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Lecture 4:
Transactions

Wednesday, October 20, 2010
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Homework 3

The key concepts here:

• Connect to db and call SQL from java

• Dependent joins

• Integrate two databases

• Transactions

Amount of work:

• 20 SQL queries+180 lines Java ≈ 12 hours (?)

2



Review Questions

Query Answering Using Views, by Halevy

• Q1: define the problem

• Q2: how is this used for physical data 
independence ?

• Q3: what is data integration and what is 
its connection to query answering using 
views ?

Dan Suciu -- CSEP544 Fall 2010  3



4

Outline

• Transaction basics

• Recovery

• Concurrency control
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Reading Material for Lectures 4 & 
5

From the main textbook (Ramakrishnan
and Gehrke):

• Chapters 16, 17, 18

From the second textbook (Garcia-Molina, 
Ullman, Widom):

• Chapters 17.2, 17.3, 17.4

• Chapters 18.1, 18.2, 18.3, 18.8, 18.9
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Transactions

• The problem: An application must perform 
several writes and reads to the database, 
as a unity

• Solution: multiple actions of the application 
are bundled into one unit called 
Transaction
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Turing Awards to Database 
Researchers

• Charles Bachman 1973 for CODASYL

• Edgar Codd 1981 for relational 
databases

• Jim Gray 1998 for transactions
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The World Without 
Transactions

• Write to files to ensure durability

• Rely on operating systems for 
scheduling, and for concurrency control

• What can go wrong ? 

– System crashes

– Anomalies (three are famous)
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Crashes

What’s wrong ?

Client 1:

UPDATE Accounts
SET balance= balance - 500
WHERE name= ‘Fred’

UPDATE Accounts
SET balance = balance + 500
WHERE name= ‘Joe’

Crash !
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1st Famous Anomaly: Lost 
Updates

Client 1:
UPDATE Customer
SET rentals= rentals + 1
WHERE cname= ‘Fred’

Two people attempt to rent two movies for Fred,
from two different terminals. What happens ?

Client 2:
UPDATE Customer
SET rentals= rentals + 1
WHERE cname= ‘Fred’
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2nd Famous Anomaly: Inconsistent 
Read

Client 1: move from gizmo�gadget

UPDATE Products
SET quantity = quantity + 5
WHERE product = ‘gizmo’

UPDATE Products
SET quantity = quantity - 5
WHERE product = ‘gadget’

Client 2: inventory….

SELECT sum(quantity)
FROM Product
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3rd Famous Anomaly: Dirty 
Reads

Client 1: transfer $100  acc1� acc2
X = Account1.balance
Account2.balance += 100

If (X>=100) Account1.balance −=100
else { /* rollback ! */

account2.balance −= 100
println(“Denied !”)

What’s wrong ?
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Client 2: transfer $100  acc2 � acc3
Y = Account2.balance
Account3.balance += 100

If (Y>=100) Account2.balance −=100
else { /* rollback ! */

account3.balance −= 100
println(“Denied !”)
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The Three Famous anomalies

• Lost update
– Two tasks T and T’ both modify the same data
– T and T’ both commit
– Final state shows effects of only T, but not of T’

• Dirty read
– T reads data written by T’ while T’ has not committed
– What can go wrong: T’ write more data (which T has 

already read), or T’ aborts

• Inconsistent read
– One task T sees some but not all changes made by T’
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Transactions: Definition

• A transaction = one or more operations, 
which reflects a single real-world transition
– Happens completely or not at all; all-or-nothing

• Examples 
– Transfer money between accounts
– Rent a movie;  return a rented movie
– Purchase a group of products
– Register for a class (either waitlisted or allocated)

• By using transactions, all previous problems 
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Transactions in Applications
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START TRANSACTION

[SQL statements]

COMMIT    or     ROLLBACK (=ABORT)

May be omitted:
first SQL query

starts txn

In ad-hoc SQL: each statement = one transaction



Revised Code
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Client 1: transfer $100  acc1� acc2
START TRANSACTION
X = Account1.balance;    Account2.balance += 100

