
Lecture 10:
Parallel Databases

Wednesday, December 1st, 2010

Dan Suciu -- CSEP544 Fall 2010 1

Announcements

• Take-home Final: this weekend

• Next Wednesday: last homework due at
midnight (Pig Latin)

• Also next Wednesday: last lecture (data
provenance, data privacy)

Dan Suciu -- CSEP544 Fall 2010 2

Reading Assignment: “Rethinking
the Contract”

• What is today’s
contract with the
optimizer ?

• What are the main
limitations in today’s
optimizers ?

• What is a “plan
diagram” ?

Dan Suciu -- CSEP544 Fall 2010 3

Overview of Today’s Lecture

• Parallel databases (Chapter 22.1 – 22.5)

• Map/reduce

• Pig-Latin
– Some slides from Alan Gates (Yahoo!Research)
– Mini-tutorial on the slides
– Read manual for HW7

• Bloom filters
– Use slides extensively !
– Bloom joins are mentioned on pp. 746 in the book

Dan Suciu -- CSEP544 Fall 2010 4

Parallel v.s. Distributed
Databases

• Parallel database system:
– Improve performance through parallel

implementation

– Will discuss in class (and are on the final)

• Distributed database system:
– Data is stored across several sites, each site

managed by a DBMS capable of running
independently

– Will not discuss in class

Dan Suciu -- CSEP544 Fall 2010 5

Parallel DBMSs

• Goal
– Improve performance by executing multiple

operations in parallel

• Key benefit
– Cheaper to scale than relying on a single

increasingly more powerful processor

• Key challenge
– Ensure overhead and contention do not kill

performance

Dan Suciu -- CSEP544 Fall 2010 6

Performance Metrics
for Parallel DBMSs

• Speedup
– More processors � higher speed
– Individual queries should run faster
– Should do more transactions per second (TPS)

• Scaleup
– More processors � can process more data
– Batch scaleup

• Same query on larger input data should take the same time

– Transaction scaleup
• N-times as many TPS on N-times larger database
• But each transaction typically remains small

Dan Suciu -- CSEP544 Fall 2010 7

Linear v.s. Non-linear Speedup

Dan Suciu -- CSEP544 Fall 2010

processors (=P)

Speedup

8

Linear v.s. Non-linear Scaleup

processors (=P) AND data size

Batch
Scaleup

×1 ×5 ×10 ×15

Dan Suciu -- CSEP544 Fall 2010 9

Challenges to
Linear Speedup and Scaleup

• Startup cost
– Cost of starting an operation on many

processors

• Interference
– Contention for resources between processors

• Skew
– Slowest processor becomes the bottleneck

Dan Suciu -- CSEP544 Fall 2010 10

Architectures for Parallel
Databases

• Shared memory

• Shared disk

• Shared nothing

Dan Suciu -- CSEP544 Fall 2010 11

Shared Memory

Interconnection Network

P P P

Global Shared Memory

D D D
Dan Suciu -- CSEP544 Fall 2010 12

Shared Disk

Interconnection Network

P P P

M M M

D D D
Dan Suciu -- CSEP544 Fall 2010 13

Shared Nothing

Interconnection Network

P P P

M M M

D D D
Dan Suciu -- CSEP544 Fall 2010 14

Shared Nothing

• Most scalable architecture
– Minimizes interference by minimizing

resource sharing

– Can use commodity hardware

• Also most difficult to program and manage

• Processor = server = node

• P = number of nodes

Dan Suciu -- CSEP544 Fall 2010
We will focus on shared nothing

15

Taxonomy for
Parallel Query Evaluation

• Inter-query parallelism
– Each query runs on one processor

• Inter-operator parallelism
– A query runs on multiple processors

– An operator runs on one processor

• Intra-operator parallelism
– An operator runs on multiple processors

Dan Suciu -- CSEP544 Fall 2010 We study only intra-operator parallelism: most scalable16

Horizontal Data Partitioning

• Relation R split into P chunks R0, …, RP-1,
stored at the P nodes

• Round robin: tuple ti to chunk (i mod P)

• Hash based partitioning on attribute A:
– Tuple t to chunk h(t.A) mod P

• Range based partitioning on attribute A:
– Tuple t to chunk i if vi-1 < t.A < vi

Dan Suciu -- CSEP544 Fall 2010 17

Parallel Selection

Compute σA=v(R), or σv1<A<v2(R)

• Conventional database:

– Cost = B(R)

• Parallel database with P processors:

– Cost = B(R) / P

Dan Suciu -- CSEP544 Fall 2010 18

Parallel Selection

Different processors do the work:

• Round robin partition: all servers do the work

• Hash partition:

– One server for σA=v(R),

– All servers for σv1<A<v2(R)

• Range partition: one server does the work

Dan Suciu -- CSEP544 Fall 2010 19

Data Partitioning Revisited

What are the pros and cons ?

• Round robin
– Good load balance but always needs to read all the data

• Hash based partitioning
– Good load balance but works only for equality predicates

and full scans

• Range based partitioning
– Works well for range predicates but can suffer from data

skew

Dan Suciu -- CSEP544 Fall 2010 20

Parallel Group By: γA, sum(B)(R)

Step 1: server i partitions chunk Ri using a
hash function h(t.A): Ri0, Ri1, …, Ri,P-1

Step 2: server i sends partition Rij to server j

Step 3: server j computes γA, sum(B) on
R0j, R1j, …, RP-1,j

Dan Suciu -- CSEP544 Fall 2010 21

Cost of Parallel Group By

Recall conventional cost = 3B(R)

• Step 1: Cost = B(R)/P I/O operations

• Step 2: Cost = (P-1)/P B(R) blocks are sent

– Network costs << I/O costs

• Step 3: Cost = 2 B(R)/P

– When can we reduce it to 0 ?

