > 10

SELECT DISTINCT x.pid

FROM Product x, Product z

WHERE x.category = z.category and z.price > 500

and z.weight > 10

Same as:

72

Query Minimization under Set

Semantics

Rule 3: Let Q’ be the query obtained by
removing the tuple variable x from Q. If:

• Q has set semantics (and same for Q’)

• there exists a homomorphism from Q to Q’

Then Q’ is equivalent to Q. Hence one can
safely remove x.

Dan Suciu -- CSEP544 Fall 2010

Example

SELECT DISTINCT x.pid

FROM Product x, Product y, Product z

WHERE x.category = y.category and y.price > 100

and x.category = z.category and z.price > 500

and z.weight > 10

SELECT DISTINCT x’.pid

FROM Product x’, Product z’

WHERE x’.category = z’.category and z’.price > 500

and z’.weight > 10

Q

Q’ Find a homomorphism h: Q � Q’

Example

SELECT DISTINCT x.pid

FROM Product x, Product y, Product z

WHERE x.category = y.category and y.price > 100

and x.category = z.category and z.price > 500

and z.weight > 10

SELECT DISTINCT x’.pid

FROM Product x’, Product z’

WHERE x’.category = z’.category and z’.price > 500

and z’.weight > 10

Q

Q’ Answer: H(x) = x’, H(y) = H(z) = z’

75

CREATE VIEW Expensive-Product AS

SELECT pname

FROM Product

WHERE price > 100

Updating Views

INSERT

INTO Expensive-Product

VALUES(‘Gizmo’)

Purchase(customer, product, store)
Product(pname, price)

Updateable

view

Dan Suciu -- CSEP544 Fall 2010

Updatable Views

• Have a virtual view V(A1, A2, …) over
tables R1, R2, …

• User wants to update a tuple in V

– Insert/modify/delete

• Can we translate this into updates to
R1, R2, … ?

• If yes: V = “an updateable view”

• If not: V = “a non-updateable view”
Dan Suciu -- CSEP544 Fall 2010 76

77

CREATE VIEW Expensive-Product AS

SELECT pname

FROM Product

WHERE price > 100

Updating Views

INSERT

INTO Product

VALUES(‘Gizmo’, NULL)

Purchase(customer, product, store)
Product(pname, price)

Updateable

view

Dan Suciu -- CSEP544 Fall 2010

INSERT

INTO Expensive-Product

VALUES(‘Gizmo’)

78

CREATE VIEW AcmePurchase AS

SELECT customer, product

FROM Purchase

WHERE store = ‘AcmeStore’

Updating Views

INSERT

INTO AcmePurchase

VALUES(‘Joe’, ‘Gizmo’)

Purchase(customer, product, store)
Product(pname, price)

Updateable

view
Dan Suciu -- CSEP544 Fall 2010

79

CREATE VIEW AcmePurchase AS

SELECT customer, product

FROM Purchase

WHERE store = ‘AcmeStore’

Updating Views

INSERT

INTO AcmePurchase

VALUES(‘Joe’, ‘Gizmo’)

INSERT

INTO Purchase

VALUES(‘Joe’,’Gizmo’,NULL)

Note

this

Purchase(customer, product, store)
Product(pname, price)

Updateable

view
Dan Suciu -- CSEP544 Fall 2010

80

Updating Views

INSERT INTO CustomerPrice

VALUES(‘Joe’, 200)

? ? ? ? ?

Non-updateable

view
Most views are

non-updateable

CREATE VIEW CustomerPrice AS

SELECT x.customer, y.price

FROM Purchase x, Product y

WHERE x.product = y.pname

Purchase(customer, product, store)
Product(pname, price)

Dan Suciu -- CSEP544 Fall 2010

Materialized Views

• The result of the view is materialized

• May speed up query answering significantly

• But the materialized view needs to be

synchronized with the base data

Dan Suciu -- CSEP544 Fall 2010 81

82

Applications of Materialized

Views

• Indexes

• Denormalization

• Semantic caching

Dan Suciu -- CSEP544 Fall 2010

83

Indexes
REALLY important to speed up query processing time.

SELECT *

FROM Person

WHERE name = 'Smith'

CREATE INDEX myindex05 ON Person(name)

Person (name, age, city)

May take too long to scan the entire Person table

Now, when we rerun the query it will be much faster

B+ Tree Index

84

Adam Betty Charles …. Smith ….

We will discuss them in detail in a later lecture.

