
1

Lecture 5

Transactions

Wednesday

October 27th, 2010

Dan Suciu -- CSEP544 Fall 2010

Announcement

• HW3: due next week

– “Each customer has exactly one rental plan”

– A many-one relationship: NO NEW TABLE !

– Postgres available on cubist

• HW4: due in two weeks

– Problems from both textbooks

– Read corresponding chapters + slides

Dan Suciu -- CSEP544 Fall 2010 2

Where We Are (1/2)

Transactions:

• Recovery:

– Have discussed simple UNDO/REDO

recovery last lecture

• Concurrency control:

– Have discussed serializability last lecture

– Will discuss lock-based scheduler today

Dan Suciu -- CSEP544 Fall 2010 3

Where We Are (2/2)

Also today and next time:

• Weak Isolation Levels in SQL

• Advanced recovery

– ARIES

• Advanced concurrency control

– Timestamp based algorithms, including

snapshot isolation

Dan Suciu -- CSEP544 Fall 2010 4

Review Questions

Query Answering Using Views, by Halevy

• Q1: define the problem

• Q2: how is this used for physical data
independence ?

• Q3: what is data integration and what is
its connection to query answering using
views ?

Dan Suciu -- CSEP544 Fall 2010 5

Review Questions

• What is a schedule ?

• What is a serializable schedule ?

• What is a conflict ?

• What is a conflict-serializable schedule ?

• What is a view-serializable schedule ?

• What is a recoverable schedule ?

• When does a schedule avoid cascading

aborts ? Dan Suciu -- CSEP544 Fall 2010 6

Scheduler

• The scheduler is the module that
schedules the transaction’s actions,
ensuring serializability

• Two main approaches

– Pessimistic scheduler: uses locks

– Optimistic scheduler: time stamps, validation

7Dan Suciu -- CSEP544 Fall 2010

Locking Scheduler

Simple idea:

• Each element has a unique lock

• Each transaction must first acquire the
lock before reading/writing that element

• If the lock is taken by another
transaction, then wait

• The transaction must release the lock(s)

8Dan Suciu -- CSEP544 Fall 2010

Notation

li(A) = transaction Ti acquires lock for element A

ui(A) = transaction Ti releases lock for element A

9Dan Suciu -- CSEP544 Fall 2010

A Non-Serializable Schedule
T1 T2
READ(A, t)
t := t+100
WRITE(A, t)

READ(A,s)
s := s*2
WRITE(A,s)
READ(B,s)
s := s*2
WRITE(B,s)

READ(B, t)
t := t+100
WRITE(B,t)

10Dan Suciu -- CSEP544 Fall 2010

Example
T1 T2
L1(A); READ(A, t)
t := t+100
WRITE(A, t); U1(A); L1(B)

L2(A); READ(A,s)
s := s*2
WRITE(A,s); U2(A);
L2(B); DENIED…

READ(B, t)
t := t+100
WRITE(B,t); U1(B);

…GRANTED; READ(B,s)
s := s*2
WRITE(B,s); U2(B);

Scheduler has ensured a conflict-serializable schedule 11

But…
T1 T2
L1(A); READ(A, t)
t := t+100
WRITE(A, t); U1(A);

L2(A); READ(A,s)
s := s*2
WRITE(A,s); U2(A);
L2(B); READ(B,s)
s := s*2
WRITE(B,s); U2(B);

L1(B); READ(B, t)
t := t+100
WRITE(B,t); U1(B);

Locks did not enforce conflict-serializability !!! What’s wrong ?12

Two Phase Locking (2PL)

The 2PL rule:

• In every transaction, all lock requests
must preceed all unlock requests

• This ensures conflict serializability !
(will prove this shortly)

13Dan Suciu -- CSEP544 Fall 2010

Example: 2PL transactions
T1 T2
L1(A); L1(B); READ(A, t)
t := t+100
WRITE(A, t); U1(A)

L2(A); READ(A,s)
s := s*2
WRITE(A,s);
L2(B); DENIED…

READ(B, t)
t := t+100
WRITE(B,t); U1(B);

…GRANTED; READ(B,s)
s := s*2
WRITE(B,s); U2(A); U2(B);

Now it is conflict-serializable 14

Two Phase Locking (2PL)

15

Theorem: 2PL ensures conflict serializability

Proof. Suppose not: then

there exists a cycle

in the precedence graph.