Total = 3B(R) / P + communication costs

Dan Suciu -- CSEP544 Fall 2010 22

Parallel Join: R A=B S

Step 1
• For all servers in [0,k], server i partitions chunk Ri

using a hash function h(t.A): Ri0, Ri1, …, Ri,P-1

• For all servers in [k+1,P], server j partitions chunk
Sj using a hash function h(t.A): Sj0, Sj1, …, Rj,P-1

Step 2:
• Server i sends partition Riu to server u
• Server j sends partition Sju to server u

Steps 3: Server u computes the join of Riu with Sju

Dan Suciu -- CSEP544 Fall 2010 23

Cost of Parallel Join

• Step 1: Cost = (B(R) + B(S))/P

• Step 2: 0

– (P-1)/P (B(R) + B(S)) blocks are sent, but we
assume network costs to be << disk I/O costs

• Step 3:

– Cost = 0 if small table fits in memory: B(S)/P <=M

– Cost = 4(B(R)+B(S))/P otherwise

Dan Suciu -- CSEP544 Fall 2010 24

Parallel Query Plans

• Same relational operators

• Add special split and merge operators
– Handle data routing, buffering, and flow

control

• Example: exchange operator
– Inserted between consecutive operators in the

query plan

Dan Suciu -- CSEP544 Fall 2010 25

Map Reduce

• Google: paper published 2004

• Free variant: Hadoop

• Map-reduce = high-level programming
model and implementation for large-scale
parallel data processing

26Dan Suciu -- CSEP544 Fall 2010

Data Model

Files !

A file = a bag of (key, value) pairs

A map-reduce program:

• Input: a bag of (inputkey, value)pairs

• Output: a bag of (outputkey, value)pairs

27Dan Suciu -- CSEP544 Fall 2010

Step 1: the MAP Phase

User provides the MAP-function:

• Input: one (input key, value)

• Ouput: bag of (intermediate key,
value)pairs

System applies the map function in parallel
to all (input key, value) pairs in the

input file

28Dan Suciu -- CSEP544 Fall 2010

Step 2: the REDUCE Phase

User provides the REDUCE function:

• Input: (intermediate key, bag of
values)

• Output: bag of output values

System groups all pairs with the same
intermediate key, and passes the bag of
values to the REDUCE function

29Dan Suciu -- CSEP544 Fall 2010

Example

• Counting the number of occurrences of
each word in a large collection of
documents

30

map(String key, String value):
// key: document name
// value: document contents
for each word w in value:

EmitIntermediate(w, “1”): reduce(String key, Iterator values):
// key: a word
// values: a list of counts
int result = 0;
for each v in values:

result += ParseInt(v);
Emit(AsString(result));

Dan Suciu -- CSEP544 Fall 2010

31

(k1,v1)

(k2,v2)

(k3,v3)

. . . .

(i1, w1)

(i2, w2)

(i3, w3)

. . . .

MAP REDUCE

Dan Suciu -- CSEP544 Fall 2010

Map = GROUP BY,
Reduce = Aggregate

32

SELECT word, sum(1)

FROM R

GROUP BY word

R(documentKey, word)

Dan Suciu -- CSEP544 Fall 2010

Implementation

• There is one master node

• Master partitions input file into M splits, by key

• Master assigns workers (=servers) to the M

map tasks, keeps track of their progress

• Workers write their output to local disk,
partition into R regions

• Master assigns workers to the R reduce tasks

• Reduce workers read regions from the map
workers’ local disks

33Dan Suciu -- CSEP544 Fall 2010

Local storage`̀

MR Phases

Interesting Implementation Details

• Worker failure:

– Master pings workers periodically,

– If down then reassigns its splits to all other

workers � good load balance

• Choice of M and R:

– Larger is better for load balancing

– Limitation: master needs O(M×R) memory

35Dan Suciu -- CSEP544 Fall 2010

Interesting Implementation Details
Backup tasks:
• Straggler = a machine that takes unusually

long time to complete one of the last tasks.
Eg:
– Bad disk forces frequent correctable errors

(30MB/s � 1MB/s)
– The cluster scheduler has scheduled other tasks

on that machine

• Stragglers are a main reason for slowdown
• Solution: pre-emptive backup execution of

the last few remaining in-progress tasks

36Dan Suciu -- CSEP544 Fall 2010

Map-Reduce Summary

• Hides scheduling and parallelization
details

• However, very limited queries

– Difficult to write more complex tasks

– Need multiple map-reduce operations

• Solution:

37Dan Suciu -- CSEP544 Fall 2010

PIG-Latin !

Following Slides provided by:
Alan Gates, Yahoo!Research

Dan Suciu -- CSEP544 Fall 2010 38

- 39 -

What is Pig?

• An engine for executing programs on top of Hadoop

• It provides a language, Pig Latin, to specify these programs

• An Apache open source project
http://hadoop.apache.org/pig/

- 40 -

Map-Reduce

• Computation is moved to the data

• A simple yet powerful programming model

– Map: every record handled individually

– Shuffle: records collected by key

– Reduce: key and iterator of all associated values

• User provides:

– input and output (usually files)

– map Java function

– key to aggregate on

– reduce Java function

• Opportunities for more control: partitioning, sorting, partial
aggregations, etc.

- 41 -

Map Reduce Illustrated

mapmap

reducereduce

mapmap

reducereduce

- 42 -

Map Reduce Illustrated

mapmap

reducereduce

mapmap

reducereduce

Romeo, Romeo, wherefore art thou Romeo? What, art thou hurt?

- 43 -

Map Reduce Illustrated

mapmap

reducereduce

mapmap

reducereduce

Romeo, Romeo, wherefore art thou Romeo?

Romeo, 1
Romeo, 1
wherefore, 1
art, 1
thou, 1
Romeo, 1

What, art thou hurt?

What, 1
art, 1
thou, 1
hurt, 1

- 44 -

Map Reduce Illustrated

mapmap

reducereduce

mapmap

reducereduce

Romeo, Romeo, wherefore art thou Romeo?

Romeo, 1
Romeo, 1
wherefore, 1
art, 1
thou, 1
Romeo, 1

art, (1, 1)
hurt (1),
thou (1, 1)

What, art thou hurt?

What, 1
art, 1
thou, 1
hurt, 1

Romeo, (1, 1, 1)
wherefore, (1)
what, (1)

- 45 -

Map Reduce Illustrated

mapmap

reducereduce

mapmap

reducereduce

Romeo, Romeo, wherefore art thou Romeo?

