
Lecture 10:
Parallel Databases

Wednesday, December 1st, 2010
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Announcements

• Take-home Final: this weekend

• Next Wednesday: last homework due at 
midnight  (Pig Latin)

• Also next Wednesday: last lecture (data 
provenance, data privacy)
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Reading Assignment: “Rethinking 
the Contract”

• What is today’s 
contract with the 
optimizer ?

• What are the main 
limitations in today’s 
optimizers ?

• What is a “plan 
diagram” ?
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Overview of Today’s Lecture

• Parallel databases (Chapter 22.1 – 22.5)

• Map/reduce

• Pig-Latin
– Some slides from Alan Gates (Yahoo!Research)
– Mini-tutorial on the slides
– Read manual for HW7

• Bloom filters
– Use slides extensively !
– Bloom joins are mentioned on pp. 746 in the book

Dan Suciu -- CSEP544 Fall 2010        4



Parallel v.s. Distributed
Databases

• Parallel database system:
– Improve performance through parallel 

implementation

– Will discuss in class (and are on the final)

• Distributed database system:
– Data is stored across several sites, each site 

managed by a DBMS capable of running 
independently

– Will not discuss in class
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Parallel DBMSs

• Goal
– Improve performance by executing multiple 

operations in parallel

• Key benefit
– Cheaper to scale than relying on a single 

increasingly more powerful processor

• Key challenge
– Ensure overhead and contention do not kill 

performance

Dan Suciu -- CSEP544 Fall 2010        6



Performance Metrics 
for Parallel DBMSs

• Speedup
– More processors � higher speed
– Individual queries should run faster
– Should do more transactions per second (TPS)

• Scaleup
– More processors � can process more data
– Batch scaleup

• Same query on larger input data should take the same time

– Transaction scaleup
• N-times as many TPS on N-times larger database
• But each transaction typically remains small
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Linear v.s. Non-linear Speedup
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Speedup
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Linear v.s. Non-linear Scaleup

# processors (=P) AND data size 

Batch
Scaleup

×1 ×5 ×10 ×15

Dan Suciu -- CSEP544 Fall 2010        9



Challenges to 
Linear Speedup and Scaleup

• Startup cost
– Cost of starting an operation on many 

processors

• Interference
– Contention for resources between processors

• Skew
– Slowest processor becomes the bottleneck
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Architectures for Parallel 
Databases

• Shared memory

• Shared disk

• Shared nothing
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Shared Memory

Interconnection Network

P P P

Global Shared Memory

D D D
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Shared Disk

Interconnection Network

P P P

M M M

D D D
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Shared Nothing

Interconnection Network

P P P

M M M

D D D
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Shared Nothing

• Most scalable architecture
– Minimizes interference by minimizing 

resource sharing

– Can use commodity hardware

• Also most difficult to program and manage

• Processor = server = node

• P = number of nodes
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Taxonomy for
Parallel Query Evaluation

• Inter-query parallelism
– Each query runs on one processor

• Inter-operator parallelism
– A query runs on multiple processors

– An operator runs on one processor

• Intra-operator parallelism
– An operator runs on multiple processors

Dan Suciu -- CSEP544 Fall 2010        We study only intra-operator parallelism: most scalable16



Horizontal Data Partitioning

• Relation R split into P chunks R0, …, RP-1, 
stored at the P nodes

• Round robin: tuple ti to chunk (i mod P)

• Hash based partitioning on attribute A:
– Tuple t to chunk h(t.A) mod P

• Range based partitioning on attribute A:
– Tuple t to chunk i if vi-1 < t.A < vi
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Parallel Selection

Compute σA=v(R), or σv1<A<v2(R)

• Conventional database:

– Cost = B(R)

• Parallel database with P processors:

– Cost = B(R) / P
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Parallel Selection

Different processors do the work:

• Round robin partition: all servers do the work

• Hash partition: 

– One server for σA=v(R),

– All servers for σv1<A<v2(R)

• Range partition: one server does the work
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Data Partitioning Revisited

What are the pros and cons ?

• Round robin
– Good load balance but always needs to read all the data

• Hash based partitioning
– Good load balance but works only for equality predicates 

and full scans

• Range based partitioning
– Works well for range predicates but can suffer from data 

skew
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Parallel Group By:  γA, sum(B)(R)

Step 1: server i partitions chunk Ri using a 
hash function h(t.A): Ri0, Ri1, …, Ri,P-1

Step 2: server i sends partition Rij to server j

Step 3:  server j computes γA, sum(B) on 
R0j, R1j, …, RP-1,j
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Cost of Parallel Group By

Recall conventional cost =  3B(R)

• Step 1: Cost = B(R)/P  I/O operations

• Step 2: Cost = (P-1)/P B(R) blocks are sent

– Network costs << I/O costs

• Step 3: Cost = 2 B(R)/P

– When can we reduce it to 0 ?