T1

T2

T3

BA

C

Then there is the

following temporal

cycle in the schedule:

U1(A)�L2(A)

L2(A)�U2(B)

U2(B)�L3(B)

L3(B)�U3(C)

U3(C)�L1(C)

L1(C)�U1(A)

Contradiction

A New Problem:

Non-recoverable Schedule
T1 T2
L1(A); L1(B); READ(A, t)
t := t+100
WRITE(A, t); U1(A)

L2(A); READ(A,s)
s := s*2
WRITE(A,s);
L2(B); DENIED…

READ(B, t)
t := t+100
WRITE(B,t); U1(B);

…GRANTED; READ(B,s)
s := s*2
WRITE(B,s); U2(A); U2(B);

Abort Commit 16

What about Aborts?

• 2PL enforces conflict-serializable
schedules

• But does not enforce recoverable
schedules

17Dan Suciu -- CSEP544 Fall 2010

Strict 2PL

• Strict 2PL: All locks held by a transaction are

released when the transaction is completed

• Schedule is recoverable

– Transactions commit only after all transactions

whose changes they read also commit

• Schedule avoids cascading aborts

– Transactions read only after the txn that wrote that

element committed

• Schedule is strict: read book

Dan Suciu -- CSEP544 Fall 2010 18

Lock Modes

Standard:

• S = shared lock (for READ)

• X = exclusive lock (for WRITE)

Lots of fancy locks:

• U = update lock
– Initially like S

– Later may be upgraded to X

• I = increment lock (for A := A + something)
– Increment operations commute 19

20

Lock Granularity

• Fine granularity locking (e.g., tuples)

– High concurrency

– High overhead in managing locks

• Coarse grain locking (e.g., tables, predicate locks)

– Many false conflicts

– Less overhead in managing locks

• Alternative techniques

– Hierarchical locking (and intentional locks) [commercial DBMSs]

– Lock escalation
Dan Suciu -- CSEP544 Fall 2010

Deadlocks

• Trasaction T1 waits for a lock held by T2;

• But T2 waits for a lock held by T3;

• While T3 waits for

• . . .

• . . .and T73 waits for a lock held by T1 !!

21Dan Suciu -- CSEP544 Fall 2010

22

Deadlocks

• Deadlock avoidance
– Acquire locks in pre-defined order

– Acquire all locks at once before starting

• Deadlock detection
– Timeouts

– Wait-for graph (this is what commercial systems
use)

Dan Suciu -- CSEP544 Fall 2010

The Locking Scheduler

Task 1:

Add lock/unlock requests to transactions

• Examine all READ(A) or WRITE(A) actions

• Add appropriate lock requests

• Ensure Strict 2PL !

23Dan Suciu -- CSEP544 Fall 2010

The Locking Scheduler

Task 2:

Execute the locks accordingly

• Lock table: a big, critical data structure in a DBMS !

• When a lock is requested, check the lock table

– Grant, or add the transaction to the element’s wait list

• When a lock is released, re-activate a transaction

from its wait list

• When a transaction aborts, release all its locks

• Check for deadlocks occasionally

24Dan Suciu -- CSEP544 Fall 2010

Lock Performance

Dan Suciu -- CSEP544 Fall 2010 25

T
h
ro

u
g
h
p
u
t

Active Transactions

thrashing

Why ?

26

The Tree Protocol

• An alternative to 2PL, for tree structures

• E.g. B-trees (the indexes of choice in

databases)

• Because

– Indexes are hot spots!

– 2PL would lead to great lock contention

Dan Suciu -- CSEP544 Fall 2010

27

The Tree Protocol

Rules:

• The first lock may be any node of the tree

• Subsequently, a lock on a node A may only be acquired if the
transaction holds a lock on its parent B

• Nodes can be unlocked in any order (no 2PL necessary)

• “Crabbing”

– First lock parent then lock child

– Keep parent locked only if may need to update it

– Release lock on parent if child is not full

• The tree protocol is NOT 2PL, yet ensures conflict-serializability
!

Dan Suciu -- CSEP544 Fall 2010

28

Phantom Problem

• So far we have assumed the database to
be a static collection of elements (=tuples)

• If tuples are inserted/deleted then the
phantom problem appears

Dan Suciu -- CSEP544 Fall 2010

Phantom Problem

Is this schedule serializable ?

