Lecture 8:
 Query Execution

Wednesday, November 17, 2010

Outline

- Relational Algebra: Ch. 4.2
- Overview of query evaluation: Ch. 12
- Evaluating relational operators: Ch. 14

The WHAT and the HOW

- In SQL we write WHAT we want to get form the data
- The database system needs to figure out HOW to get the data we want
- The passage from WHAT to HOW goes through the Relational Algebra

Data

Ind2819andonno

SQL = WHAT

Product(pid, name, price)
Purchase(pid, cid, store)
Customer(cid, name, city)

SELECT DISTINCT x.name, z.name
 FROM Product x, Purchase y, Customer z WHERE x.pid $=$ y.pid and y.cid $=y . c i d ~ a n d$ x.price > 100 and z.city = 'Seattle'

It's clear WHAT we want, unclear HOW to get it 2010

Relational Algebra $=\mathrm{HOW}$

Product(pid, name, price) δ Purchase(pid, cid, store) Customer(cid, name, city)

Final answer

T4(name,name)
T2(. . . .)

```
                                    x.name,z.name
```

 T3(. . .)
 | $\mathrm{T} 2(\ldots)$ | price>100 and city='Seattle' |
| :--- | :--- | :--- |
| T 1 (pid,name,price,pid,cid,store) | |

Relational Algebra $=\mathrm{HOW}$

The order is now clearly specified:

Iterate over PRODUCT...
...join with PURCHASE...
...join with CUSTOMER...
...select tuples with Price>100 and
City='Seattle’...
...eliminate duplicates...
... and that's the final answer !

Sets v.s. Bags

- Sets: $\{a, b, c\},\{a, d, e, f\},\{ \}, \ldots$
- Bags: $\{a, a, b, c\},\{b, b, b, b, b\}, \ldots$

Relational Algebra has two semantics:

- Set semantics
- Bag semantics

Extended Algebra Operators

- Union ^, intersection ${ }^{\text {ㅂ }}$, difference -
- Selection σ
- Projection $П$
- Join $凶$
- Rename ρ
- Duplicate elimination δ
- Grouping and aggregation γ
- Sorting τ

Relational Algebra (1/3)

The Basic Five operators:

- Union: ^
- Difference: -
- Selection: σ
- Projection: П
- Join: \bowtie

Relational Algebra (2/3)

Derived or auxiliary operators:

- Renaming: ρ
- Intersection, complement
- Variations of joins
- natural, equi-join, theta join, semi-join, cartesian product

Relational Algebra (3/3)

Extensions for bags:

- Duplicate elimination: δ
- Group by: γ
- Sorting: τ

Union and Difference

$$
\begin{aligned}
& \mathrm{R} 1 \text { ^ R2 } \\
& \mathrm{R} 1 \text { - R2 }
\end{aligned}
$$

What do they mean over bags?

What about Intersection?

- Derived operator using minus

$$
R 1 \text { ㅂ } R 2=R 1-(R 1-R 2)
$$

- Derived using join $\frac{\text { aid }}{\mathrm{T}}$ will explain later)

$$
R 1 \text { ㅂ R2 = R1 } \bigwedge R 2
$$

Selection

- Returns all tuples which satisfy a condition

$\sigma c(\mathrm{R})$

- Examples
- σ Salary > 40000 (Employee)
- \quad name = "Smith" (Employee)
- The condition c can be =, <, 게, >, 표, <>

Employee

SSN	Name	Salary
1234545	John	200000
5423341	Smith	600000
4352342	Fred	500000

σ Salary >40000 (Employee)

SSN	Name	Salary
5423341	Smith	600000
4352342	Fred	500000

Projection

- Eliminates columns
П A1, ..., An (R)
- Example: project social-security number and names:
- П SSN, Name (Employee)
- Answer(SSN, Name)

Semantics differs over set or over bags

Employee | | SSN | Name |
| :---: | :---: | :---: |
| Salary | | |
| 1234545 | John | 20000 |
| 5423341 | John | 60000 |
| 4352342 | John | 20000 |

П Name,Salary (Employee)

Name	Salary
John	20000
John	60000
John	20000

Bag semantics

Name	Salary
John	20000
John	60000

Set semantics
Which is more efficient to implement?