If (X>=100) { Account1.balance -=100;  COMMIT }
else {println(“Denied !”; ROLLBACK)
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Client 1: transfer $100  acc2� acc3
START TRANSACTION
X = Account2.balance;    Account3.balance += 100

If (X>=100) { Account2.balance -=100;  COMMIT }
else {println(“Denied !”; ROLLBACK)
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ACID Properties

• Atomic
– State shows either all the effects of txn, or none of 

them

• Consistent
– Txn moves from a state where integrity holds, to 

another where integrity holds

• Isolated
– Effect of txns is the same as txns running one after 

another (ie looks like batch mode)

• Durable
– Once a txn has committed, its effects remain in the 

database
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ACID: Atomicity

• Two possible outcomes for a 
transaction

– It commits: all the changes are made

– It aborts: no changes are made

• That is, transaction’s activities are all or 
nothing
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ACID: Isolation

• A transaction executes concurrently 
with other transaction

• Isolation: the effect is as if each 
transaction executes in isolation of the 
others
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ACID: Consistency

• The database satisfies integrity constraints
– Account numbers are unique

– Stock amount can’t be negative

– Sum of debits and of credits is 0

• Consistency = if the database satisfied the 
constraints at the beginning of the transaction, and 
if the application is written correctly, then the 
constraints must hold at the end of the transactions

• Introduced as a requirement in the 70s, but today 
we understand it is a consequence of atomicity and 
isolation
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ACID: Durability

• The effect of a transaction must 
continue to exists after the transaction, 
or the whole program has terminated

• Means: write data to disk

• Sometimes also means recovery
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Reasons for Rollback

• Explicit in the application
– E.g. use it freely in HW 3

• System-initiated abort
– System crash

– Housekeeping, e.g. due to timeouts
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Simple Log-based Recovery

These simple recovery algorithms are 
based on Garcia-Molina, Ullman, 
Widom

• Undo logging 17.2

• Redo logging 17.3

• Redo/undo 17.4
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Disk Access Characteristics

• Disk latency = time between when command is issued 
and when data is in memory

• Disk latency = seek time + rotational latency
– Seek time = time for the head to reach cylinder

• 10ms – 40ms

– Rotational latency = time for the sector to rotate
• Rotation time = 10ms

• Average latency = 10ms/2

• Transfer time = typically 40MB/s

• Disks read/write one block at a time

Dan Suciu -- CSEP544 Fall 2010  Large gap between disk I/O and memory � Buffer pool



Buffer Management in a DBMS
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Buffer manager maintains a table 
of <pageid, frame#> pairs

DB

disk page

free frame

BUFFER POOL

READ
WRITE

INPUT
OUTUPT

Application
(Database server)



Page Replacement Policies

• LRU = expensive

– Next slide

• Clock algorithm = cheaper alternative

– Read in the book

Both work well in OS, but not always in DB
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Least Recently Used (LRU)
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P5, P2, P8, P4, P1, P9, P6, P3, P7
Read(P6)

P6, P5, P2, P8, P4, P1, P9, P3, P7

Input(P10)

P10, P6, P5, P2, P8, P4, P1, P9, P3

Read(P10)



Buffer Manager

DBMS build their own buffer manager and 
don’t rely on the OS

• Better control for transactions

– Force pages to disk

– Pin pages in the buffer

• Tweaks to LRU/clock algorithms for 
specialized accesses, s.a. sequential scan
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Recovery

Type of Crash Prevention

Wrong data entry
Constraints and
Data cleaning

Disk crashes
Redundancy: 

e.g. RAID, archive

Fire, theft, bankruptcy… Remote backups

System failures:
e.g. power

DATABASE
RECOVERY
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Key Principle in Recovery

• Write-ahead log = 

– A file that records every single action of all 
running transactions

– Force log entry to disk

– After a crash, transaction manager reads 
the log and finds out exactly what the 
transactions did or did not