T1 T2

SELECT *
FROM Product
WHERE color=‘blue’

INSERT INTO Product(name, color)
VALUES (‘gizmo’,’blue’)

SELECT *
FROM Product
WHERE color=‘blue’

Phantom Problem

30

Suppose there are two blue products, X1, X2:

R1(X1),R1(X2),W2(X3),R1(X1),R1(X2),R1(X3)R1(X1),R1(X2),W2(X3),R1(X1),R1(X2),R1(X3)

This is conflict serializable ! What’s wrong ??

T1 T2

SELECT *
FROM Product
WHERE color=‘blue’

INSERT INTO Product(name, color)
VALUES (‘gizmo’,’blue’)

SELECT *
FROM Product
WHERE color=‘blue’

Phantom Problem

31

Suppose there are two blue products, X1, X2:

R1(X1),R1(X2),W2(X3),R1(X1),R1(X2),R1(X3)R1(X1),R1(X2),W2(X3),R1(X1),R1(X2),R1(X3)

Not serializable due to phantoms

T1 T2

SELECT *
FROM Product
WHERE color=‘blue’

INSERT INTO Product(name, color)
VALUES (‘gizmo’,’blue’)

SELECT *
FROM Product
WHERE color=‘blue’

32

Phantom Problem

• A “phantom” is a tuple that is invisible
during part of a transaction execution but
not all of it.

• In our example:
– T1: reads list of products

– T2: inserts a new product

– T1: re-reads: a new product appears !

Dan Suciu -- CSEP544 Fall 2010

Phantom Problem

• In a static database:

– Conflict serializability implies serializability

• In a dynamic database, this may fail
due to phantoms

• Strict 2PL guarantees conflict
serializability, but not serializability

33

Dealing With Phantoms

• Lock the entire table, or

• Lock the index entry for ‘blue’

– If index is available

• Or use predicate locks

– A lock on an arbitrary predicate

Dan Suciu -- CSEP544 Fall 2010 34
Dealing with phantoms is expensive !

35

Degrees of Isolation

• Isolation level “serializable” (i.e. ACID)
– Golden standard

– Requires strict 2PL and predicate locking

– But often too inefficient

– Imagine there are few update operations and many long
read operations

• Weaker isolation levels
– Sacrifice correctness for efficiency

– Often used in practice (often default)

– Sometimes are hard to understand

Dan Suciu -- CSEP544 Fall 2010

36

Degrees of Isolation in SQL

• Four levels of isolation
– All levels use long-duration exclusive locks

– READ UNCOMMITTED: no read locks

– READ COMMITTED: short duration read locks

– REPEATABLE READ:
• Long duration read locks on individual items

– SERIALIZABLE:
• All locks long duration and lock predicates

• Trade-off: consistency vs concurrency

• Commercial systems give choice of level

Dan Suciu -- CSEP544 Fall 2010

37

Isolation Levels in SQL

1. “Dirty reads”

SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED

2. “Committed reads”

SET TRANSACTION ISOLATION LEVEL READ COMMITTED

3. “Repeatable reads”

SET TRANSACTION ISOLATION LEVEL REPEATABLE READ

4. Serializable transactions

SET TRANSACTION ISOLATION LEVEL SERIALIZABLE

ACID

Dan Suciu -- CSEP544 Fall 2010

Choosing Isolation Level

• Trade-off: efficiency vs correctness

• DBMSs give user choice of level

38

Beware!!

• Default level is often NOT serializable

• Default level differs between DBMSs

• Some engines support subset of levels!

• Serializable may not be exactly ACID

Always read docs!

1. Isolation Level: Dirty Reads

• “Long duration” WRITE locks

– Strict 2PL

• No READ locks

– Read-only transactions are never delayed

39

Possible pbs: dirty and inconsistent reads

Dan Suciu -- CSEP544 Fall 2010

2. Isolation Level: Read

Committed
• “Long duration” WRITE locks

– Strict 2PL

• “Short duration” READ locks

– Only acquire lock while reading (not 2PL)

40

Unrepeatable reads

When reading same element twice,

may get two different values

Dan Suciu -- CSEP544 Fall 2010

3. Isolation Level: Repeatable

Read

• “Long duration” READ and WRITE locks

– Strict 2PL

41

This is not serializable yet !!! Why ?