Cartesian Product

- Each tuple in R1 with each tuple in R2

$$
R 1 \div R 2
$$

- Very rare in practice; mainly used to express joins

Employee

Name	SSN
John	999999999
Tony	777777777

EmpSSN	DepName
999999999	Emily
777777777	Joe

Employee \times Dependent

Name	SSN	EmpSSN	DepName
John	999999999	999999999	Emily
John	999999999	777777777	Joe
Tony	777777777	999999999	Emily
Tony	777777777	777777777	Joe
Dan Suciu -- CSEP544 Fall 2010			

Renaming

- Changes the schema, not the instance

$$
\rho \mathrm{B} 1, \ldots, \mathrm{Bn}(\mathrm{R})
$$

- Example:
- $\rho \mathrm{N}, \mathrm{S}$ (Employee) 』 $\mathrm{Answer}(\mathrm{N}, \mathrm{S})$

Natural Join

R1 $凶$ R2

- Meaning: R1 $₫$ R2 = ПА($\sigma($ R1 \times R2 $))$
- Where:
- The selection σ checks equality of all common attributes
- The projection eliminates the duplicate common attributes

Natural Join

R | \mathbf{A} | \mathbf{B} |
| :--- | :--- |
| X | Y |
| X | Z |
| Y | Z |
| Z | V |

\boldsymbol{s}| \mathbf{B} | C |
| :--- | :--- |
| Z | U |
| V | W |
| Z | V |

$\mathbf{R} \bowtie \mathbf{S}=$
$\Pi A B C(\sigma R . B=S . B(R \times S))$

A	B	C
X	Z	U
X	Z	V
Y	Z	U
Y	Z	V
Z	V	W

Dan Suciu -- CSEP544 Fall
22 2010

Natural Join

Given the schemas $R(A, B, C, D), S(A, C$, $\mathrm{E})$, what is the schema of $\mathrm{R} \bowtie \mathrm{S}$?

- Given $R(A, B, C), S(D, E)$, what is $R \nsubseteq S$?
- Given $R(A, B), S(A, B)$, what is $R 凶 S$?

Theta Join

- A join that involves a predicate

$$
\mathrm{R} 1 \bowtie \theta \mathrm{R} 2=\sigma \theta(\mathrm{R} 1 \div \mathrm{R} 2)
$$

- Here θ can be any condition

Dan Suciu -- CSEP544 Fall

Eq-join

- A theta join where θ is an equality

$R 1 \bowtie A=B R 2=\sigma A=B(R 1 \bar{\circ} 2)$

- This is by far the most used variant of join in practice

So Which Join Is It?

- When we write $R \bowtie S$ we usually mean an eq-join, but we often omit the equality predicate when it is clear from the context

Semijoin

$R \ltimes C S=\Pi A 1, \ldots, A n(R \bowtie C S)$

- Where A1, ..., An are the attributes in R

Formally, $R \ltimes C$ S means this: retain from R only those tuples that have some matching tuple in S

- Duplicates in R are preserved
- Duplicates in S don't matter

Semijoins in Distributed Databases

Employee \backslash SSN=EmpSSN (σ age>71 (Depender

Assumptions: Very few Employees have dependents.
Very few dependents have age > 71.
"Stuff" is big.

Task: compute the query with minimum amount of data transfer

Semijoins in Distributed Databases

Employee \bowtie SSN=EmpSSN (σ age>71 (Depender
$\mathrm{T}(\mathrm{SSN})=\Pi$ SSN σ age>71 (Dependents)

Semijoins in Distributed Databases

Employee \backslash SSN=EmpSSN (σ age>71 (Depender

Semijoins in Distributed Databases

Employee \backslash SSN=EmpSSN (σ age>71 (Depender

Joins R US

- The join operation in all its variants (eqjoin, natural join, semi-join, outer-join) is at the heart of relational database systems
- WHY?