Dan Suciu -- CSEP544 Fall 2010

85

Creating Indexes

Indexes can be created on more than one attribute:

CREATE INDEX doubleindex ON
Person (age, city)

Example:

86

Creating Indexes

Indexes can be created on more than one attribute:

SELECT *
FROM Person
WHERE age = 55 AND city = 'Seattle'

Helps in:

CREATE INDEX doubleindex ON
Person (age, city)

Example:

87

Creating Indexes

Indexes can be created on more than one attribute:

SELECT *
FROM Person
WHERE age = 55 AND city = 'Seattle'

Helps in:

CREATE INDEX doubleindex ON
Person (age, city)

Example:

SELECT *
FROM Person
WHERE age = 55

and even in:

88

Creating Indexes

Indexes can be created on more than one attribute:

SELECT *
FROM Person
WHERE age = 55 AND city = 'Seattle'

Helps in:

SELECT *
FROM Person
WHERE city = 'Seattle'

But not in:

CREATE INDEX doubleindex ON
Person (age, city)

Example:

SELECT *
FROM Person
WHERE age = 55

and even in:

CREATE INDEX W ON Product(weight)

CREATE INDEX P ON Product(price)

Indexes are Materialized

Views

SELECT weight, price

FROM Product

WHERE weight > 10

and price < 100

Product(pid, name, weight, price, …) (big)

(smaller)
W(pid, weight)

P(pid, price)

SELECT x.weight, y.price

FROM W x, P y

WHERE x.weight > 10

and y.price < 100

and x.pid = y.pid

Denormalization

• Compute a view that is the join of
several tables

• The view is now a relation that is not in
normal form WHY ?

Dan Suciu -- CSEP544 Fall 2010 90

CREATE VIEW CustomerPrice AS

SELECT *

FROM Purchase x, Product y

WHERE x.product = y.pname

Purchase(customer, product, store)

Product(pname, price)

91

Semantic Caching

• Queries Q1, Q2, … have been executed,
and their results are stored in main
memory

• Now we need to compute a new query Q

• Sometimes we can use the prior results in
answering Q

• These queries can be seen as
materialized views

Technical Challenges in

Managing Views

• Synchronizing materialized views

– A.k.a. incremental view maintenance,

or incremental view update

• Answering queries using views

92Dan Suciu -- CSEP544 Fall 2010

93

Synchronizing Materialized

Views

• Immediate synchronization = after each
update

• Deferred synchronization

– Lazy = at query time

– Periodic

– Forced = manual

Which one is best for:

indexes, data warehouses, replication ?

94

CREATE VIEW FullOrder AS

SELECT x.cid,x.pid,x.date,y.name,y.price

FROM Order x, Product y

WHERE x.pid = y.pid

Incremental View Update

UPDATE Product

SET price = price / 2

WHERE pid = ‘12345’

Order(cid, pid, date)

Product(pid, name, price)

UPDATE FullOrder

SET price = price / 2

WHERE pid = ‘12345’

No need to recompute the entire view !

Dan Suciu -- CSEP544 Fall 2010

95

CREATE VIEW Categories AS

SELECT DISTINCT category

FROM Product

Incremental View Update

DELETE Product

WHERE pid = ‘12345’

Product(pid, name, category, price)

DELETE Categories

WHERE category in

(SELECT category

FROM Product

WHERE pid = ‘12345’)

It doesn’t work ! Why ? How can we fix it ?

96

CREATE VIEW Categories AS

SELECT category, count(*) as c

FROM Product

GROUP BY category

Incremental View Update

DELETE Product

WHERE pid = ‘12345’

Product(pid, name, category, price)

UPDATE Categories

SET c = c-1 WHERE category in

(SELECT category

FROM Product

WHERE pid = ‘12345’);

DELETE Categories

WHERE c = 0

97

Answering Queries Using Views

• We have several materialized views:

– V1, V2, …, Vn

• Given a query Q

– Answer it by using views instead of base tables

• Variation: Query rewriting using views

– Answer it by rewriting it to another query first

• Example: if the views are indexes, then we

rewrite the query to use indexes

Dan Suciu -- CSEP544 Fall 2010

Rewriting Queries Using Views

98

Purchase(buyer, seller, product, store)
Person(pname, city)

CREATE VIEW SeattleView AS
SELECT y.buyer, y.seller, y.product, y.store
FROM Person x, Purchase y
WHERE x.city = ‘Seattle’ AND

x.pname = y.buyer

SELECT y.buyer, y.seller
FROM Person x, Purchase y
WHERE x.city = ‘Seattle’ AND

x..pname = y.buyer AND
y.product=‘gizmo’

Goal: rewrite this query

in terms of the view

Have this

materialized

view:

Rewriting Queries Using Views

99

SELECT y.buyer, y.seller
FROM Person x, Purchase y
WHERE x.city = ‘Seattle’ AND

x..pname = y.buyer AND
y.product=‘gizmo’

SELECT buyer, seller
FROM SeattleView
WHERE product= ‘gizmo’

Dan Suciu -- CSEP544 Fall 2010

Rewriting is not always possible

100

CREATE VIEW DifferentView ASCREATE VIEW DifferentView AS
SELECT y.buyer, y.seller, y.product, y.store
FROM Person x, Purchase y, Product z
WHERE x.city = ‘Seattle’ AND

x.pname = y.buyer AND
y.product = z.name AND
z.price < 100

SELECT y.buyer, y.seller
FROM Person x, Purchase y
WHERE x.city = ‘Seattle’ AND

x..pname = y.buyer AND
y.product=‘gizmo’ SELECT buyer, seller

FROM DifferentView
WHERE product= ‘gizmo’

“Maximally

contained

rewriting”