Dan Suciu -- CSEP544 Fall 2010

4. Isolation Level Serializable

• Deals with phantoms too

Dan Suciu -- CSEP544 Fall 2010 42

43

READ-ONLY Transactions
Client 1: START TRANSACTION

INSERT INTO SmallProduct(name, price)

SELECT pname, price

FROM Product

WHERE price <= 0.99

DELETE FROM Product

WHERE price <=0.99

COMMIT

Client 2: SET TRANSACTION READ ONLY

START TRANSACTION

SELECT count(*)

FROM Product

SELECT count(*)

FROM SmallProduct

COMMIT

Can improve

performance

Dan Suciu -- CSEP544 Fall 2010

Advanced Topics

• Aries recovery manager

• Timestamp-based concurrency control

Dan Suciu -- CSEP544 Fall 2010 44

45

Terminology

• STEAL or NO-STEAL

– Can an update made by an uncommitted

transaction overwrite the most recent committed

value of a data item on disk?

• FORCE or NO-FORCE

– Should all updates of a transaction be forced to

disk before the transaction commits?

• Easiest for recovery: NO-STEAL/FORCE

• Highest performance: STEAL/NO-FORCE

Dan Suciu -- CSEP544 Fall 2010

46

Write-Ahead Log Revised
• Enables the use of STEAL and NO-

FORCE

• Log: append-only file containing log

records

• After a system crash, use log to:

– Redo some transaction that did commit

– Undo other transactions that didn’t commit

Dan Suciu -- CSEP544 Fall 2010

Types of Logs

• Physical log: element = disk page

• Logical log: element = record

• Physiological log: combines both

Dan Suciu -- CSEP544 Fall 2010 47

48

Rules for Write-Ahead Log

• All log records pertaining to a page are written to disk

before the page is overwritten on disk

• All log records for transaction are written to disk

before the transaction is considered committed

– Why is this faster than FORCE policy?

• Committed transaction: transactions whose commit

log record has been written to disk

Dan Suciu -- CSEP544 Fall 2010

ARIES Recovery Manager

• A redo/undo log

• Physiological logging

– Physical logging for REDO

– Logical logging for UNDO

• Efficient checkpointing

• Read chapter 18 in the book !

Dan Suciu -- CSEP544 Fall 2010 49

Why ?

50

LSN = Log Sequence Number

• LSN = identifier of a log entry
– Log entries belonging to the same txn are linked

• Each page contains a pageLSN:
– LSN of log record for latest update to that page

– Will serve to determine if an update needs to be

redone

Dan Suciu -- CSEP544 Fall 2010

51

ARIES Data Structures

• Active Transactions Table

– Lists all running transactions (active transactions)

– For each txn: lastLSN = most recent update by transaction

• Dirty Page Table

– Lists all dirty pages

– For each dirty page: recoveryLSN (recLSN)= first LSN that
caused page to become dirty

• Write Ahead Log contains log records

– LSN, prevLSN = previous LSN for same transaction

– other attributes

Dan Suciu -- CSEP544 Fall 2010

ARIES Data Structures

pageID recLSN

P5 102

P6 103

P7 101

LSN prevLSN transID pageID Log entry

101 - T100 P7

102 - T200 P5

103 102 T200 P6

104 101 T100 P5

Dirty pages Log

transID lastLSN

T100 104

T200 103

Active transactions

P5

PageLSN=104

P6

PageLSN=103

P7

PageLSN=101

Buffer Pool

53

ARIES Method Details

Steps under normal operations:

• Transaction T writes page P

– What do we do ?

• Buffer manager wants to evict page P

– What do we do ?

• Transaction T wants to commit

– What do we do ?