Operators on Bags

- Duplicate elimination δ
$\delta(R)=$ select distinct * from R
- Grouping γ
γA, sum $(B)(R)=$ select A, sum (B) from R group by A
- Sorting τ

Complex RA Expressions

RA = Dataflow Program

- Several operations, plus strictly specified order
- In RDBMS the dataflow graph is always a tree
- Novel applications (s.a. PIG), dataflow graph may be a DAG

Limitations of RA

- Cannot compute "transitive closure"

Name1	Name2	Relationship
Fred	Mary	Father
Mary	Joe	Cousin
Mary	Bill	Spouse
Nancy	Lou	Sister

- Find all direct and indirect relatives of Fred
- Cannot express in RA !!! Need to write Java program
- Remember the Bacon number? Needs TC too!

```
Dan Suciu -- CSEP544 Fall

\section*{Steps of the Query Processor}


Disk

\section*{Example Database Schema}

Supplier(sno,sname,scity,sstate)
Part(pno,pname,psize,pcolor)
Supply(sno,pno,price)

\section*{View: Suppliers in Seattle}

CREATE VIEW NearbySupp AS
SELECT sno, sname
FROM Supplier
WHERE scity='Seattle' AND sstate='WA'

\section*{Example Query}

\section*{Find the names of all suppliers in Seattle who supply part number 2}

\author{
SELECT sname FROM NearbySupp \\ WHERE sno IN ( SELECT sno \\ FROM Supplies \\ WHERE pno = 2 )
}

\section*{Steps in Query Evaluation}
- Step 0: Admission control
- User connects to the db with username, password
- User sends query in text format
- Step 1: Query parsing
- Parses query into an internal format
- Performs various checks using catalog
- Correctness, authorization, integrity constraints
- Step 2: Query rewrite
- View rewriting, flattening, etc.

\title{
Rewritten Version of Our Query
}

\author{
Original query:
}

\author{
SELECT sname \\ FROM NearbySupp \\ WHERE sno IN ( SELECT sno FROM Supplies WHERE pno = 2 )
}
\[
\begin{aligned}
& \text { SELECT S.sname } \\
& \text { FROM Supplier S, Supplies U } \\
& \text { WHERE S.scity='Seattle' AND S.sstate='WA' } \\
& \text { AND S.sno }=\text { U.sno } \\
& \text { AND U.pno }=2 ;
\end{aligned}
\]

\section*{Continue with Query Evaluation}
- Step 3: Query optimization
- Find an efficient query plan for executing the query
- A query plan is
- Logical query plan: an extended relational algebra tree
- Physical query plan: with additional annotations at each node
- Access method to use for each relation
- Implementation to use for each relational operator

\section*{Extended Algebra Operators}
- Union ^, intersection \({ }^{\text {ㅂ }}\), difference -
- Selection \(\sigma\)
- Projection \({ }^{\square}\)
- Join \(凶\)
- Duplicate elimination \(\delta\)
- Grouping and aggregation \(\gamma\)
- Sorting \(\tau\)
- Rename \(\rho\)

\section*{Logical Query Plan}

Isname


\section*{Query Block}
- Most optimizers operate on individual query blocks
- A query block is an SQL query with no nesting
- Exactly one
- SELECT clause
- FROM clause
- At most one
- WHERE clause
- GROUP BY clause
- HAVING clause

\section*{Typical Plan for Block (1/2)}


\section*{Typical Plan For Block (2/2)}


\section*{How about Subqueries?}
```

SELECT Q.sno
FROM Supplier Q
WHERE Q.sstate = 'WA'
and not exists
SELECT *
FROM Supply P
WHERE P.sno = Q.sno
and P.price > 100

```

\section*{How about Subqueries?}


\section*{How about Subqueries?}
```

SELECT Q.sno
FROM Supplier Q
WHERE Q.sstate = 'WA'
and not exists
SELECT *
FROM Supply P
WHERE P.sno = Q.sno
and P.price > 100

```