Total = 3B(R) / P  + communication costs
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Parallel Join:  R A=B S

Step 1
• For all servers in [0,k], server i partitions chunk Ri

using a hash function h(t.A): Ri0, Ri1, …, Ri,P-1

• For all servers in [k+1,P], server j partitions chunk 
Sj using a hash function h(t.A): Sj0, Sj1, …, Rj,P-1

Step 2: 
• Server i sends partition Riu to server u
• Server j sends partition Sju to server u

Steps 3: Server u computes the join of Riu with Sju
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Cost of Parallel Join

• Step 1:  Cost = (B(R) + B(S))/P

• Step 2:  0

– (P-1)/P (B(R) + B(S)) blocks are sent, but we 
assume network costs to be << disk I/O costs

• Step 3:

– Cost = 0 if small table fits in memory: B(S)/P <=M

– Cost = 4(B(R)+B(S))/P otherwise

Dan Suciu -- CSEP544 Fall 2010        24



Parallel Query Plans

• Same relational operators

• Add special split and merge operators
– Handle data routing, buffering, and flow 

control

• Example: exchange operator 
– Inserted between consecutive operators in the 

query plan
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Map Reduce

• Google: paper published 2004

• Free variant: Hadoop

• Map-reduce = high-level programming 
model and implementation for large-scale 
parallel data processing
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Data Model

Files !

A file = a bag of (key, value) pairs

A map-reduce program:

• Input: a bag of (inputkey, value)pairs

• Output: a bag of (outputkey, value)pairs
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Step 1: the MAP Phase

User provides the MAP-function:

• Input: one (input key, value)

• Ouput: bag of (intermediate key, 
value)pairs

System applies the map function in parallel 
to all (input key, value) pairs in the 

input file
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Step 2: the REDUCE Phase

User provides the REDUCE function:

• Input: (intermediate key, bag of 
values)

• Output: bag of output values

System groups all pairs with the same 
intermediate key, and passes the bag of 
values to the REDUCE function
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Example

• Counting the number of occurrences of 
each word in a large collection of 
documents

30

map(String key, String value):
// key: document name
// value: document contents
for each word w in value:

EmitIntermediate(w, “1”): reduce(String key, Iterator values):
// key: a word
// values: a list of counts
int result = 0;
for each v in values:

result += ParseInt(v);
Emit(AsString(result));
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31

(k1,v1)

(k2,v2)

(k3,v3)

. . . .

(i1, w1)

(i2, w2)

(i3, w3)

. . . .

MAP REDUCE
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Map = GROUP BY,
Reduce = Aggregate

32

SELECT word, sum(1)

FROM R

GROUP BY word

R(documentKey, word)
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Implementation

• There is one master node

• Master partitions input file into M splits, by key

• Master assigns workers (=servers) to the M 

map tasks, keeps track of their progress

• Workers write their output to local disk, 
partition into R regions

• Master assigns workers to the R reduce tasks

• Reduce workers read regions from the map 
workers’ local disks 
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Local storage`̀

MR Phases



Interesting Implementation Details

• Worker failure:

– Master pings workers periodically,

– If down then reassigns its splits to all other

workers � good load balance

• Choice of M and R:

– Larger is better for load balancing

– Limitation: master needs O(M×R) memory
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Interesting Implementation Details
Backup tasks:
• Straggler = a machine that takes unusually 

long time to complete one of the last tasks. 
Eg:
– Bad disk forces frequent correctable errors 

(30MB/s � 1MB/s)
– The cluster scheduler has scheduled other tasks 

on that machine

• Stragglers are a main reason for slowdown
• Solution: pre-emptive backup execution of 

the last few remaining in-progress tasks
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Map-Reduce Summary

• Hides scheduling and parallelization 
details

• However, very limited queries

– Difficult to write more complex tasks

– Need multiple map-reduce operations

• Solution:
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Following Slides provided by:
Alan Gates, Yahoo!Research
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What is Pig?

• An engine for executing programs on top of Hadoop

• It provides a language, Pig Latin, to specify these programs 

• An Apache open source project 
http://hadoop.apache.org/pig/
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Map-Reduce

• Computation is moved to the data

• A simple yet powerful programming model

– Map: every record handled individually

– Shuffle:  records collected by key

– Reduce:  key and iterator of all associated values

• User provides:

– input and output (usually files)

– map Java function

– key to aggregate on

– reduce Java function

• Opportunities for more control:  partitioning, sorting, partial 
aggregations, etc.
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Map Reduce Illustrated

mapmap

reducereduce

mapmap

reducereduce
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Map Reduce Illustrated

mapmap

reducereduce

mapmap

reducereduce

Romeo, Romeo, wherefore art thou Romeo? What, art thou hurt?