Romeo, 1
Romeo, 1
wherefore, 1
art, 1
thou, 1
Romeo, 1

art, (1, 1)
hurt (1),
thou (1, 1)

art, 2
hurt, 1
thou, 2

What, art thou hurt?

What, 1
art, 1
thou, 1
hurt, 1

Romeo, (1, 1, 1)
wherefore, (1)
what, (1)

Romeo, 3
wherefore, 1
what, 1

- 46 -

Making Parallelism Simple

• Sequential reads = good read speeds

• In large cluster failures are guaranteed; Map Reduce
handles retries

• Good fit for batch processing applications that need to touch
all your data:

– data mining

– model tuning

• Bad fit for applications that need to find one particular record

• Bad fit for applications that need to communicate between
processes; oriented around independent units of work

- 47 -

Why use Pig?

Suppose you have
user data in one
file, website data in
another, and you
need to find the top
5 most visited sites
by users aged 18 -
25.

Load Users Load Pages

Filter by age

Join on name

Group on url

Count clicks

Order by clicks

Take top 5

- 48 -

In Map-Reduce
import java.io.IOException;

import java.util.ArrayList;

import java.util.Iterator;

import java.util.List;

import org.apache.hadoop.fs.Path;

import org.apache.hadoop.io.LongWritable;

import org.apache.hadoop.io.Text;

import org.apache.hadoop.io.Writable;

i mport org.apache.hadoop.io.WritableComparable;

import org.apache.hadoop.mapred.FileInputFormat;

import org.apache.hadoop.mapred.FileOutputFormat;

import org.apache.hadoop.mapred.JobConf;

import org.apache.hadoop.mapred.KeyValueTextInputFormat;

import org.a pache.hadoop.mapred.Mapper;

import org.apache.hadoop.mapred.MapReduceBase;

import org.apache.hadoop.mapred.OutputCollector;
import org.apache.hadoop.mapred.RecordReader;

import org.apache.hadoop.mapred.Reducer;

import org.apache.hadoop.mapred.Reporter;

imp ort org.apache.hadoop.mapred.SequenceFileInputFormat;

import org.apache.hadoop.mapred.SequenceFileOutputFormat;

import org.apache.hadoop.mapred.TextInputFormat;

import org.apache.hadoop.mapred.jobcontrol.Job;

import org.apache.hadoop.mapred.jobcontrol.JobC ontrol;

import org.apache.hadoop.mapred.lib.IdentityMapper;

public class MRExample {

 public static class LoadPages extends MapReduceBase

 implements Mapper<LongWritable, Text, Text, Text> {

 public void map(LongWritable k, Text val,

 OutputCollector<Text, Text> oc,

 Reporter reporter) throws IOException {

 // Pull the key out

 String line = val.toString();

 int firstComma = line.indexOf(',');
 String key = line.sub string(0, firstComma);

 String value = line.substring(firstComma + 1);

 Text outKey = new Text(key);

 // Prepend an index to the value so we know which file

 // it came from.

 Text outVal = new Text("1 " + value);

 oc.collect(outKey, outVal);

 }

 }

 public static class LoadAndFilterUsers extends MapReduceBase

 implements Mapper<LongWritable, Text, Text, Text> {

 public void map(LongWritable k, Text val,

 OutputCollector<Text, Text> oc,

 Reporter reporter) throws IOException {

 // Pull the key out

 String line = val.toString();

 int firstComma = line.indexOf(',');

 String value = line.substring(firstComma + 1);

 int age = Integer.parseInt(value);

 if (age < 18 || age > 25) return;

 String key = line.substring(0, firstComma);

 Text outKey = new Text(key);

 // Prepend an index to the value so w e know which file

 // it came from.

 Text outVal = new Text("2" + value);

 oc.collect(outKey, outVal);

 }

 }

 public static class Join extends MapReduceBase

 implements Reducer<Text, Text, Text, Text> {

 public void reduce(Text key,

 Iterator<Text> iter,

 OutputCollector<Text, Text> oc,

 Reporter reporter) throws IOException {

 // For each value, figure out which file it's from and

store it

 // accordingly.

 List<String> first = new ArrayList<String>();

 List<String> second = new ArrayList<String>();

 while (iter.hasNext()) {

 Text t = iter.next();

 String value = t.to String();
 if (value.charAt(0) == '1')

first.add(value.substring(1));

 else second.add(value.substring(1));

 reporter.setStatus("OK");

 }

 // Do the cross product and collect the values

 for (String s1 : first) {

 for (String s2 : second) {

 String outval = key + "," + s1 + "," + s2;

 oc.collect(null, new Text(outval));

 reporter.setStatus("OK");

 }

 }

 }

 }

 public static class LoadJoined extends MapReduceBase

 implements Mapper<Text, Text, Text, LongWritable> {

 public void map(
 Text k,

 Text val,

 OutputColle ctor<Text, LongWritable> oc,

 Reporter reporter) throws IOException {

 // Find the url

 String line = val.toString();

 int firstComma = line.indexOf(',');

 int secondComma = line.indexOf(',', first Comma);

 String key = line.substring(firstComma, secondComma);

 // drop the rest of the record, I don't need it anymore,

 // just pass a 1 for the combiner/reducer to sum instead.

 Text outKey = new Text(key);

 oc.collect(outKey, new LongWritable(1L));

 }

 }

 public static class ReduceUrls extends MapReduceBase

 implements Reducer<Text, LongWritable, WritableComparable,

Writable> {

 public void reduce(
 Text ke y,

 Iterator<LongWritable> iter,

 OutputCollector<WritableComparable, Writable> oc,

 Reporter reporter) throws IOException {

 // Add up all the values we see

 long sum = 0;

 wh ile (iter.hasNext()) {

 sum += iter.next().get();

 reporter.setStatus("OK");

 }

 oc.collect(key, new LongWritable(sum));

 }

 }

 public static class LoadClicks extends MapReduceBase

 i mplements Mapper<WritableComparable, Writable, LongWritable,

Text> {

 public void map(

 WritableComparable key,

 Writable val,

 OutputCollector<LongWritable, Text> oc,

 Reporter reporter) throws IOException {

 oc.collect((LongWritable)val, (Text)key);