Dan Suciu -- CSEP544 Fall 2010  
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Transactions

• Assumption: the database is composed 
of elements

– Usually 1 element = 1 block

– Can be smaller (=1 record) or larger (=1 
relation)

• Assumption: each transaction 
reads/writes some elements

Dan Suciu -- CSEP544 Fall 2010  
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Primitive Operations of 
Transactions

• READ(X,t)
– copy element X to transaction local variable t

• WRITE(X,t)
– copy transaction local variable t to element X

• INPUT(X)
– read element X to memory buffer

• OUTPUT(X)
– write element X to disk

Dan Suciu -- CSEP544 Fall 2010  
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Example

Atomicity:
BOTH A and B
are multiplied by 2

Dan Suciu -- CSEP544 Fall 2010  

START TRANSACTIONSTART TRANSACTION

READ(A,t); 

t := t*2;

WRITE(A,t); 

READ(B,t); 

t := t*2;

WRITE(B,t)

COMMIT;
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Action t Mem A Mem B Disk A Disk B

INPUT(A) 8 8 8

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8

INPUT(B) 16 16 8 8 8

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

Buffer pool DiskTransaction

READ(A,t); t := t*2; WRITE(A,t); 
READ(B,t); t := t*2; WRITE(B,t)
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Crash occurs after OUTPUT(A), before OUTPUT(B)
We lose atomicity

Action t Mem A Mem B Disk A Disk B

INPUT(A) 8 8 8

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8

INPUT(B) 16 16 8 8 8

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16
Crash !
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The Log

• An append-only file containing log records

• Multiple transactions run concurrently, log 
records are interleaved

• After a system crash, use log to:

– Redo some transaction that didn’t commit

– Undo other transactions that didn’t commit

• Three kinds of logs: undo, redo, undo/redo
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Undo Logging

Log records

• <START T> 
– transaction T has begun

• <COMMIT T> 
– T has committed

• <ABORT T>
– T has aborted

• <T,X,v>
– T has updated element X, and its old value was v

Dan Suciu -- CSEP544 Fall 2010  
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Action T Mem A Mem B Disk A Disk B Log

<START T>

INPUT(A) 8 8 8

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8 <T,A,8>

INPUT(B) 16 16 8 8 8

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8 <T,B,8>

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

COMMIT <COMMIT T>
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Action T Mem A Mem B Disk A Disk B Log

<START T>

INPUT(A) 8 8 8

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8 <T,A,8>

INPUT(B) 16 16 8 8 8

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8 <T,B,8>

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

COMMIT <COMMIT T>

Crash !

WHAT DO WE DO ?
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WHAT DO WE DO ?

Action T Mem A Mem B Disk A Disk B Log

<START T>

INPUT(A) 8 8 8

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8 <T,A,8>

INPUT(B) 16 16 8 8 8

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8 <T,B,8>

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

COMMIT <COMMIT T>
Crash !



41

After Crash

• In the first example:

– We UNDO both changes: A=8, B=8

– The transaction is atomic, since none of its actions 
has been executed

• In the second example

– We don’t undo anything

– The transaction is atomic, since both it’s actions 
have been executed
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Undo-Logging Rules

U1: If T modifies X, then <T,X,v> must be 
written to disk before OUTPUT(X)

U2: If T commits, then OUTPUT(X) must 
be written to disk before <COMMIT T>

• Hence: OUTPUTs are done early, 
before the transaction commits
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Action T Mem A Mem B Disk A Disk B Log

<START T>

INPUT(A) 8 8 8

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8 <T,A,8>

INPUT(B) 16 16 8 8 8

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8 <T,B,8>

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

COMMIT <COMMIT T>
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Recovery with Undo Log

After system’s crash, run recovery 
manager 

• Idea 1. Decide for each transaction T 
whether it is completed or not
– <START T>….<COMMIT T>….    = yes

– <START T>….<ABORT T>…….   = yes

– <START T>………………………   = no

• Idea 2. Undo all modifications by 
incomplete transactions

Dan Suciu -- CSEP544 Fall 2010  



45

Recovery with Undo Log

Recovery manager:

• Read log from the end; cases:

<COMMIT T>:  mark T as completed

<ABORT T>: mark T as completed

<T,X,v>: if T is not completed
then write X=v to disk

else ignore

<START T>: ignore

Dan Suciu -- CSEP544 Fall 2010  
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Recovery with Undo Log
…
…
<T6,X6,v6>
…
…
<START T5>
<START T4>
<T1,X1,v1>
<T5,X5,v5>
<T4,X4,v4>
<COMMIT T5>
<T3,X3,v3>
<T2,X2,v2>

Question1: Which updates
are undone ?

Question 2:
What happens if  there
is a second crash,
during recovery ?

Question 3:
How far back
do we need to
read in the log ?

Crash
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Recovery with Undo Log

• Note: all undo commands are 
idempotent

– If we perform them a second time, no 
harm is done

– E.g. if there is a system crash during 
recovery, simply restart recovery from 
scratch
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Recovery with Undo Log

When do we stop reading the log ?

• We cannot stop until we reach the 
beginning of the log file

• This is impractical

Instead: use checkpointing
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Checkpointing

Checkpoint the database periodically

• Stop accepting new transactions

• Wait until all current transactions 
complete

• Flush log to disk

• Write a <CKPT> log record, flush

• Resume transactions

Dan Suciu -- CSEP544 Fall 2010  
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Undo Recovery with 
Checkpointing

…
…
<T9,X9,v9>
…
…
(all completed)
<CKPT>

<START T2>
<START T3
<START T5>
<START T4>
<T1,X1,v1>
<T5,X5,v5>
<T4,X4,v4>
<COMMIT T5>
<T3,X3,v3>
<T2,X2,v2>

During recovery,
Can stop at first
<CKPT>

transactions T2,T3,T4,T5

other transactions
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Nonquiescent Checkpointing

• Problem with checkpointing: database 
freezes during checkpoint

• Would like to checkpoint while database 
is operational

• Idea: nonquiescent checkpointing

Quiescent = being quiet, still, or at rest; inactive
Non-quiescent = allowing transactions to be active
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Nonquiescent Checkpointing

• Write a <START CKPT(T1,…,Tk)>
where T1,…,Tk are all active 
transactions

• Continue normal operation

• When all of T1,…,Tk have completed, 
write <END CKPT>
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Undo Recovery with 
Nonquiescent Checkpointing

…
…
…
…
…
…
<START CKPT T4, T5, T6>
…
…
…
…
<END CKPT>
…
…
…

During recovery,
Can stop at first
<CKPT>

T4, T5, T6, plus
later transactions

earlier transactions plus
T4, T5, T6

later transactions
Q: do we need 
<END CKPT> ?



Implementing ROLLBACK

• A transaction ends in COMMIT or ROLLBACK

• Use the undo-log to implement ROLLBCACK

• LSN = Log Seqence Number

• Log entries for the same transaction are 
linked, using the LSN’s

• Read log in reverse, using LSN pointers
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Redo Logging

Log records

• <START T> = transaction T has begun

• <COMMIT T> = T has committed

• <ABORT T>= T has aborted

• <T,X,v>= T has updated element X, and 
its new value is v

Dan Suciu -- CSEP544 Fall 2010  



56

Action T Mem A Mem B Disk A Disk B Log

<START T>

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8 <T,A,16>

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8 <T,B,16>

<COMMIT T>

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16
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Redo-Logging Rules

R1: If T modifies X, then both <T,X,v> and 
<COMMIT T> must be written to disk 
before OUTPUT(X)

• Hence: OUTPUTs are done late

Dan Suciu -- CSEP544 Fall 2010  
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Action T Mem A Mem B Disk A Disk B Log

<START T>

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8 <T,A,16>

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8 <T,B,16>

<COMMIT T>

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16
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Recovery with Redo Log