Dan Suciu -- CSEP544 Fall 2010

54

ARIES Method Details

Steps under normal operations:

• Transaction T writes page P

– Update pageLSN, lastLSN, recLSFN

• Buffer manager wants to evict page P

– Flush log up to pageLSN

• Transaction T wants to commit

– Flush log up to current COMMIT entry

Dan Suciu -- CSEP544 Fall 2010

55

Checkpoints

Write into the log

• Entire active transactions table

• Entire dirty pages table

Dan Suciu -- CSEP544 Fall 2010

Recovery always starts by analyzing latest checkpoint

Background process periodically flushes dirty pages to disk

56

ARIES Recovery

1. Analysis pass

– Figure out what was going on at time of crash

– List of dirty pages and active transactions

2. Redo pass (repeating history principle)

– Redo all operations, even for transactions that will not commit

– Get back to state at the moment of the crash

3. Undo pass

– Remove effects of all uncommitted transactions

– Log changes during undo in case of another crash during undo

Dan Suciu -- CSEP544 Fall 2010

57

ARIES Method Illustration

[Figure 3 from Franklin97]
Dan Suciu -- CSEP544 Fall 2010

First undo and first redo log entry might be

in reverse order

58

1. Analysis Phase
• Goal

– Determine point in log where to start REDO

– Determine set of dirty pages when crashed

• Conservative estimate of dirty pages

– Identify active transactions when crashed

• Approach

– Rebuild active transactions table and dirty pages table

– Reprocess the log from the checkpoint

• Only update the two data structures

– Compute: firstLSN = smallest of all recoveryLSN

Dan Suciu -- CSEP544 Fall 2010

1. Analysis Phase

(crash)Checkpoint

Dirty

pages

Active

txn

Log

pageID recLSN pageID

transID lastLSN transID

firstLSN

1. Analysis Phase

(crash)Checkpoint

Dirty

pages

Active

txn

Log

pageID recLSN pageID

transID lastLSN transID

pageID recLSN pageID

transID lastLSN transID

Replay

history

firstLSN

2. Redo Phase

Main principle: replay history

• Process Log forward, starting from
firstLSN

• Read every log record, sequentially

• Redo actions are not recorded in the log

• Needs the Dirty Page Table

Dan Suciu -- CSEP544 Fall 2010 61

62

2. Redo Phase: Details

For each Log entry record LSN

• If affected page is not in Dirty Page Table
then do not update

• If recoveryLSN > LSN, then no update

• Read page from disk;
If pageLSN > LSN, then no update

• Otherwise perform update

Dan Suciu -- CSEP544 Fall 2010

3. Undo Phase

Main principle: “logical” undo

• Start from the end of the log, move

backwards

• Read only affected log entries

• Undo actions are written in the Log as special

entries: CLR (Compensating Log Records)

• CLRs are redone, but never undone

Dan Suciu -- CSEP544 Fall 2010 63

3. Undo Phase: Details

• “Loser transactions” = uncommitted

transactions in Active Transactions Table

• ToUndo = set of lastLSN of loser transactions

• While ToUndo not empty:

– Choose most recent (largest) LSN in ToUndo

– If LSN = regular record: undo; write a CLR where

CLR.undoNextLSN = LSN.prevLSN

– If LSN = CLR record: (don’t undo !)

if CLR.undoNextLSN not null, insert in ToUndo
otherwise, write <END TRANSACTION> in log

Dan Suciu -- CSEP544 Fall 2010 64

65

Handling Crashes during Undo

[Figure 4 from Franklin97]

Dan Suciu -- CSEP544 Fall 2010

66

Summary of Aries

• ARIES pieces together several
techniques into a comprehensive
algorithm

• Used in most modern database systems

Dan Suciu -- CSEP544 Fall 2010

Advanced Concurrency

Control Mechanisms

• Pessimistic:

– Locks

• Optimistic

– Timestamp based: basic, multiversion

– Validation

– Snapshot isolation: a variant of both

Dan Suciu -- CSEP544 Fall 2010 67

Timestamps

• Each transaction receives a unique
timestamp TS(T)

Could be:

• The system’s clock

• A unique counter, incremented by the
scheduler

68Dan Suciu -- CSEP544 Fall 2010

Timestamps

The timestamp order defines

the serialization order of the transaction

Main invariant:

69

Will generate a schedule that is view-equivalent
to a serial schedule, and recoverable

Dan Suciu -- CSEP544 Fall 2010

Main Idea

• For any two conflicting actions, ensure
that their order is the serialized order:

In each of these cases

• wU(X) . . . rT(X)

• rU(X) . . . wT(X)

• wU(X) . . . wT(X)

TWhen T requests rT(X), need to check TS(U) <= TS(T)

Read too

late ?

Write too

late ?