```

SELECT Q.sno
FROM Supplier Q
WHERE Q.sstate = 'WA'
and Q.sno not in
SELECT P.sno
FROM Supply P
WHERE P.price > 100

```

\section*{How about Subqueries?}

\author{
(SELECT Q.sno \\ FROM Supplier Q \\ WHERE Q.sstate = 'WA') EXCEPT \\ (SELECT P.sno FROM Supply P WHERE P.price > 100)
}

\section*{Un- \\ nesting}

\author{
SELECT Q.sno FROM Supplier Q \\ WHERE Q.sstate = 'WA' \\ and Q.sno not in SELECT P.sno FROM Supply P WHERE P.price > 100
}

\section*{How about Subqueries?}

\author{
(SELECT Q.sno \\ FROM Supplier Q \\ WHERE Q.sstate = 'WA') EXCEPT \\ (SELECT P.sno FROM Supply P WHERE P.price > 100)
}


\section*{Physical Query Plan}
- Logical query plan with extra annotations
- Access path selection for each relation
- Use a file scan or use an index
- Implementation choice for each operator
- Scheduling decisions for operators

\section*{Dhysicer Guery}
(On the fly)
\(\pi\) sname
(On the fly) \(\quad \sigma\) sscity=‘Seattle’ - lsstate='WA' -1 pno=2
(Nested loop)

(File scan)

Supplies
(File scan)
\[
\begin{aligned}
& \text { Dan Suciu -- CSEP544 Fall } \\
& 2010
\end{aligned}
\]

\section*{Final Step in Query \\ - Step 4: Query Procectionsing}
- How to synchronize operators?
- How to pass data between operators?
- What techniques are possible?
- One thread per query
- Iterator interface
- Pipelined execution
- Intermediate result materialization

\section*{Iterator Interface}
- Each operator implements this interface
- Interface has only three methods
- open()
- Initializes operator state
- Sets parameters such as selection condition
- get_next()
- Operator invokes get_next() recursively on its inputs
- Performs processing and produces an output tuple
- close(): cleans-up state

\section*{Pipelined Execution}
(On the fly)
\(\pi\) sname
(On the fly) \(\quad \sigma\) sscity=‘Seattle’ - lsstate='WA' -l pno=2
(Nested loop)


Suppliers
(File scan)

Supplies
(File scan)

\section*{Pipelined Execution}
- Applies parent operator to tuples directly as they are produced by child operators
- Benefits
- No operator synchronization issues
- Saves cost of writing intermediate data to disk
- Saves cost of reading intermediate data from disk
- Good resource utilizations on single processor
- This approach is used whenever possible

\section*{Intermediate Tuple Materriálization}
(On the fly) \(\pi\) sname
(Sort-merge join)
(Scan: write to T1) \(\sigma\) sscity='Seattle’ -Isstate='WA’

Suppliers
(File scan)


Supplies
(File scan)

\section*{Intermediate Tuple Materialization}
- Writes the results of an operator to an intermediate table on disk
- No direct benefit but
- Necessary data is larger than main memory
- Necessary when operator needs to examine the same tuples multiple times

\section*{Physical Operators}

Each of the logical operators may have one or more implementations = physical operators

Will discuss several basic physical operators, with a focus on join

\section*{Question in Class}

Logical operator:
Supply(sno,pno,price) pno=pno Part(pno,pname,psize,pcolor)

Propose three physical operators for the join, assuming the tables are in main memory:

\section*{Question in Class}

Logical operator:
Supply(sno,pno,price) pno=pno Part(pno,pname,psize,pcolor)

Propose three physical operators for the join, assuming the tables are in main memory:
Nested Loop Join
Merge join
Hash join

\section*{1. Nested Loop Join}

\section*{for S in Supply do \{ for P in Part do \{ if (S.pno == P.pno) output(S,P);}
\}
\}

Supply = outer relation
Part = inner relation
Note: sometimes
terminology is switched
Would it be more efficient to choose Part=inner, Supply=outer? What if we had an index on Part.pno?

\section*{It's more complicated...}
- Each operator implements this interface
- open()
get_next()
close()

\section*{Main Memory Nested Loop} Join Revisited
en () \{
Supply.open( );
Part.open( );
S = Supply.get_next( );
close () \{
Supply.close ();
Part.close ( );
get_next() \{
repeat \{
\(\mathrm{P}=\) Part.get_next( );
if ( \(\mathrm{P}==\mathrm{NULL}\) )
\{Part.close();
S= Supply.get_next( ); if ( \(\mathrm{S}==\mathrm{NULL}\) ) return NULL;
Part.open();
\(\mathrm{P}=\) Part.get_next( );
\}
until (S.pno == P.pno);
return (S, P)

ALL operators need to be implemented this way!

\section*{BRIEF Review of Hash Tables}

Separate chaining:
A (naïve) hash function:
\[
h(x)=x \bmod 10
\]

Operations:
find \((103)=\) ?? insert(488) \(=\) ??

\section*{BRIEF Review of Hash Tables}
- insert(k, v) = inserts a key k with value v
- Many values for one key
- Hence, duplicate k's are OK
- find \((\mathrm{k})=\) returns the list of all values v associated to the key k

\section*{2. Hash Join (main memory)}

\section*{Buil}
for S in Supply do insert(S.pno, S); pha se

\author{
for \(P\) in Part do \{
}

LS = find(P.pno);
Prob
ing for \(S\) in LS do \(\{\) output(S, P); \} \}

Supply=
outer
Part=inn
er
Recall: need to rewrite as open, get_next, close

\section*{3. Merge Join (main memory)}
```

