
1

Lecture 4:
Transactions

Wednesday, October 20, 2010

Dan Suciu -- CSEP544 Fall 2010

Homework 3

The key concepts here:

• Connect to db and call SQL from java

• Dependent joins

• Integrate two databases

• Transactions

Amount of work:

• 20 SQL queries+180 lines Java ≈ 12 hours (?)

2

Review Questions

Query Answering Using Views, by Halevy

• Q1: define the problem

• Q2: how is this used for physical data
independence ?

• Q3: what is data integration and what is
its connection to query answering using
views ?

Dan Suciu -- CSEP544 Fall 2010 3

4

Outline

• Transaction basics

• Recovery

• Concurrency control

Dan Suciu -- CSEP544 Fall 2010

Reading Material for Lectures 4 &
5

From the main textbook (Ramakrishnan
and Gehrke):

• Chapters 16, 17, 18

From the second textbook (Garcia-Molina,
Ullman, Widom):

• Chapters 17.2, 17.3, 17.4

• Chapters 18.1, 18.2, 18.3, 18.8, 18.9

Dan Suciu -- CSEP544 Fall 2010 5

6

Transactions

• The problem: An application must perform
several writes and reads to the database,
as a unity

• Solution: multiple actions of the application
are bundled into one unit called
Transaction

Dan Suciu -- CSEP544 Fall 2010

Turing Awards to Database
Researchers

• Charles Bachman 1973 for CODASYL

• Edgar Codd 1981 for relational
databases

• Jim Gray 1998 for transactions

7Dan Suciu -- CSEP544 Fall 2010

The World Without
Transactions

• Write to files to ensure durability

• Rely on operating systems for
scheduling, and for concurrency control

• What can go wrong ?

– System crashes

– Anomalies (three are famous)

8Dan Suciu -- CSEP544 Fall 2010

9

Crashes

What’s wrong ?

Client 1:

UPDATE Accounts
SET balance= balance - 500
WHERE name= ‘Fred’

UPDATE Accounts
SET balance = balance + 500
WHERE name= ‘Joe’

Crash !

Dan Suciu -- CSEP544 Fall 2010

10

1st Famous Anomaly: Lost
Updates

Client 1:
UPDATE Customer
SET rentals= rentals + 1
WHERE cname= ‘Fred’

Two people attempt to rent two movies for Fred,
from two different terminals. What happens ?

Client 2:
UPDATE Customer
SET rentals= rentals + 1
WHERE cname= ‘Fred’

Dan Suciu -- CSEP544 Fall 2010

11

2nd Famous Anomaly: Inconsistent
Read

Client 1: move from gizmo�gadget

UPDATE Products
SET quantity = quantity + 5
WHERE product = ‘gizmo’

UPDATE Products
SET quantity = quantity - 5
WHERE product = ‘gadget’

Client 2: inventory….

SELECT sum(quantity)
FROM Product

Dan Suciu -- CSEP544 Fall 2010

12

3rd Famous Anomaly: Dirty
Reads

Client 1: transfer $100 acc1� acc2
X = Account1.balance
Account2.balance += 100

If (X>=100) Account1.balance −=100
else { /* rollback ! */

account2.balance −= 100
println(“Denied !”)

What’s wrong ?

Dan Suciu -- CSEP544 Fall 2010

Client 2: transfer $100 acc2 � acc3
Y = Account2.balance
Account3.balance += 100

If (Y>=100) Account2.balance −=100
else { /* rollback ! */

account3.balance −= 100
println(“Denied !”)

13

The Three Famous anomalies

• Lost update
– Two tasks T and T’ both modify the same data
– T and T’ both commit
– Final state shows effects of only T, but not of T’

• Dirty read
– T reads data written by T’ while T’ has not committed
– What can go wrong: T’ write more data (which T has

already read), or T’ aborts

• Inconsistent read
– One task T sees some but not all changes made by T’

14

Transactions: Definition

• A transaction = one or more operations,
which reflects a single real-world transition
– Happens completely or not at all; all-or-nothing

• Examples
– Transfer money between accounts
– Rent a movie; return a rented movie
– Purchase a group of products
– Register for a class (either waitlisted or allocated)

• By using transactions, all previous problems
disappear Dan Suciu -- CSEP544 Fall 2010

Transactions in Applications

Dan Suciu -- CSEP544 Fall 2010 15

START TRANSACTION

[SQL statements]