70Dan Suciu -- CSEP544 Fall 2010

Timestamps

With each element X, associate

• RT(X) = the highest timestamp of any
transaction U that read X

• WT(X) = the highest timestamp of any
transaction U that wrote X

• C(X) = the commit bit: true when
transaction with highest timestamp that
wrote X committed
If element = page, then these are associated

with each page X in the buffer pool 71

72

Simplified Timestamp-based

Scheduling
Only for transactions that do not abort

Otherwise, may result in non-recoverable schedule

Transaction wants to read element X
If TS(T) < WT(X) then ROLLBACK
Else READ and update RT(X) to larger of TS(T) or RT(X)

Transaction wants to write element X
If TS(T) < RT(X) then ROLLBACK
Else if TS(T) < WT(X) ignore write & continue (Thomas Write Rule)
Otherwise, WRITE and update WT(X) =TS(T)

Dan Suciu -- CSEP544 Fall 2010

Details

Read too late:

• T wants to read X, and TS(T) < WT(X)

U TSTART(T) … START(U) … wU(X) . . . rT(X)

Need to rollback T !

73Dan Suciu -- CSEP544 Fall 2010

Details

Write too late:

• T wants to write X, and TS(T) < RT(X)

U TSTART(T) … START(U) … rU(X) . . . wT(X)

Need to rollback T !

74Dan Suciu -- CSEP544 Fall 2010

Details

Write too late, but we can still handle it:

• T wants to write X, and
TS(T) >= RT(X) but WT(X) > TS(T)

V TSTART(T) … START(V) … wV(X) . . . wT(X)

Don’t write X at all !

(Thomas’ rule)

75Dan Suciu -- CSEP544 Fall 2010

View-Serializability

• By using Thomas’ rule we do not obtain
a conflict-serializable schedule

• But we obtain a view-serializable
schedule

Dan Suciu -- CSEP544 Fall 2010 76

Ensuring Recoverable

Schedules

• Recall the definition: if a transaction
reads an element, then the transaction
that wrote it must have already
committed

• Use the commit bit C(X) to keep track if
the transaction that last wrote X has
committed

77Dan Suciu -- CSEP544 Fall 2010

Ensuring Recoverable

Schedules

Read dirty data:

• T wants to read X, and WT(X) < TS(T)

• Seems OK, but…

U TSTART(U) … START(T) … wU(X). . . rT(X)… ABORT(U)

If C(X)=false, T needs to wait for it to become true

78Dan Suciu -- CSEP544 Fall 2010

Ensuring Recoverable

Schedules

Thomas’ rule needs to be revised:

• T wants to write X, and WT(X) > TS(T)

• Seems OK not to write at all, but …

U TSTART(T) … START(U)… wU(X). . . wT(X)… ABORT(U)

If C(X)=false, T needs to wait for it to become true

79Dan Suciu -- CSEP544 Fall 2010

Timestamp-based Scheduling

80

Transaction wants to READ element X
If TS(T) < WT(X) then ROLLBACK
Else If C(X) = false, then WAIT
Else READ and update RT(X) to larger of TS(T) or RT(X)

Transaction wants to WRITE element X
If TS(T) < RT(X) then ROLLBACK
Else if TS(T) < WT(X)

Then If C(X) = false then WAIT
else IGNORE write (Thomas Write Rule)

Otherwise, WRITE, and update WT(X)=TS(T), C(X)=false

Dan Suciu -- CSEP544 Fall 2010

Summary of Timestamp-

based Scheduling

• Conflict-serializable

• Recoverable

– Even avoids cascading aborts

• Does NOT handle phantoms

– These need to be handled separately, e.g.

predicate locks
81Dan Suciu -- CSEP544 Fall 2010

Multiversion Timestamp

• When transaction T requests r(X)
but WT(X) > TS(T), then T must rollback

• Idea: keep multiple versions of X:
Xt, Xt-1, Xt-2, . . .

• Let T read an older version, with appropriate
timestamp

t t-1 t-2TS(Xt) > TS(Xt-1) > TS(Xt-2) > . . .