 }

 }

 public static class LimitClicks extends MapReduceBase

 implements Reducer<LongWritable, Text, LongWritable, Text> {

 int count = 0;

 public void reduce(

 LongWritable key,

 Iterator<Text> iter,

 OutputCollector<LongWritable, Text> oc,

 Reporter reporter) throws IOException {

 // Only output the first 100 records

 while (count < 100 && iter.hasNext()) {

 oc.collect(key, iter.next());

 count++;

 }

 }

 }

 public static void main(String[] args) throws IOException {
 JobConf lp = new JobConf(MRExample.class);

 lp.se tJobName("Load Pages");

 lp.setInputFormat(TextInputFormat.class);

 lp.setOutputKeyClass(Text.class);

 lp.setOutputValueClass(Text.class);

 lp.setMapperClass(LoadPages.class);

 FileInputFormat.addInputPath(lp, new

Path("/ user/gates/pages"));

 FileOutputFormat.setOutputPath(lp,

 new Path("/user/gates/tmp/indexed_pages"));

 lp.setNumReduceTasks(0);

 Job loadPages = new Job(lp);

 JobConf lfu = new JobConf(MRExample.class);

 lfu.s etJobName("Load and Filter Users");

 lfu.setInputFormat(TextInputFormat.class);

 lfu.setOutputKeyClass(Text.class);

 lfu.setOutputValueClass(Text.class);

 lfu.setMapperClass(LoadAndFilterUsers.class);

 FileInputFormat.add InputPath(lfu, new
Path("/user/gates/users"));

 FileOutputFormat.setOutputPath(lfu,

 new Path("/user/gates/tmp/filtered_users"));

 lfu.setNumReduceTasks(0);

 Job loadUsers = new Job(lfu);

 JobConf join = new JobConf(MRExample.class);

 join.setJobName("Join Users and Pages");

 join.setInputFormat(KeyValueTextInputFormat.class);

 join.setOutputKeyClass(Text.class);

 join.setOutputValueClass(Text.class);

 join.setMapperClass(IdentityMap per.class);

 join.setReducerClass(Join.class);

 FileInputFormat.addInputPath(join, new

Path("/user/gates/tmp/indexed_pages"));

 FileInputFormat.addInputPath(join, new

Path("/user/gates/tmp/filtered_users"));

 FileOutputFormat.se tOutputPath(join, new

Path("/user/gates/tmp/joined"));

 join.setNumReduceTasks(50);
 Job joinJob = new Job(join);

 joinJob.addDependingJob(loadPages);

 joinJob.addDependingJob(loadUsers);

 JobConf group = new JobConf(MRE xample.class);

 group.setJobName("Group URLs");

 group.setInputFormat(KeyValueTextInputFormat.class);

 group.setOutputKeyClass(Text.class);

 group.setOutputValueClass(LongWritable.class);

 group.setOutputFormat(SequenceFi leOutputFormat.class);

 group.setMapperClass(LoadJoined.class);

 group.setCombinerClass(ReduceUrls.class);

 group.setReducerClass(ReduceUrls.class);

 FileInputFormat.addInputPath(group, new

Path("/user/gates/tmp/joined"));

 FileOutputFormat.setOutputPath(group, new

Path("/user/gates/tmp/grouped"));

 group.setNumReduceTasks(50);

 Job groupJob = new Job(group);

 groupJob.addDependingJob(joinJob);

 JobConf top100 = new JobConf(MRExample.class);

 top100.setJobName("Top 100 sites");

 top100.setInputFormat(SequenceFileInputFormat.class);

 top100.setOutputKeyClass(LongWritable.class);

 top100.setOutputValueClass(Text.class);

 top100.setOutputFormat(SequenceFileOutputF ormat.class);

 top100.setMapperClass(LoadClicks.class);

 top100.setCombinerClass(LimitClicks.class);

 top100.setReducerClass(LimitClicks.class);

 FileInputFormat.addInputPath(top100, new

Path("/user/gates/tmp/grouped"));

 FileOutputFormat.setOutputPath(top100, new

Path("/user/gates/top100sitesforusers18to25"));

 top100.setNumReduceTasks(1);

 Job limit = new Job(top100);

 limit.addDependingJob(groupJob);

 JobControl jc = new JobControl("Find top 100 sites for users

18 to 25");

 jc.addJob(loadPages);

 jc.addJob(loadUsers);

 jc.addJob(joinJob);

 jc.addJob(groupJob);

 jc.addJob(limit);
 jc.run();

 }

}

170 lines of code, 4 hours to write

- 49 -

In Pig Latin

Users = load ‘users’ as (name, age);

Fltrd = filter Users by

age >= 18 and age <= 25;

Pages = load ‘pages’ as (user, url);

Jnd = join Fltrd by name, Pages by user;

Grpd = group Jnd by url;

Smmd = foreach Grpd generate group,

COUNT(Jnd) as clicks;

Srtd = order Smmd by clicks desc;

Top5 = limit Srtd 5;

store Top5 into ‘top5sites’;

9 lines of code, 15 minutes to write

- 50 -

But can it fly?

- 51 -

Essence of Pig

• Map-Reduce is too low a level to program, SQL too high

• Pig Latin, a language intended to sit between the two:

– Imperative

– Provides standard relational transforms (join, sort, etc.)

– Schemas are optional, used when available, can be defined at
runtime

– User Defined Functions are first class citizens

– Opportunities for advanced optimizer but optimizations by
programmer also possible

- 52 -

How It Works

Parser

Script
A = load

B = filter

C = group

D = foreach

Logical Plan
Semantic
Checks

Logical Plan
Logical
Optimizer

Logical Plan

Logical to
Physical
TranslatorPhysical Plan

Physical
To MR
Translator

MapReduce
Launcher

Jar to
hadoop

Map-Reduce Plan

Logical Plan ≈
relational algebra

Plan standard
optimizations

Physical Plan =
physical operators
to be executed

Reduce stages

Map-Reduce Plan =
physical operators
broken into Map,
Combine, and
Reduce stages

- 53 -

Cool Things We’ve Added In the Last Year

• Multiquery – Ability to combine multiple group bys into a
single MR job (0.3)

• Merge join – If data is already sorted on join key, do join via
merge in map phase (0.4)

• Skew join – Hash join for data with skew in join key. Allows
splitting of key across multiple reducers to handle skew.
(0.4)

• Zebra – Contrib project that provides columnar storage of
data (0.4)

• Rework of Load and Store functions to make them much
easier to write (0.7, branched but not released)

• Owl, a metadata service for the grid (committed, will be
released in 0.8).