COMMIT or ROLLBACK (=ABORT)

May be omitted:
first SQL query

starts txn

In ad-hoc SQL: each statement = one transaction

Revised Code

16

Client 1: transfer $100 acc1� acc2
START TRANSACTION
X = Account1.balance; Account2.balance += 100

If (X>=100) { Account1.balance -=100; COMMIT }
else {println(“Denied !”; ROLLBACK)

Dan Suciu -- CSEP544 Fall 2010

Client 1: transfer $100 acc2� acc3
START TRANSACTION
X = Account2.balance; Account3.balance += 100

If (X>=100) { Account2.balance -=100; COMMIT }
else {println(“Denied !”; ROLLBACK)

17

ACID Properties

• Atomic
– State shows either all the effects of txn, or none of

them

• Consistent
– Txn moves from a state where integrity holds, to

another where integrity holds

• Isolated
– Effect of txns is the same as txns running one after

another (ie looks like batch mode)

• Durable
– Once a txn has committed, its effects remain in the

database
Dan Suciu -- CSEP544 Fall 2010

18

ACID: Atomicity

• Two possible outcomes for a
transaction

– It commits: all the changes are made

– It aborts: no changes are made

• That is, transaction’s activities are all or
nothing

Dan Suciu -- CSEP544 Fall 2010

19

ACID: Isolation

• A transaction executes concurrently
with other transaction

• Isolation: the effect is as if each
transaction executes in isolation of the
others

Dan Suciu -- CSEP544 Fall 2010

20

ACID: Consistency

• The database satisfies integrity constraints
– Account numbers are unique

– Stock amount can’t be negative

– Sum of debits and of credits is 0

• Consistency = if the database satisfied the
constraints at the beginning of the transaction, and
if the application is written correctly, then the
constraints must hold at the end of the transactions

• Introduced as a requirement in the 70s, but today
we understand it is a consequence of atomicity and
isolation

21

ACID: Durability

• The effect of a transaction must
continue to exists after the transaction,
or the whole program has terminated

• Means: write data to disk

• Sometimes also means recovery

Dan Suciu -- CSEP544 Fall 2010

22

Reasons for Rollback

• Explicit in the application
– E.g. use it freely in HW 3

• System-initiated abort
– System crash

– Housekeeping, e.g. due to timeouts

Dan Suciu -- CSEP544 Fall 2010

23

Simple Log-based Recovery

These simple recovery algorithms are
based on Garcia-Molina, Ullman,
Widom

• Undo logging 17.2

• Redo logging 17.3

• Redo/undo 17.4

Dan Suciu -- CSEP544 Fall 2010

24

Disk Access Characteristics

• Disk latency = time between when command is issued
and when data is in memory

• Disk latency = seek time + rotational latency
– Seek time = time for the head to reach cylinder

• 10ms – 40ms

– Rotational latency = time for the sector to rotate
• Rotation time = 10ms

• Average latency = 10ms/2

• Transfer time = typically 40MB/s

• Disks read/write one block at a time

Dan Suciu -- CSEP544 Fall 2010 Large gap between disk I/O and memory � Buffer pool

Buffer Management in a DBMS

25

Buffer manager maintains a table
of <pageid, frame#> pairs

DB

disk page

free frame

BUFFER POOL

READ
WRITE

INPUT
OUTUPT

Application
(Database server)

Page Replacement Policies

• LRU = expensive

– Next slide

• Clock algorithm = cheaper alternative

– Read in the book

Both work well in OS, but not always in DB

Dan Suciu -- CSEP544 Fall 2010 26

Least Recently Used (LRU)

Dan Suciu -- CSEP544 Fall 2010 27

P5, P2, P8, P4, P1, P9, P6, P3, P7
Read(P6)

P6, P5, P2, P8, P4, P1, P9, P3, P7

Input(P10)

P10, P6, P5, P2, P8, P4, P1, P9, P3

Read(P10)

Buffer Manager

DBMS build their own buffer manager and
don’t rely on the OS

• Better control for transactions

– Force pages to disk

– Pin pages in the buffer

• Tweaks to LRU/clock algorithms for
specialized accesses, s.a. sequential scan

Dan Suciu -- CSEP544 Fall 2010 28

29

Recovery

Type of Crash Prevention

Wrong data entry
Constraints and
Data cleaning

Disk crashes
Redundancy:

e.g. RAID, archive

Fire, theft, bankruptcy… Remote backups

System failures:
e.g. power

DATABASE
RECOVERY

30

Key Principle in Recovery

• Write-ahead log =

– A file that records every single action of all
running transactions

– Force log entry to disk

– After a crash, transaction manager reads
the log and finds out exactly what the
transactions did or did not