After system’s crash, run recovery 
manager 

• Step 1. Decide for each transaction T 
whether we need to redo or not
– <START T>….<COMMIT T>….    = yes

– <START T>….<ABORT T>…….    = no

– <START T>………………………   = no

• Step 2. Read log from the beginning, 
redo all updates of committed
transactions
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Recovery with Redo Log

<START T1>
<T1,X1,v1>
<START T2>
<T2, X2, v2>
<START T3>
<T1,X3,v3>
<COMMIT T2>
<T3,X4,v4>
<T1,X5,v5>
…
…
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Nonquiescent Checkpointing

• Write a <START CKPT(T1,…,Tk)>
where T1,…,Tk are all active 
transactions

• Flush to disk all blocks of committed 
transactions (dirty blocks), while 
continuing normal operation

• When all blocks have been flushed, 
write <END CKPT>

Dan Suciu -- CSEP544 Fall 2010  Note: this differs significantly from ARIES (next lecture)
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Redo Recovery with 
Nonquiescent Checkpointing

…
<START T1>
…
<COMMIT T1>
…
<START T4>
…
<START CKPT T4, T5, T6>
…
…
…
…
<END CKPT>
…
…
…
<START CKPT T9, T10>
…

Step 1: look for
The last
<END CKPT>

Step 2: redo
from the
earliest
start of
T4, T5, T6
ignoring
transactions
committed
earlier

All OUTPUTs
of T1 are guaranteed
to be on disk

Cannot
use
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Comparison Undo/Redo

• Undo logging:
– OUTPUT must be done early

– If <COMMIT T> is seen, T definitely has written all its data to 
disk (hence, don’t need to redo) – inefficient

• Redo logging
– OUTPUT must be done late

– If <COMMIT T> is not seen, T definitely has not written any 
of its data to disk (hence there is not dirty data on disk, no 
need to undo) – inflexible

• Would like more flexibility on when to OUTPUT: 
undo/redo logging (next)
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Undo/Redo Logging

Log records, only one change

• <T,X,u,v>= T has updated element X, its 
old value was u, and its new value is v

Dan Suciu -- CSEP544 Fall 2010  
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Undo/Redo-Logging Rule

UR1: If T modifies X, then <T,X,u,v> must 
be written to disk before OUTPUT(X)

Note: we are free to OUTPUT early or late 
relative to <COMMIT T>

Dan Suciu -- CSEP544 Fall 2010  



66

Action T Mem A Mem B Disk A Disk B Log

<START T>

REAT(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8 <T,A,8,16>

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8 <T,B,8,16>

OUTPUT(A) 16 16 16 16 8

<COMMIT T>

OUTPUT(B) 16 16 16 16 16

Can OUTPUT whenever we want: before/after COMMIT
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Recovery with Undo/Redo Log

After system’s crash, run recovery manager 

• Redo all committed transaction, top-down

• Undo all uncommitted transactions, bottom-
up

Dan Suciu -- CSEP544 Fall 2010  
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Recovery with Undo/Redo Log

<START T1>
<T1,X1,v1>
<START T2>
<T2, X2, v2>
<START T3>
<T1,X3,v3>
<COMMIT T2>
<T3,X4,v4>
<T1,X5,v5>
…
…
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Concurrency Control

Problem:

• Many transactions execute concurrently

• Their updates to the database may 
interfere

Scheduler = needs to schedule 
transactions

69Dan Suciu -- CSEP544 Fall 2010     
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Concurrency Control

Basic definitions

• Schedules: serializable and variations

Next lecture:

• Locks

• Concurrency control by timestamps 
18.8

• Concurrency control by validation 18.9
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The Problem

• Multiple concurrent transactions T1, T2, …

• They read/write common elements A1, A2, …

• How can we prevent unwanted interference ?