- 54 -

Fragment Replicate Join

Pages Users

Aka
“Broakdcast Join”

- 55 -

Fragment Replicate Join

Users = load ‘users’ as (name, age);

Pages = load ‘pages’ as (user, url);

Jnd = join Pages by user, Users by name using “replicated”;

Pages Users

Aka
“Broakdcast Join”

- 56 -

Fragment Replicate Join

Users = load ‘users’ as (name, age);

Pages = load ‘pages’ as (user, url);

Jnd = join Pages by user, Users by name using “replicated”;

Pages Users

Aka
“Broakdcast Join”

- 57 -

Fragment Replicate Join

Users = load ‘users’ as (name, age);

Pages = load ‘pages’ as (user, url);

Jnd = join Pages by user, Users by name using “replicated”;

Pages Users

Map 1Map 1

Map 2Map 2

Aka
“Broakdcast Join”

- 58 -

Fragment Replicate Join

Users = load ‘users’ as (name, age);

Pages = load ‘pages’ as (user, url);

Jnd = join Pages by user, Users by name using “replicated”;

Pages Users

Map 1Map 1

Map 2Map 2

Users

Users

Pages
block 1

Pages
block 2

Aka
“Broakdcast Join”

- 59 -

Hash Join

Pages Users

- 60 -

Hash Join

Pages Users

Users = load ‘users’ as (name, age);

Pages = load ‘pages’ as (user, url);

Jnd = join Users by name, Pages by user;

- 61 -

Hash Join

Pages Users

Users = load ‘users’ as (name, age);

Pages = load ‘pages’ as (user, url);

Jnd = join Users by name, Pages by user;

- 62 -

Hash Join

Pages Users

Users = load ‘users’ as (name, age);

Pages = load ‘pages’ as (user, url);

Jnd = join Users by name, Pages by user;

Map 1Map 1

User
block n

Map 2Map 2

Page
block m

- 63 -

Hash Join

Pages Users

Users = load ‘users’ as (name, age);

Pages = load ‘pages’ as (user, url);

Jnd = join Users by name, Pages by user;

Map 1Map 1

User
block n

Map 2Map 2

Page
block m

(1, user)

(2, name)

- 64 -

Hash Join

Pages Users

Users = load ‘users’ as (name, age);

Pages = load ‘pages’ as (user, url);

Jnd = join Users by name, Pages by user;

Map 1Map 1

User
block n

Map 2Map 2

Page
block m

Reducer 1Reducer 1

Reducer 2Reducer 2

(1, user)

(2, name)

(1, fred)
(2, fred)
(2, fred)

(1, jane)
(2, jane)
(2, jane)

- 65 -

Skew Join

Pages Users

- 66 -

Skew Join

Pages Users

Users = load ‘users’ as (name, age);

Pages = load ‘pages’ as (user, url);

Jnd = join Pages by user, Users by name using “skewed”;

- 67 -

Skew Join

Pages Users

Users = load ‘users’ as (name, age);

Pages = load ‘pages’ as (user, url);

Jnd = join Pages by user, Users by name using “skewed”;

- 68 -

Skew Join

Pages Users

Users = load ‘users’ as (name, age);

Pages = load ‘pages’ as (user, url);

Jnd = join Pages by user, Users by name using “skewed”;

Map 1Map 1

Pages
block n

Map 2Map 2

Users
block m

- 69 -

Skew Join

Pages Users

Users = load ‘users’ as (name, age);

Pages = load ‘pages’ as (user, url);

Jnd = join Pages by user, Users by name using “skewed”;

Map 1Map 1

Pages
block n

Map 2Map 2

Users
block m

S
P
S
P

S
P
S
P

- 70 -

Skew Join

Pages Users

Users = load ‘users’ as (name, age);

Pages = load ‘pages’ as (user, url);

Jnd = join Pages by user, Users by name using “skewed”;

Map 1Map 1

Pages
block n

Map 2Map 2

Users
block m

(1, user)

(2, name)

S
P
S
P

S
P
S
P

- 71 -

Skew Join

Pages Users

Users = load ‘users’ as (name, age);

Pages = load ‘pages’ as (user, url);

Jnd = join Pages by user, Users by name using “skewed”;

Map 1Map 1

Pages
block n

Map 2Map 2

Users
block m

Reducer 1Reducer 1

Reducer 2Reducer 2

(1, user)

(2, name)

(1, fred, p1)
(1, fred, p2)
(2, fred)

(1, fred, p3)
(1, fred, p4)
(2, fred)

S
P
S
P

S
P
S
P

- 72 -

Merge Join

Pages Users

aaron
.
.
.
.
.
.
.
.

zach

aaron
.
.
.
.
.
.
.
.

zach

- 73 -

Merge Join

Pages Users

aaron
.
.
.
.
.
.
.
.

zach

aaron
.
.
.
.
.
.
.
.

zach

Users = load ‘users’ as (name, age);

Pages = load ‘pages’ as (user, url);

Jnd = join Pages by user, Users by name using “merge”;

- 74 -

Merge Join

Pages Users

aaron
.
.
.
.
.
.
.
.

zach

aaron
.
.
.
.
.
.
.
.

zach

Users = load ‘users’ as (name, age);

Pages = load ‘pages’ as (user, url);

Jnd = join Pages by user, Users by name using “merge”;

- 75 -

Merge Join

Pages Users

aaron
.
.
.
.
.
.
.
.

zach

aaron
.
.
.
.
.
.
.
.

zach

Users = load ‘users’ as (name, age);

Pages = load ‘pages’ as (user, url);

Jnd = join Pages by user, Users by name using “merge”;

Map 1Map 1

Map 2Map 2

Users

Users

Pages

Pages

aaron…
amr

aaron
…

amy…
barb

amy
…

- 76 -

Multi-store script

A = load ‘users’ as (name, age, gender,

city, state);