Part1 = sort(Part, pno);
Supply1 = sort(Supply,pno);
P=Part1.get_next(); S=Supply1.get_next();
While (P!=NULL and S!=NULL) {
case:
P.pno > S.pno: P = Part1.get_next();
P.pno < S.pno: S = Supply1.get_next();
P.pno == S.pno { output(P,S);
S = Supply1.get_next();
}
}

```

\section*{Main Memory Group By}

Grouping:
Product(name, department, quantity) \(\gamma\) department, sum(quantity) (Product) ■ Answer(department, sum)

Main memory hash table
Question: How ?

\section*{Duplicate Elimination IS Group By}

Duplicate elimination \(\delta(R)\) is the same as group by \(\gamma(\mathrm{R})\) WHY ???
- Hash table in main memory
- Cost: B(R)
- Assumption: \(\mathrm{B}(\delta(\mathrm{R}))<=\mathrm{M}\)

\section*{Selections, Projections}
- Selection = easy, check condition on each tuple at a time
- Projection = easy (assuming no duplicate elimination), remove extraneous attributes from each tuple

\section*{Review (1/2)}

\section*{Each operator implements this interface}
- open()
- Initializes operator state
- Sets parameters such as selection condition get_next()
- Operator invokes get_next() recursively on its inputs
- Performs processing and produces an output tuple
- close()
- Cleans-up state

\section*{Review (2/2)}
- Three algorithms for main memory join:
- Nested loop join
- Hash join
- Merge join

If \(|R|=m\) and \(|S|=n\), what is the asymptotic complexity for computing \(R \bowtie S\) ?
- Algorithms for selection, projection, group-by

\section*{External Memory Algorithms}
- Data is too large to fit in main memory
- Issue: disk access is 3-4 orders of magnitude slower than memory access
- Assumption: runtime dominated by \# of disk I/O's; will ignore the main memory part of the runtime

\section*{Cost Parameters}

The cost of an operation = total number of I/Os
Cost parameters:
- \(B(R)=\) number of blocks for relation \(R\)
- \(T(R)=\) number of tuples in relation \(R\)
- \(V(R, a)=\) number of distinct values of attribute a
- \(M=\) size of main memory buffer pool, in blocks
\[
\begin{aligned}
& \text { Facts: (1) } B(R) \ll T(R) \text { : } \\
& \text { (2) When a is a key, } V(R, a)=T(R) \\
& \text { When a is not a key, } V(R, a) \ll T(R)
\end{aligned}
\]

\section*{Ad-hoc Convention}
- We assume that the operator reads the data from disk
- We assume that the operator does not write the data back to disk (e.g.: pipelining)
- Thus:

Any main memory join algorithms for \(R \bowtie S\) : Cost \(=B(R)+B(S)\)

Any main memory grouping \(\gamma(\mathrm{R})\) : Cost \(=\mathrm{B}(\mathrm{R})\)
Dan Suciu -- CSEP544 Fall \(\quad 18\)
2010

\section*{Sequential Scan of a Table R}
- When R is clustered
- Blocks consists only of records from this table
- \(B(R) \ll T(R)\)
- Cost \(=B(R)\)
- When R is unclustered
- Its records are placed on blocks with other tables
- \(B(R)\) еп \(T(R)\)
- Cost \(=T(R)\)

\section*{Nested Loop Joins}
- Tuple-based nested loop \(R \bowtie S\)
for each tuple \(r\) in R do for each tuple s in S do if \(r\) and \(s\) join then output \((r, s)\)

R=outer relation
\(S=\) inner relation