71

The SCHEDULER is responsible for that

Dan Suciu -- CSEP544 Fall 2010     



Conflicts

• Write-Read – WR

• Read-Write – RW

• Write-Write – WW

Dan Suciu -- CSEP544 Fall 2010     72



Lost Update

T : READ(A) 

: WRITE(A) 

T1: READ(A) 

T1: A := A+5

T1: WRITE(A) 

T2: READ(A);

T2: A := A*2

T2: WRITE(A);

73Dan Suciu -- CSEP544 Fall 2010     RW conflict and WW conflict



Inconsistent Reads

T :  A := 20;  B := 20;T1:  A := 20;  B := 20;
T1:  WRITE(A) 

T1:  WRITE(B) 
:  READ(B); 

T2:  READ(A);
T2:  READ(B); 

74Dan Suciu -- CSEP544 Fall 2010     WR conflict and RW conflict



Dirty Read

T :  WRITE(A) T1:  WRITE(A) 

T1:  ABORT

T2:  READ(A)

75Dan Suciu -- CSEP544 Fall 2010     WR conflict



Unrepeatable Read

T1:  WRITE(A) T1:  WRITE(A) 

T :  READ(A);

:  READ(A); 

T2:  READ(A);

T2:  READ(A); 

76Dan Suciu -- CSEP544 Fall 2010     RW conflict and WR conflict



Schedules

Dan Suciu -- CSEP544 Fall 2010     77

A schedule is a sequence
of interleaved actions 
from all transactions



Example

T1 T2

READ(A, t) READ(A, s)

t := t+100 s := s*2

WRITE(A, t) WRITE(A,s)

READ(B, t) READ(B,s)

t := t+100 s := s*2

WRITE(B,t) WRITE(B,s)
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A Serial Schedule
T1 T2
READ(A, t)
t := t+100
WRITE(A, t)
READ(B, t)
t := t+100
WRITE(B,t)

READ(A,s)
s := s*2
WRITE(A,s)
READ(B,s)
s := s*2
WRITE(B,s)
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Serializable Schedule
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A schedule is serializable if it is 
equivalent to a serial schedule
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A Serializable Schedule
T1 T2
READ(A, t)
t := t+100
WRITE(A, t)

READ(A,s)
s := s*2
WRITE(A,s)

READ(B, t)
t := t+100
WRITE(B,t)

READ(B,s)
s := s*2
WRITE(B,s)

This is NOT a serial schedule,
but is serializable
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A Non-Serializable Schedule
T1 T2
READ(A, t)
t := t+100
WRITE(A, t)

READ(A,s)
s := s*2
WRITE(A,s)
READ(B,s)
s := s*2
WRITE(B,s)

READ(B, t)
t := t+100
WRITE(B,t)
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A Serializable Schedule
T1 T2
READ(A, t)
t := t+100
WRITE(A, t)

READ(A,s)
s := s + 200
WRITE(A,s)
READ(B,s)
s := s + 200
WRITE(B,s)

READ(B, t)
t := t+100
WRITE(B,t)

83Dan Suciu -- CSEP544 Fall 2010     We don’t expect the scheduler to schedule this

Schedule is serializable
because t=t+100 and
s=s+200 commute



Ignoring Details

• Assume worst case updates:

– We never commute actions done by 
transactions

• As a consequence, we only care about 
reads and writes

– Transaction = sequence of R(A)’s and W(A)’s
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T1: r1(A); w1(A); r1(B); w1(B)
T2: r2(A); w2(A); r2(B); w2(B)



Conflicts

r (X); w (Y)ri(X); wi(Y)Two actions by same transaction Ti:

w (X); w (X)wi(X); wj(X)Two writes by Ti, Tj to same element

w (X); r (X)wi(X); rj(X)
Read/write by Ti, Tj to same element

r (X); w (X)ri(X); wj(X)
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Conflict Serializability

• A schedule is conflict serializable if it 
can be transformed into a serial 
schedule by a series of swappings of 
adjacent non-conflicting actions

Example:

r (A); w (A); r (B); w (B); r (A); w (A); r (B); w (B)r1(A); w1(A); r1(B); w1(B); r2(A); w2(A); r2(B); w2(B)

r (A); w (A); r (A); w (A); r (B); w (B); r (B); w (B)r1(A); w1(A); r2(A); w2(A); r1(B); w1(B); r2(B); w2(B)



The Precedence Graph Test

Is a schedule conflict-serializable ?