B = filter A by name is not null;

C1 = group B by age, gender;

D1 = foreach C1 generate group, COUNT(B);

store D into ‘bydemo’;

C2= group B by state;

D2 = foreach C2 generate group, COUNT(B);

store D2 into ‘bystate’;

load usersload users filter nullsfilter nulls

group by stategroup by state

group by age,
gender

group by age,
gender

apply UDFsapply UDFs

apply UDFsapply UDFs

store into
‘bystate’
store into
‘bystate’

store into
‘bydemo’
store into
‘bydemo’

- 77 -

Multi-Store Map-Reduce Plan

mapmap filterfilter

local rearrangelocal rearrange

splitsplit

local rearrangelocal rearrange

reducereduce

demuxdemux
packagepackage packagepackage

foreachforeach foreachforeach

- 78 -

What are people doing with Pig

• At Yahoo ~70% of Hadoop jobs are Pig jobs

• Being used at Twitter, LinkedIn, and other companies

• Available as part of Amazon EMR web service and Cloudera
Hadoop distribution

• What users use Pig for:

– Search infrastructure

– Ad relevance

– Model training

– User intent analysis

– Web log processing

– Image processing

– Incremental processing of large data sets

- 79 -

What We’re Working on this Year

• Optimizer rewrite

• Integrating Pig with metadata

• Usability – our current error messages might as well be
written in actual Latin

• Automated usage info collection

• UDFs in python

- 80 -

Research Opportunities

• Cost based optimization – how does current RDBMS technology carry
over to MR world?

• Memory Usage – given that data processing is very memory intensive
and Java offers poor control of memory usage, how can Pig be written
to use memory well?

• Automated Hadoop Tuning – Can Pig figure out how to configure
Hadoop to best run a particular script?

• Indices, materialized views, etc. – How do these traditional RDBMS
tools fit into the MR world?

• Human time queries – Analysts want access to the petabytes of data
available via Hadoop, but they don’t want to wait hours for their jobs to
finish; can Pig find a way to answer analysts question in under 60
seconds?

• Map-Reduce-Reduce – Can MR be made more efficient for multiple
MR jobs?

• How should Pig integrate with workflow systems?

• See more: http://wiki.apache.org/pig/PigJournal

- 81 -

Learn More

• Visit our website: http://hadoop.apache.org/pig/

• On line tutorials

– From Yahoo, http://developer.yahoo.com/hadoop/tutorial/

– From Cloudera, http://www.cloudera.com/hadoop-training

• A couple of Hadoop books are available that include
chapters on Pig, search at your favorite bookstore

• Join the mailing lists:

– pig-user@hadoop.apache.org for user questions

– pig-dev@hadoop.apache.com for developer issues

• Contribute your work, over 50 people have so far

82

Pig Latin Mini-Tutorial

(will skip in class; please read in
order to do homework 7)

Outline

Based entirely on Pig Latin: A not-so-
foreign language for data processing,
by Olston, Reed, Srivastava, Kumar,
and Tomkins, 2008

Quiz section tomorrow: in CSE 403
(this is CSE, don’t go to EE1)

83

Pig-Latin Overview

• Data model = loosely typed nested
relations

• Query model = a sql-like, dataflow
language

• Execution model:

– Option 1: run locally on your machine

– Option 2: compile into sequence of
map/reduce, run on a cluster supporting
Hadoop

84

Example

• Input: a table of urls:
(url, category, pagerank)

• Compute the average pagerank of all
sufficiently high pageranks, for each
category

• Return the answers only for categories
with sufficiently many such pages

85

First in SQL…

86

SELECT category, AVG(pagerank)

FROM urls

WHERE pagerank > 0.2

GROUP By category

HAVING COUNT(*) > 106

…then in Pig-Latin

87

good_urls = FILTER urls BY pagerank > 0.2

groups = GROUP good_urls BY category

big_groups = FILTER groups

BY COUNT(good_urls) > 106

output = FOREACH big_groups GENERATE

category, AVG(good_urls.pagerank)

Types in Pig-Latin

• Atomic: string or number, e.g. ‘Alice’ or 55

• Tuple: (‘Alice’, 55, ‘salesperson’)

• Bag: {(‘Alice’, 55, ‘salesperson’),
(‘Betty’,44, ‘manager’), …}

• Maps: we will try not to use these

88

Types in Pig-Latin

Bags can be nested !

• {(‘a’, {1,4,3}), (‘c’,{ }), (‘d’, {2,2,5,3,2})}

Tuple components can be referenced by
number

• $0, $1, $2, …

89

90

Loading data

• Input data = FILES !

– Heard that before ?

• The LOAD command parses an input
file into a bag of records

• Both parser (=“deserializer”) and output
type are provided by user

91

Loading data

92

queries = LOAD ‘query_log.txt’

USING myLoad()

AS (userID, queryString, timeStamp)

Loading data

• USING userfuction() -- is optional

– Default deserializer expects tab-delimited file

• AS type – is optional

– Default is a record with unnamed fields; refer to
them as $0, $1, …

• The return value of LOAD is just a handle to a
bag

– The actual reading is done in pull mode, or
parallelized

93

FOREACH

94

expanded_queries =

FOREACH queries

GENERATE userId, expandQuery(queryString)

expandQuery() is a UDF that produces likely expansions
Note: it returns a bag, hence expanded_queries is a nested bag

FOREACH

95

expanded_queries =

FOREACH queries

GENERATE userId,
flatten(expandQuery(queryString))

Now we get a flat collection

96

FLATTEN

Note that it is NOT a first class function !