- Cost: \(T(R) B(S)\) when \(S\) is clustered
- Cost: \(T(R) T(S)\) when \(S\) is unclustered

\section*{Examples}
\(M=4 ; \quad R, S\) are clustered
- Example 1:
- \(B(R)=1000, T(R)=10000\)
- \(B(S)=2, T(S)=20\)
- Cost \(=\) ?

Can you do better?
- Example 2:
- \(B(R)=1000, T(R)=10000\)
- \(B(S)=4, T(S)=40\)
- Cost \(=\) ?

\section*{Block-Based Nested-loop Join}

Why not
M ?
for each (M-2) blocks bs of \(\mathbf{S}\) do
for each block br of \(\mathbf{R}\) do for each tuple \(\mathbf{s}\) in bs

\section*{for each tuple \(\mathbf{r}\) in \(\mathbf{b r}\) do} if " \(\mathbf{r}\) and \(\mathbf{s}\) join" then output( \(\mathbf{r}, \mathbf{s}\) )

Terminology alert: book calls S the inner relation
\[
\begin{aligned}
& \text { Dan Suciu -- CSEP544 Fall } \\
& 2010
\end{aligned}
\]

\section*{Block Nested-loop Join}


\section*{Examples}
\(M=4 ; \quad R, S\) are clustered
- Example 1:
- \(B(R)=1000, T(R)=10000\)
- \(B(S)=2, T(S)=20\)
- Cost \(=B(S)+B(R)=1002\)
- Example 2:
- \(B(R)=1000, T(R)=10000\)
- \(B(S)=4, T(S)=40\)
- Cost \(=B(S)+2 B(R)=2004\)

Note: \(T(R)\) and \(T(S)\) are irrelevant here.

\section*{Cost of Block Nested-loop Join}
- Read S once: cost B(S)
- Outer loop runs \(B(S) /(M-2)\) times, and each time need to read \(R\) : costs \(B(S) B(R) /(M-2)\)
\[
\text { Cost }=B(S)+B(S) B(R) /(M-2)
\]

\section*{Index Based Selection}

Recall IMDB; assume indexes on Movie.id, Movie.year

\section*{SELET * \\ FROM Movie \\ WHERE id = '12345'}

SELET *
FROM Movie
WHERE year = '1995'

\section*{\(B(\) Movie \()=10 k\) \(\mathrm{T}(\) Movie \()=1 \mathrm{M}\)}

What is your estimate of the I/O cost?

\section*{Index Based Selection}

Selection on equality: \(\sigma a=v(R)\)
- Clustered index on \(a\) : cost \(B(R) / V(R, a)\)
- Unclustered index : cost \(T(R) / V(R, a)\)

\section*{Index Based Selection}

Example:
\[
\begin{aligned}
& B(R)=10 k \\
& T(R)=1 M \\
& V(R, a)=100
\end{aligned}
\]

\section*{cost of \(\sigma a=v(R)=\) ?}
- Table scan (assuming \(R\) is clustered):
- \(B(R)=10 k\) I/Os
- Index based selection:
- If index is clustered: \(B(R) / V(R, a)=1001 / O s\)
- If index is unclustered: \(T(R) / V(R, a)=10000\) I/Os

Rule of thumb:
don't build unclustered indexes when \(V(R, a)\) is small!
Dan Suciu -- CSEP544 Fall 88
2010

\section*{Index Based Join}
- R \(\bowtie\) S
- Assume \(S\) has an index on the join attribute
for each tuple \(r\) in \(R\) do lookup the tuple(s) s in S using the index output (r,s)

\section*{Index Based Join}

Cost (Assuming R is clustered):
- If index is clustered: \(B(R)+T(R) B(S) / V(S, a)\)
- If unclustered: \(\quad B(R)+T(R) T(S) / V(S, a)\)

\title{
Operations on Very Large Tables
}
- Compute \(R \bowtie S\) when each is larger than main memory
- Two methods:
- Partitioned hash join (many variants)
- Merge-join
- Similar for grouping

\section*{Partitioned Hash-based Algorithms}

Idea:
- If \(B(R)>M\), then partition it into smaller files: R1, R2, R3, ..., Rk
- Assuming \(B(R 1)=B(R 2)=\ldots=B(R k)\), we have \(B(R i)=B(R) / k\)
- Goal: each Ri should fit in main memory: \(B(R i) \leq M\)
```