Simple test:

• Build a graph of all transactions Ti

• Edge from Ti to Tj if Ti makes an action that 
conflicts with one of Tj and comes first

• The test: if the graph has no cycles, then it is 
conflict serializable !
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Example 1

r (A); r (B); w (A); r (A); w (B); w (A); r (B); w (B)r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B)

1 2 3
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Example 1

r (A); r (B); w (A); r (A); w (B); w (A); r (B); w (B)r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B)

1 2 3

This schedule is conflict-serializable

AB
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Example 2

r (A); r (B); w (A); r (B); r (A); w (B); w (A); w (B)r2(A); r1(B); w2(A); r2(B); r3(A); w1(B); w3(A); w2(B)

1 2 3
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Example 2

r (A); r (B); w (A); r (B); r (A); w (B); w (A); w (B)r2(A); r1(B); w2(A); r2(B); r3(A); w1(B); w3(A); w2(B)

1 2 3

This schedule is NOT conflict-serializable

A

B

B
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View Equivalence

• A serializable schedule need not be 
conflict serializable, even under the 
“worst case update” assumption

w (X); w (Y); w (X); w (Y); w (Y);w1(X); w1(Y); w2(X); w2(Y); w3(Y);

w (X); w (X); w (Y); w (Y); w (Y);w1(X); w2(X); w2(Y); w1(Y); w3(Y);

Lost write

Equivalent,  but can’t swap
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View Equivalent
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T1 T2 T3

W1(X)

W2(X)

W2(Y)

CO2

W1(Y)

CO1

W3(Y)

CO3

T1 T2 T3

W1(X)

W1(Y)

CO1

W2(X)

W2(Y)

CO2

W3(Y)

CO3

Lost
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View Equivalence

Two schedules S, S’ are view equivalent if:

• If T reads an initial value of A in S, then T 
also reads the initial value of A in S’

• If T reads a value of A written by T’ in S, 
then T also reads a value of A written by 
T’ in S’

• If T writes the final value of A in S, then it 
writes the final value of A in S’
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View-Serializability

A schedule is view serializable if it is view 
equivalent to a serial schedule

Remark:

• If a schedule is conflict serializable, then 
it is also view serializable

• But not vice versa
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Schedules with Aborted 
Transactions

• When a transaction aborts, the recovery 
manager undoes its updates

• But some of its updates may have 
affected other transactions !

96Dan Suciu -- CSEP544 Fall 2010     



Schedules with Aborted 
Transactions
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T1 T2
R(A)
W(A)

R(A)
W(A)
R(B)
W(B)
Commit

Abort
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Recoverable Schedules

A schedule is recoverable if:

• It is conflict-serializable, and

• Whenever a transaction T commits, all 
transactions who have written elements 
read by T have already committed
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Recoverable Schedules
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T1 T2
R(A)
W(A)

R(A)
W(A)
R(B)
W(B)
Commit

Abort

T1 T2
R(A)
W(A)

R(A)
W(A)
R(B)
W(B)

Abort
Commit

Nonrecoverable Recoverable



Cascading Aborts

• If a transaction T aborts, then we need 
to abort any other transaction T’ that 
has read an element written by T

• A schedule is said to avoid cascading 
aborts if whenever a transaction read an 
element, the transaction that has last 
written it has already committed.
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Avoiding Cascading Aborts
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T1 T2
R(A)
W(A)
Commit

R(A)
W(A)
R(B)
W(B)
. . .

Without cascading aborts

T1 T2
R(A)
W(A)

R(A)
W(A)
R(B)
W(B)

. . .
. . .

With cascading aborts



Review of Schedules

Serializability

• Serial

• Serializable

• Conflict serializable

• View serializable

Recoverability

• Recoverable

• Avoiding cascading 
deletes
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