(that’s one thing I don’t like about Pig-latin)

• First class FLATTEN:

– FLATTEN({{2,3},{5},{},{4,5,6}}) = {2,3,5,4,5,6}

– Type: {{T}} � {T}

• Pig-latin FLATTEN

– FLATTEN({4,5,6}) = 4, 5, 6

– Type: {T} � T, T, T, …, T ?????
97

FILTER

98

real_queries = FILTER queries BY userId neq ‘bot’

Remove all queries from Web bots:

real_queries = FILTER queries
BY NOT isBot(userId)

Better: use a complex UDF to detect Web bots:

JOIN

99

join_result = JOIN results BY queryString
revenue BY queryString

results: {(queryString, url, position)}
revenue: {(queryString, adSlot, amount)}

join_result : {(queryString, url, position, adSlot, amount)}

100

GROUP BY

101

grouped_revenue = GROUP revenue BY queryString

query_revenues =

FOREACH grouped_revenue

GENERATE queryString,

SUM(revenue.amount) AS totalRevenue

revenue: {(queryString, adSlot, amount)}

grouped_revenue: {(queryString, {(adSlot, amount)})}
query_revenues: {(queryString, totalRevenue)}

Simple Map-Reduce

102

map_result = FOREACH input

GENERATE FLATTEN(map(*))

key_groups = GROUP map_result BY $0

output = FOREACH key_groups
GENERATE reduce($1)

input : {(field1, field2, field3,)}

map_result : {(a1, a2, a3, . . .)}
key_groups : {(a1, {(a2, a3, . . .)})}

Co-Group

103

grouped_data =
COGROUP results BY queryString,

revenue BY queryString;

results: {(queryString, url, position)}
revenue: {(queryString, adSlot, amount)}

grouped_data: {(queryString, results:{(url, position)},
revenue:{(adSlot, amount)})}

What is the output type in general ?

Co-Group

104
Is this an inner join, or an outer join ?

Co-Group

105

url_revenues = FOREACH grouped_data
GENERATE

FLATTEN(distributeRevenue(results, revenue));

grouped_data: {(queryString, results:{(url, position)},
revenue:{(adSlot, amount)})}

distributeRevenue is a UDF that accepts search re-
sults and revenue information for a query string at a time,
and outputs a bag of urls and the revenue attributed to them.

Co-Group v.s. Join

106

grouped_data = COGROUP results BY queryString,
revenue BY queryString;

join_result = FOREACH grouped_data
GENERATE FLATTEN(results),

FLATTEN(revenue);

grouped_data: {(queryString, results:{(url, position)},
revenue:{(adSlot, amount)})}

Result is the same as JOIN

Asking for Output: STORE

107

STORE query_revenues INTO `myoutput'
USING myStore();

Meaning: write query_revenues to the file ‘myoutput’

Implementation

• Over Hadoop !

• Parse query:

– Everything between LOAD and STORE �
one logical plan

• Logical plan � sequence of
Map/Reduce ops

• All statements between two
(CO)GROUPs � one Map/Reduce op

108

Implementation

109

Bloom Filters

Dan Suciu -- CSEP544 Fall 2010 110

We *WILL* discuss in class !

Lecture on Bloom Filters

Not described in the textbook !

Lecture based in part on:

• Broder, Andrei; Mitzenmacher, Michael
(2005), "Network Applications of Bloom
Filters: A Survey", Internet Mathematics 1 (4):
485–509

• Bloom, Burton H. (1970), "Space/time trade-
offs in hash coding with allowable errors",
Communications of the ACM 13 (7): 422–42

111Dan Suciu -- CSEP544 Fall 2010

Pig Latin Example Continued

112

Users(name, age)
Pages(user, url)

SELECT Pages.url, count(*) as cnt
FROM Users, Pages
WHERE Users.age in [18..25]

and Users.name = Pages.user
GROUP BY Pages.url
ORDER DESC cnt

Dan Suciu -- CSEP544 Fall 2010

Example

Problem: many Pages, but only a few
visited by users with age 18..25

• Pig’s solution:

– MAP phase sends all pages to the
reducers

• How can we reduce communication
cost ?

113Dan Suciu -- CSEP544 Fall 2010

Hash Maps

• Let S = {x1, x2, . . ., xn} be a set of
elements

• Let m > n

• Hash function h : S � {1, 2, …, m}

114

S = {x1, x2, . . ., xn}

1 2 m

0 0 1 0 1 1 0 0 1 1 0 0H=

Hash Map = Dictionary

The hash map acts like a dictionary

• Insert(x, H) = set bit h(x) to 1

– Collisions are possible

• Member(y, H) = check if bit h(y) is 1

– False positives are possible

• Delete(y, H) = not supported !

– Extensions possible, see later

115Dan Suciu -- CSEP544 Fall 2010

0 0 1 0 1 1 0 0 0 1 0 1

Example (cont’d)

• Map-Reduce task 1

– Map task: compute a hash map H of User names, where
age in [18..25]. Several Map tasks in parallel.

– Reduce task: combine all hash maps using OR. One
single reducer suffices.

• Map-Reduce task 2

– Map tasks 1: map each User to the appropriate region

– Map tasks 2: map only Pages where user in H to
appropriate region

– Reduce task: do the join
116

Why don’t we
lose any Pages?

0 0 1 0 1 1 0 0 0 1 0 1

Analysis

• Let S = {x1, x2, . . ., xn}

• Let j = a specific bit in H (1 ≤ j ≤ m)

• What is the probability that j remains 0 after
inserting all n elements from S into H ?

• Will compute in two steps

117Dan Suciu -- CSEP544 Fall 2010

Analysis

• Recall |H| = m

• Let’s insert only xi into H

• What is the probability that bit j is 0 ?

118Dan Suciu -- CSEP544 Fall 2010

0 0 0 0 1 0 0 0 0 0 0 0

Analysis

• Recall |H| = m

• Let’s insert only xi into H

• What is the probability that bit j is 0 ?

• Answer: p = 1 – 1/m

119Dan Suciu -- CSEP544 Fall 2010

0 0 0 0 1 0 0 0 0 0 0 0

Analysis

• Recall |H| = m, S = {x1, x2, . . ., xn}

• Let’s insert all elements from S in H

• What is the probability that bit j remains
0 ?

120Dan Suciu -- CSEP544 Fall 2010

0 0 1 0 1 1 0 0 0 1 0 1

Analysis

• Recall |H| = m, S = {x1, x2, . . ., xn}

• Let’s insert all elements from S in H

• What is the probability that bit j remains
0 ?

• Answer: p = (1 – 1/m)n

121Dan Suciu -- CSEP544 Fall 2010

0 0 1 0 1 1 0 0 0 1 0 1

Probability of False Positives

• Take a random element y, and check
member(y,H)

• What is the probability that it returns true ?