Dan Suciu -- CSEP544 Fall 2010

31

Transactions

• Assumption: the database is composed
of elements

– Usually 1 element = 1 block

– Can be smaller (=1 record) or larger (=1
relation)

• Assumption: each transaction
reads/writes some elements

Dan Suciu -- CSEP544 Fall 2010

32

Primitive Operations of
Transactions

• READ(X,t)
– copy element X to transaction local variable t

• WRITE(X,t)
– copy transaction local variable t to element X

• INPUT(X)
– read element X to memory buffer

• OUTPUT(X)
– write element X to disk

Dan Suciu -- CSEP544 Fall 2010

33

Example

Atomicity:
BOTH A and B
are multiplied by 2

Dan Suciu -- CSEP544 Fall 2010

START TRANSACTIONSTART TRANSACTION

READ(A,t);

t := t*2;

WRITE(A,t);

READ(B,t);

t := t*2;

WRITE(B,t)

COMMIT;

34

Action t Mem A Mem B Disk A Disk B

INPUT(A) 8 8 8

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8

INPUT(B) 16 16 8 8 8

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

Buffer pool DiskTransaction

READ(A,t); t := t*2; WRITE(A,t);
READ(B,t); t := t*2; WRITE(B,t)

35

Crash occurs after OUTPUT(A), before OUTPUT(B)
We lose atomicity

Action t Mem A Mem B Disk A Disk B

INPUT(A) 8 8 8

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8

INPUT(B) 16 16 8 8 8

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16
Crash !

36

The Log

• An append-only file containing log records

• Multiple transactions run concurrently, log
records are interleaved

• After a system crash, use log to:

– Redo some transaction that didn’t commit

– Undo other transactions that didn’t commit

• Three kinds of logs: undo, redo, undo/redo

Dan Suciu -- CSEP544 Fall 2010

37

Undo Logging

Log records

• <START T>
– transaction T has begun

• <COMMIT T>
– T has committed

• <ABORT T>
– T has aborted

• <T,X,v>
– T has updated element X, and its old value was v

Dan Suciu -- CSEP544 Fall 2010

38

Action T Mem A Mem B Disk A Disk B Log

<START T>

INPUT(A) 8 8 8

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8 <T,A,8>

INPUT(B) 16 16 8 8 8

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8 <T,B,8>

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

COMMIT <COMMIT T>

39

Action T Mem A Mem B Disk A Disk B Log

<START T>

INPUT(A) 8 8 8

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8 <T,A,8>

INPUT(B) 16 16 8 8 8

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8 <T,B,8>

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

COMMIT <COMMIT T>

Crash !

WHAT DO WE DO ?

40
WHAT DO WE DO ?

Action T Mem A Mem B Disk A Disk B Log

<START T>

INPUT(A) 8 8 8

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8 <T,A,8>

INPUT(B) 16 16 8 8 8

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8 <T,B,8>

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

COMMIT <COMMIT T>
Crash !

41

After Crash

• In the first example:

– We UNDO both changes: A=8, B=8

– The transaction is atomic, since none of its actions
has been executed

• In the second example

– We don’t undo anything

– The transaction is atomic, since both it’s actions
have been executed

Dan Suciu -- CSEP544 Fall 2010

42

Undo-Logging Rules

U1: If T modifies X, then <T,X,v> must be
written to disk before OUTPUT(X)

U2: If T commits, then OUTPUT(X) must
be written to disk before <COMMIT T>

• Hence: OUTPUTs are done early,
before the transaction commits

Dan Suciu -- CSEP544 Fall 2010

43

Action T Mem A Mem B Disk A Disk B Log

<START T>

INPUT(A) 8 8 8

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8 <T,A,8>

INPUT(B) 16 16 8 8 8

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8 <T,B,8>

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

COMMIT <COMMIT T>

44

Recovery with Undo Log

After system’s crash, run recovery
manager

• Idea 1. Decide for each transaction T
whether it is completed or not
– <START T>….<COMMIT T>…. = yes