Da How big can k be? ll

Partitioned Hash Algorithms

- Idea: partition a relation R into $\mathrm{M}-1$ buckets, on disk
- Each bucket has size approx. $B(R) /(M-1) \approx B(R) / M$ Relation \mathbf{R}

$$
\text { Assumption: } \quad B(R) / M<=M \text {, i.e. } B(R)<=M 2
$$

Grouping

- $\gamma(\mathrm{R})=$ grouping and aggregation
- Step 1. Partition R into buckets
- Step 2. Apply γ to each bucket (may read in main memory)
- Cost: 3B(R)
- Assumption: $B(R)<=$ M2

Partitioned Hash Join

$R 凶 S$

- Step 1:
- Hash S into M buckets
- send all buckets to disk
- Step 2
- Hash R into M buckets
- Send all buckets to disk
- Step 3
- Join every pair of buckets

Hash-Join

Partition both relations using hash fn h : R tuples in partition i will only match S tuples in partition i.

Original
Relation

Disk B main memory buffers Disk

Partitions

of R\&S
Join Result

Dan SBisk-- CSEP544 main memogy buffers Disk 2010

Partitioned Hash Join

- Cost: 3B(R) $+3 \mathrm{~B}(\mathrm{~S})$
- Assumption: $\min (B(R), B(S))<=M 2$

External Sorting

- Problem:
- Sort a file of size B with memory M
- Where we need this:
- ORDER BY in SQL queries
- Several physical operators
- Bulk loading of B+-tree indexes.
- Will discuss only 2-pass sorting, when $B<M 2$

External Merge-Sort: Step 1

- Phase one: load M bytes in memory, sort

External Merge-Sort: Step 2

- Merge M-1 runs into a new run
- Result: runs of length $M(M-1)_{\text {д口 }} M 2$

If $B<=\frac{M 2}{2010}$ then we are done

Cost of External Merge Sort

- Read+write+read $=3 B(R)$
- Assumption: $B(R)<=M 2$

Grouping

Grouping: $\gamma \mathrm{a}$, sum(b) (R)

- Idea: do a two step merge sort, but change one of the steps
- Question in class: which step needs to be changed and how?

```
Cost = 3B(R)
Assumption: }B(\delta(R)) <= M
        Dan Suciu -- CSEP544 Fall
    2010
```


Merge-Join

Join R $₫$ S

- Step 1a: initial runs for R
- Step 1b: initial runs for S
- Step 2: merge and join

Merge-Join

Two-Pass Algorithms Based on Sorting

Join $R \bowtie S$

- If the number of tuples in R matching those in S is small (or vice versa) we can compute the join during the merge phase
- Total cost: 3B(R)+3B(S)
- Assumption: $B(R)+B(S)<=M 2$

Summary of External Join Algorithms

- Block Nested Loop: B(S) + B(R)*B(S)/M

Index Join: $B(R)+T(R) B(S) / V(S, a)$

- Partitioned Hash: 3B(R)+3B(S);
- $\min (B(R), B(S))<=M 2$
- Merge Join: 3B(R)+3B(S)
- $B(R)+B(S)<=M 2$