82Dan Suciu -- CSEP544 Fall 2010

Details

• When wT(X) occurs,

create a new version, denoted Xt where t = TS(T)

• When rT(X) occurs,

find most recent version Xt such that t < TS(T)

Notes:
– WT(Xt) = t and it never changes

– RT(Xt) must still be maintained to check legality of writes

• Can delete Xt if we have a later version Xt1 and all active
transactions T have TS(T) > t1

83Dan Suciu -- CSEP544 Fall 2010

Concurrency Control by

Validation
• Each transaction T defines a read set RS(T) and a

write set WS(T)

• Each transaction proceeds in three phases:

– Read all elements in RS(T). Time = START(T)

– Validate (may need to rollback). Time = VAL(T)

– Write all elements in WS(T). Time = FIN(T)

Main invariant: the serialization order is VAL(T)

84Dan Suciu -- CSEP544 Fall 2010

Avoid rT(X) - wU(X) Conflicts

U: Read phase Validate Write phase

START(U) VAL(U) FIN(U)

T: Read phase Validate ?

START(T)

IF RS(T) ∩ WS(U) and FIN(U) > START(T)

(U has validated and U has not finished before T begun)

Then ROLLBACK(T)

conflicts

85Dan Suciu -- CSEP544 Fall 2010

Avoid wT(X) - wU(X) Conflicts

U: Read phase Validate Write phase

START(U) VAL(U) FIN(U)

T: Read phase Validate Write phase ?

START(T) VAL(T)

IF WS(T) ∩ WS(U) and FIN(U) > VAL(T)

(U has validated and U has not finished before T validates)

Then ROLLBACK(T)

conflicts

86Dan Suciu -- CSEP544 Fall 2010

Snapshot Isolation

• Another optimistic concurrency control
method

• Very efficient, and very popular

– Oracle, Postgres, SQL Server 2005

87Dan Suciu -- CSEP544 Fall 2010

WARNING: Not serializable, yet ORACLE uses

it even for SERIALIZABLE transactions !

Snapshot Isolation Rules

• Each transactions receives a timestamp TS(T)

• Tnx sees the snapshot at time TS(T) of database

• When T commits, updated pages written to disk

• Write/write conflicts are resolved by the

“first committer wins” rule

88Dan Suciu -- CSEP544 Fall 2010

Snapshot Isolation (Details)

• Multiversion concurrency control:

– Versions of X: Xt1, Xt2, Xt3, . . .

• When T reads X, return XTS(T).

• When T writes X: if other transaction
updated X, abort

– Not faithful to “first committer” rule,

because the other transaction U might

have committed after T. But once we abort

T, U becomes the first committer ☺
89Dan Suciu -- CSEP544 Fall 2010

What Works and What Not

• No dirty reads (Why ?)

• No unconsistent reads (Why ?)

• No lost updates (“first committer wins”)

• Moreover: no reads are ever delayed

• However: read-write conflicts not caught
!

90Dan Suciu -- CSEP544 Fall 2010

Write Skew

T1:

READ(X);

if X >= 50

then Y = -50; WRITE(Y)

COMMIT

T2:

READ(Y);

if Y >= 50

then X = -50; WRITE(X)

COMMIT

In our notation:

R1(X), R2(Y), W1(Y), W2(X), C1,C2

Starting with X=50,Y=50, we end with X=-50, Y=-50.

Non-serializable !!!

Write Skews Can Be Serious

• ACIDland had two viceroys, Delta and Rho

• Budget had two registers: taXes, and spendYng

• They had HIGH taxes and LOW spending…

92

Delta:

READ(X);

if X= ‘HIGH’

then { Y= ‘HIGH’;

WRITE(Y) }

COMMIT

Rho:

READ(Y);

if Y= ‘LOW’

then {X= ‘LOW’;

WRITE(X) }

COMMIT

… and they ran a deficit ever since.

Tradeoffs

• Pessimistic Concurrency Control (Locks):
– Great when there are many conflicts

– Poor when there are few conflicts

• Optimistic Concurrency Control (Timestamps):
– Poor when there are many conflicts (rollbacks)

– Great when there are few conflicts

• Compromise
– READ ONLY transactions → timestamps

– READ/WRITE transactions → locks

93Dan Suciu -- CSEP544 Fall 2010

94

Commercial Systems

• DB2: Strict 2PL

• SQL Server:

– Strict 2PL for standard 4 levels of isolation

– Multiversion concurrency control for snapshot

isolation

• PostgreSQL:

– Multiversion concurrency control

• Oracle

– Snapshot isolation even for SERIALIZABLE