– <START T>….<ABORT T>……. = yes

– <START T>……………………… = no

• Idea 2. Undo all modifications by
incomplete transactions

Dan Suciu -- CSEP544 Fall 2010

45

Recovery with Undo Log

Recovery manager:

• Read log from the end; cases:

<COMMIT T>: mark T as completed

<ABORT T>: mark T as completed

<T,X,v>: if T is not completed
then write X=v to disk

else ignore

<START T>: ignore

Dan Suciu -- CSEP544 Fall 2010

46

Recovery with Undo Log
…
…
<T6,X6,v6>
…
…
<START T5>
<START T4>
<T1,X1,v1>
<T5,X5,v5>
<T4,X4,v4>
<COMMIT T5>
<T3,X3,v3>
<T2,X2,v2>

Question1: Which updates
are undone ?

Question 2:
What happens if there
is a second crash,
during recovery ?

Question 3:
How far back
do we need to
read in the log ?

Crash

47

Recovery with Undo Log

• Note: all undo commands are
idempotent

– If we perform them a second time, no
harm is done

– E.g. if there is a system crash during
recovery, simply restart recovery from
scratch

Dan Suciu -- CSEP544 Fall 2010

48

Recovery with Undo Log

When do we stop reading the log ?

• We cannot stop until we reach the
beginning of the log file

• This is impractical

Instead: use checkpointing

Dan Suciu -- CSEP544 Fall 2010

49

Checkpointing

Checkpoint the database periodically

• Stop accepting new transactions

• Wait until all current transactions
complete

• Flush log to disk

• Write a <CKPT> log record, flush

• Resume transactions

Dan Suciu -- CSEP544 Fall 2010

50

Undo Recovery with
Checkpointing

…
…
<T9,X9,v9>
…
…
(all completed)
<CKPT>

<START T2>
<START T3
<START T5>
<START T4>
<T1,X1,v1>
<T5,X5,v5>
<T4,X4,v4>
<COMMIT T5>
<T3,X3,v3>
<T2,X2,v2>

During recovery,
Can stop at first
<CKPT>

transactions T2,T3,T4,T5

other transactions

51

Nonquiescent Checkpointing

• Problem with checkpointing: database
freezes during checkpoint

• Would like to checkpoint while database
is operational

• Idea: nonquiescent checkpointing

Quiescent = being quiet, still, or at rest; inactive
Non-quiescent = allowing transactions to be active

52

Nonquiescent Checkpointing

• Write a <START CKPT(T1,…,Tk)>
where T1,…,Tk are all active
transactions

• Continue normal operation

• When all of T1,…,Tk have completed,
write <END CKPT>

Dan Suciu -- CSEP544 Fall 2010

53

Undo Recovery with
Nonquiescent Checkpointing

…
…
…
…
…
…
<START CKPT T4, T5, T6>
…
…
…
…
<END CKPT>
…
…
…

During recovery,
Can stop at first
<CKPT>

T4, T5, T6, plus
later transactions

earlier transactions plus
T4, T5, T6

later transactions
Q: do we need
<END CKPT> ?

Implementing ROLLBACK

• A transaction ends in COMMIT or ROLLBACK

• Use the undo-log to implement ROLLBCACK

• LSN = Log Seqence Number

• Log entries for the same transaction are
linked, using the LSN’s

• Read log in reverse, using LSN pointers

54Dan Suciu -- CSEP544 Fall 2010

55

Redo Logging

Log records

• <START T> = transaction T has begun

• <COMMIT T> = T has committed

• <ABORT T>= T has aborted

• <T,X,v>= T has updated element X, and
its new value is v

Dan Suciu -- CSEP544 Fall 2010

56

Action T Mem A Mem B Disk A Disk B Log

<START T>

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8 <T,A,16>

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8 <T,B,16>

<COMMIT T>

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

57

Redo-Logging Rules

R1: If T modifies X, then both <T,X,v> and
<COMMIT T> must be written to disk
before OUTPUT(X)

• Hence: OUTPUTs are done late

Dan Suciu -- CSEP544 Fall 2010

58

Action T Mem A Mem B Disk A Disk B Log

<START T>

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8 <T,A,16>

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8 <T,B,16>

<COMMIT T>

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

59

Recovery with Redo Log

After system’s crash, run recovery
manager

• Step 1. Decide for each transaction T
whether we need to redo or not
– <START T>….<COMMIT T>…. = yes