122Dan Suciu -- CSEP544 Fall 2010

0 0 1 0 1 1 0 0 0 1 0 1

Probability of False Positives

• Take a random element y, and check
member(y,H)

• What is the probability that it returns true ?

• Answer: it is the probability that bit h(y) is 1,
which is f = 1 – (1 – 1/m)n ≈ 1 – e-n/m

123Dan Suciu -- CSEP544 Fall 2010

0 0 1 0 1 1 0 0 0 1 0 1

Analysis: Example

• Example: m = 8n, then

f ≈ 1 – e-n/m = 1-e-1/8 ≈ 0.11

• A 10% false positive rate is rather high…

• Bloom filters improve that (coming next)

Dan Suciu -- CSEP544 Fall 2010 124

0 0 1 0 1 1 0 0 0 1 0 1

Bloom Filters

• Introduced by Burton Bloom in 1970

• Improve the false positive ratio

• Idea: use k independent hash functions

125Dan Suciu -- CSEP544 Fall 2010

Bloom Filter = Dictionary

• Insert(x, H) = set bits h1(x), . . ., hk(x) to 1

– Collisions between x and x’ are possible

• Member(y, H) = check if bits h1(y), . . ., hk(y)
are 1

– False positives are possible

• Delete(z, H) = not supported !

– Extensions possible, see later

126Dan Suciu -- CSEP544 Fall 2010

Example Bloom Filter k=3

127

Insert(x,H)

Member(y,H)

y1 = is not in H (why ?); y2 may be in H (why ?)

Choosing k

Two competing forces:

• If k = large

– Test more bits for member(y,H) � lower false
positive rate

– More bits in H are 1 � higher false positive rate

• If k = small

– More bits in H are 0 � lower positive rate

– Test fewer bits for member(y,H) � higher rate
128Dan Suciu -- CSEP544 Fall 2010

Analysis

• Recall |H| = m, #hash functions = k

• Let’s insert only xi into H

• What is the probability that bit j is 0 ?

129Dan Suciu -- CSEP544 Fall 2010

0 0 0 0 1 0 0 1 0 1 0 0

Analysis

• Recall |H| = m, #hash functions = k

• Let’s insert only xi into H

• What is the probability that bit j is 0 ?

• Answer: p = (1 – 1/m)k

130Dan Suciu -- CSEP544 Fall 2010

0 0 0 0 1 0 0 1 0 1 0 0

Analysis

• Recall |H| = m, S = {x1, x2, . . ., xn}

• Let’s insert all elements from S in H

• What is the probability that bit j remains
0 ?

131Dan Suciu -- CSEP544 Fall 2010

0 0 1 0 1 1 0 1 0 1 0 0

Analysis

• Recall |H| = m, S = {x1, x2, . . ., xn}

• Let’s insert all elements from S in H

• What is the probability that bit j remains
0 ?

• Answer: p = (1 – 1/m)kn ≈ e-kn/m

132Dan Suciu -- CSEP544 Fall 2010

0 0 1 0 1 1 0 1 0 1 0 0

Probability of False Positives

• Take a random element y, and check
member(y,H)

• What is the probability that it returns
true ?

133Dan Suciu -- CSEP544 Fall 2010

Probability of False Positives

• Take a random element y, and check
member(y,H)

• What is the probability that it returns
true ?

• Answer: it is the probability that all k bits
h1(y), …, hk(y) are 1, which is:

134
f = (1-p)k ≈ (1 – e-kn/m)k

Optimizing k

• For fixed m, n, choose k to minimize the
false positive rate f

• Denote g = ln(f) = k ln(1 – e-kn/m)

• Goal: find k to minimize g

135
m /nk = ln 2 × m /n

Bloom Filter Summary

Given n = |S|, m = |H|,
choose k = ln 2 × m /n hash functions

136f = (1-p)k ≈ (½)k =(½)(ln 2)m/n ≈ (0.6185)m/n

p ≈ e-kn/m = ½Probability that some bit j is 1

Expected distribution m/2 bits 1, m/2 bits 0

Probability of false positive

Bloom Filter Summary

• In practice one sets m = cn, for some constant c

– Thus, we use c bits for each element in S

– Then f ≈ (0.6185)c = constant

• Example: m = 8n, then

– k = 8(ln 2) = 5.545 (use 6 hash functions)

– f ≈ (0.6185)m/n = (0.6185)8 ≈ 0.02 (2% false positives)

– Compare to a hash table: f ≈ 1 – e-n/m = 1-e-1/8 ≈ 0.11

Dan Suciu -- CSEP544 Fall 2010 137
The reward for increasing m is much higher for Bloom filters

Set Operations

Intersection and Union of Sets:

• Set S � Bloom filter H

• Set S’ � Bloom filter H’

• How do we computed the Bloom filter for
the intersection of S and S’ ?

Dan Suciu -- CSEP544 Fall 2010 138

Set Operations

Intersection and Union:

• Set S � Bloom filter H

• Set S’ � Bloom filter H’

• How do we computed the Bloom filter
for the intersection of S and S’ ?

• Answer: bit-wise AND: H ∧ H’

139Dan Suciu -- CSEP544 Fall 2010

Counting Bloom Filter

Goal: support delete(z, H)

Keep a counter for each bit j

• Insertion � increment counter

• Deletion � decrement counter

• Overflow � keep bit 1 forever

Using 4 bits per counter:

Probability of overflow ≤ 1.37 10-15
× m

140Dan Suciu -- CSEP544 Fall 2010

Application: Dictionaries

Bloom originally introduced this for
hyphenation

• 90% of English words can be hyphenated
using simple rules

• 10% require table lookup

• Use “bloom filter” to check if lookup
needed

141Dan Suciu -- CSEP544 Fall 2010

Application: Distributed Caching

• Web proxies maintain a cache of (URL,
page) pairs

• If a URL is not present in the cache, they
would like to check the cache of other
proxies in the network

• Transferring all URLs is expensive !

• Instead: compute Bloom filter, exchange
periodically

142Dan Suciu -- CSEP544 Fall 2010