– <START T>….<ABORT T>……. = no

– <START T>……………………… = no

• Step 2. Read log from the beginning,
redo all updates of committed
transactions

60

Recovery with Redo Log

<START T1>
<T1,X1,v1>
<START T2>
<T2, X2, v2>
<START T3>
<T1,X3,v3>
<COMMIT T2>
<T3,X4,v4>
<T1,X5,v5>
…
…

Dan Suciu -- CSEP544 Fall 2010

61

Nonquiescent Checkpointing

• Write a <START CKPT(T1,…,Tk)>
where T1,…,Tk are all active
transactions

• Flush to disk all blocks of committed
transactions (dirty blocks), while
continuing normal operation

• When all blocks have been flushed,
write <END CKPT>

Dan Suciu -- CSEP544 Fall 2010 Note: this differs significantly from ARIES (next lecture)

62

Redo Recovery with
Nonquiescent Checkpointing

…
<START T1>
…
<COMMIT T1>
…
<START T4>
…
<START CKPT T4, T5, T6>
…
…
…
…
<END CKPT>
…
…
…
<START CKPT T9, T10>
…

Step 1: look for
The last
<END CKPT>

Step 2: redo
from the
earliest
start of
T4, T5, T6
ignoring
transactions
committed
earlier

All OUTPUTs
of T1 are guaranteed
to be on disk

Cannot
use

63

Comparison Undo/Redo

• Undo logging:
– OUTPUT must be done early

– If <COMMIT T> is seen, T definitely has written all its data to
disk (hence, don’t need to redo) – inefficient

• Redo logging
– OUTPUT must be done late

– If <COMMIT T> is not seen, T definitely has not written any
of its data to disk (hence there is not dirty data on disk, no
need to undo) – inflexible

• Would like more flexibility on when to OUTPUT:
undo/redo logging (next)

Dan Suciu -- CSEP544 Fall 2010

64

Undo/Redo Logging

Log records, only one change

• <T,X,u,v>= T has updated element X, its
old value was u, and its new value is v

Dan Suciu -- CSEP544 Fall 2010

65

Undo/Redo-Logging Rule

UR1: If T modifies X, then <T,X,u,v> must
be written to disk before OUTPUT(X)

Note: we are free to OUTPUT early or late
relative to <COMMIT T>

Dan Suciu -- CSEP544 Fall 2010

66

Action T Mem A Mem B Disk A Disk B Log

<START T>

REAT(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8 <T,A,8,16>

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8 <T,B,8,16>

OUTPUT(A) 16 16 16 16 8

<COMMIT T>

OUTPUT(B) 16 16 16 16 16

Can OUTPUT whenever we want: before/after COMMIT

67

Recovery with Undo/Redo Log

After system’s crash, run recovery manager

• Redo all committed transaction, top-down

• Undo all uncommitted transactions, bottom-
up

Dan Suciu -- CSEP544 Fall 2010

68

Recovery with Undo/Redo Log

<START T1>
<T1,X1,v1>
<START T2>
<T2, X2, v2>
<START T3>
<T1,X3,v3>
<COMMIT T2>
<T3,X4,v4>
<T1,X5,v5>
…
…

Dan Suciu -- CSEP544 Fall 2010

Concurrency Control

Problem:

• Many transactions execute concurrently

• Their updates to the database may
interfere

Scheduler = needs to schedule
transactions

69Dan Suciu -- CSEP544 Fall 2010

70

Concurrency Control

Basic definitions

• Schedules: serializable and variations

Next lecture:

• Locks

• Concurrency control by timestamps
18.8

• Concurrency control by validation 18.9

Dan Suciu -- CSEP544 Fall 2010

The Problem

• Multiple concurrent transactions T1, T2, …

• They read/write common elements A1, A2, …

• How can we prevent unwanted interference ?

71

The SCHEDULER is responsible for that

Dan Suciu -- CSEP544 Fall 2010

Conflicts

• Write-Read – WR

• Read-Write – RW

• Write-Write – WW

Dan Suciu -- CSEP544 Fall 2010 72

Lost Update

T : READ(A)

: WRITE(A)

T1: READ(A)

T1: A := A+5

T1: WRITE(A)

T2: READ(A);

T2: A := A*2

T2: WRITE(A);

73Dan Suciu -- CSEP544 Fall 2010 RW conflict and WW conflict

Inconsistent Reads

T : A := 20; B := 20;T1: A := 20; B := 20;
T1: WRITE(A)

T1: WRITE(B)
: READ(B);

T2: READ(A);
T2: READ(B);

74Dan Suciu -- CSEP544 Fall 2010 WR conflict and RW conflict

Dirty Read

T : WRITE(A) T1: WRITE(A)

T1: ABORT

T2: READ(A)

75Dan Suciu -- CSEP544 Fall 2010 WR conflict

Unrepeatable Read

T1: WRITE(A) T1: WRITE(A)

T : READ(A);

: READ(A);

T2: READ(A);

T2: READ(A);

76Dan Suciu -- CSEP544 Fall 2010 RW conflict and WR conflict

Schedules

Dan Suciu -- CSEP544 Fall 2010 77

A schedule is a sequence
of interleaved actions
from all transactions

Example

T1 T2

READ(A, t) READ(A, s)

t := t+100 s := s*2

WRITE(A, t) WRITE(A,s)

READ(B, t) READ(B,s)

t := t+100 s := s*2

WRITE(B,t) WRITE(B,s)

78Dan Suciu -- CSEP544 Fall 2010

A Serial Schedule
T1 T2
READ(A, t)
t := t+100
WRITE(A, t)
READ(B, t)
t := t+100
WRITE(B,t)

READ(A,s)
s := s*2
WRITE(A,s)
READ(B,s)
s := s*2
WRITE(B,s)

79Dan Suciu -- CSEP544 Fall 2010

Serializable Schedule

80

A schedule is serializable if it is
equivalent to a serial schedule

Dan Suciu -- CSEP544 Fall 2010

A Serializable Schedule
T1 T2
READ(A, t)
t := t+100
WRITE(A, t)

READ(A,s)
s := s*2
WRITE(A,s)

READ(B, t)
t := t+100
WRITE(B,t)

READ(B,s)
s := s*2
WRITE(B,s)

This is NOT a serial schedule,
but is serializable

81Dan Suciu -- CSEP544 Fall 2010

A Non-Serializable Schedule
T1 T2
READ(A, t)
t := t+100
WRITE(A, t)

READ(A,s)
s := s*2
WRITE(A,s)
READ(B,s)
s := s*2
WRITE(B,s)

READ(B, t)
t := t+100
WRITE(B,t)

82Dan Suciu -- CSEP544 Fall 2010

A Serializable Schedule
T1 T2
READ(A, t)
t := t+100
WRITE(A, t)

READ(A,s)
s := s + 200
WRITE(A,s)
READ(B,s)
s := s + 200
WRITE(B,s)

READ(B, t)
t := t+100
WRITE(B,t)

83Dan Suciu -- CSEP544 Fall 2010 We don’t expect the scheduler to schedule this

Schedule is serializable
because t=t+100 and
s=s+200 commute

Ignoring Details

• Assume worst case updates:

– We never commute actions done by
transactions

• As a consequence, we only care about
reads and writes

– Transaction = sequence of R(A)’s and W(A)’s

Dan Suciu -- CSEP544 Fall 2010 84

T1: r1(A); w1(A); r1(B); w1(B)
T2: r2(A); w2(A); r2(B); w2(B)

Conflicts

r (X); w (Y)ri(X); wi(Y)Two actions by same transaction Ti:

w (X); w (X)wi(X); wj(X)Two writes by Ti, Tj to same element

w (X); r (X)wi(X); rj(X)
Read/write by Ti, Tj to same element

r (X); w (X)ri(X); wj(X)

85Dan Suciu -- CSEP544 Fall 2010 A “conflict” means: you can’t swap the two operations

Conflict Serializability

• A schedule is conflict serializable if it
can be transformed into a serial
schedule by a series of swappings of
adjacent non-conflicting actions

Example:

r (A); w (A); r (B); w (B); r (A); w (A); r (B); w (B)r1(A); w1(A); r1(B); w1(B); r2(A); w2(A); r2(B); w2(B)

r (A); w (A); r (A); w (A); r (B); w (B); r (B); w (B)r1(A); w1(A); r2(A); w2(A); r1(B); w1(B); r2(B); w2(B)

The Precedence Graph Test

Is a schedule conflict-serializable ?

Simple test:

• Build a graph of all transactions Ti

• Edge from Ti to Tj if Ti makes an action that
conflicts with one of Tj and comes first

• The test: if the graph has no cycles, then it is
conflict serializable !

87Dan Suciu -- CSEP544 Fall 2010

Example 1

r (A); r (B); w (A); r (A); w (B); w (A); r (B); w (B)r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B)

1 2 3

88Dan Suciu -- CSEP544 Fall 2010

Example 1

r (A); r (B); w (A); r (A); w (B); w (A); r (B); w (B)r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B)

1 2 3

This schedule is conflict-serializable

AB

89Dan Suciu -- CSEP544 Fall 2010

Example 2

r (A); r (B); w (A); r (B); r (A); w (B); w (A); w (B)r2(A); r1(B); w2(A); r2(B); r3(A); w1(B); w3(A); w2(B)

1 2 3

90Dan Suciu -- CSEP544 Fall 2010

Example 2

r (A); r (B); w (A); r (B); r (A); w (B); w (A); w (B)r2(A); r1(B); w2(A); r2(B); r3(A); w1(B); w3(A); w2(B)

1 2 3

This schedule is NOT conflict-serializable

A

B

B

91Dan Suciu -- CSEP544 Fall 2010

View Equivalence

• A serializable schedule need not be
conflict serializable, even under the
“worst case update” assumption

w (X); w (Y); w (X); w (Y); w (Y);w1(X); w1(Y); w2(X); w2(Y); w3(Y);

w (X); w (X); w (Y); w (Y); w (Y);w1(X); w2(X); w2(Y); w1(Y); w3(Y);

Lost write

Equivalent, but can’t swap
92Dan Suciu -- CSEP544 Fall 2010

View Equivalent

93

T1 T2 T3

W1(X)

W2(X)

W2(Y)

CO2

W1(Y)

CO1

W3(Y)

CO3

T1 T2 T3

W1(X)

W1(Y)

CO1

W2(X)

W2(Y)

CO2

W3(Y)

CO3

Lost

Dan Suciu -- CSEP544 Fall 2010 Serializable, but not conflict serializable

View Equivalence

Two schedules S, S’ are view equivalent if:

• If T reads an initial value of A in S, then T
also reads the initial value of A in S’

• If T reads a value of A written by T’ in S,
then T also reads a value of A written by
T’ in S’

• If T writes the final value of A in S, then it
writes the final value of A in S’

94Dan Suciu -- CSEP544 Fall 2010

View-Serializability

A schedule is view serializable if it is view
equivalent to a serial schedule

Remark:

• If a schedule is conflict serializable, then
it is also view serializable

• But not vice versa

Dan Suciu -- CSEP544 Fall 2010 95

Schedules with Aborted
Transactions

• When a transaction aborts, the recovery
manager undoes its updates

• But some of its updates may have
affected other transactions !

96Dan Suciu -- CSEP544 Fall 2010

Schedules with Aborted
Transactions

97

T1 T2
R(A)
W(A)

R(A)
W(A)
R(B)
W(B)
Commit

Abort

Dan Suciu -- CSEP544 Fall 2010 Cannot abort T1 because cannot undo T2

Recoverable Schedules

A schedule is recoverable if:

• It is conflict-serializable, and

• Whenever a transaction T commits, all
transactions who have written elements
read by T have already committed

98Dan Suciu -- CSEP544 Fall 2010

Recoverable Schedules

99

T1 T2
R(A)
W(A)

R(A)
W(A)
R(B)
W(B)
Commit

Abort

T1 T2
R(A)
W(A)

R(A)
W(A)
R(B)
W(B)

Abort
Commit

Nonrecoverable Recoverable

Cascading Aborts

• If a transaction T aborts, then we need
to abort any other transaction T’ that
has read an element written by T

• A schedule is said to avoid cascading
aborts if whenever a transaction read an
element, the transaction that has last
written it has already committed.

100Dan Suciu -- CSEP544 Fall 2010

Avoiding Cascading Aborts

101

T1 T2
R(A)
W(A)
Commit

R(A)
W(A)
R(B)
W(B)
. . .

Without cascading aborts

T1 T2
R(A)
W(A)

R(A)
W(A)
R(B)
W(B)

. . .
. . .

With cascading aborts

Review of Schedules

Serializability

• Serial

• Serializable

• Conflict serializable

• View serializable

Recoverability

• Recoverable

• Avoiding cascading
deletes

102Dan Suciu -- CSEP544 Fall 2010