- 43 -

Map Reduce Illustrated

mapmap

reducereduce

mapmap

reducereduce

Romeo, Romeo, wherefore art thou Romeo?

Romeo, 1
Romeo, 1
wherefore, 1
art, 1
thou, 1
Romeo, 1

What, art thou hurt?

What, 1
art, 1
thou, 1
hurt, 1
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Map Reduce Illustrated

mapmap

reducereduce

mapmap

reducereduce

Romeo, Romeo, wherefore art thou Romeo?

Romeo, 1
Romeo, 1
wherefore, 1
art, 1
thou, 1
Romeo, 1

art, (1, 1)
hurt (1),
thou (1, 1)

What, art thou hurt?

What, 1
art, 1
thou, 1
hurt, 1

Romeo, (1, 1, 1)
wherefore, (1)
what, (1)
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Map Reduce Illustrated

mapmap

reducereduce

mapmap

reducereduce

Romeo, Romeo, wherefore art thou Romeo?

Romeo, 1
Romeo, 1
wherefore, 1
art, 1
thou, 1
Romeo, 1

art, (1, 1)
hurt (1),
thou (1, 1)

art, 2
hurt, 1
thou, 2

What, art thou hurt?

What, 1
art, 1
thou, 1
hurt, 1

Romeo, (1, 1, 1)
wherefore, (1)
what, (1)

Romeo, 3
wherefore, 1
what, 1
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Making Parallelism Simple

• Sequential reads = good read speeds

• In large cluster failures are guaranteed; Map Reduce 
handles retries

• Good fit for batch processing applications that need to touch 
all your data:

– data mining

– model tuning

• Bad fit for applications that need to find one particular record

• Bad fit for applications that need to communicate between 
processes; oriented around independent units of work
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Why use Pig?

Suppose you have 
user data in one 
file, website data in 
another, and you 
need to find the top 
5 most visited sites 
by users aged 18 -
25.

Load Users Load Pages

Filter by age

Join on name

Group on url

Count clicks

Order by clicks

Take top 5
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In Map-Reduce
import java.io.IOException;  

import java.util.ArrayList;  

import java.util.Iterator;  

import java.util.List;  

 

import org.apache.hadoop.fs.Path;  

import org.apache.hadoop.io.LongWritable;  

import org.apache.hadoop.io.Text;  

import org.apache.hadoop.io.Writable;  

i mport org.apache.hadoop.io.WritableComparable;  

import org.apache.hadoop.mapred.FileInputFormat;  

import org.apache.hadoop.mapred.FileOutputFormat;  

import org.apache.hadoop.mapred.JobConf;  

import org.apache.hadoop.mapred.KeyValueTextInputFormat;  

import org.a pache.hadoop.mapred.Mapper;  

import org.apache.hadoop.mapred.MapReduceBase;  

import org.apache.hadoop.mapred.OutputCollector;  
import org.apache.hadoop.mapred.RecordReader;  

import org.apache.hadoop.mapred.Reducer;  

import org.apache.hadoop.mapred.Reporter;  

imp ort org.apache.hadoop.mapred.SequenceFileInputFormat;  

import org.apache.hadoop.mapred.SequenceFileOutputFormat;  

import org.apache.hadoop.mapred.TextInputFormat;  

import org.apache.hadoop.mapred.jobcontrol.Job;  

import org.apache.hadoop.mapred.jobcontrol.JobC ontrol;  

import org.apache.hadoop.mapred.lib.IdentityMapper;  

 

public class MRExample {  

    public static class LoadPages extends MapReduceBase  

        implements Mapper<LongWritable, Text, Text, Text> {  

 

        public void map(LongWritable k, Text val,  

                OutputCollector<Text, Text> oc,  

                Reporter reporter) throws IOException {  

            // Pull the key out  

            String line = val.toString();  

            int firstComma = line.indexOf(',');  
            String key = line.sub string(0, firstComma);  

            String value = line.substring(firstComma + 1);  

            Text outKey = new Text(key);  

            // Prepend an index to the value so we know which file  

            // it came from.  

            Text outVal = new Text("1 " + value);  

            oc.collect(outKey, outVal);  

        }  

    }  

    public static class LoadAndFilterUsers extends MapReduceBase  

        implements Mapper<LongWritable, Text, Text, Text> {  

 

        public void map(LongWritable k, Text val,  

                OutputCollector<Text, Text> oc,  

                Reporter reporter) throws IOException {  

            // Pull the key out  

            String line = val.toString();  

            int firstComma = line.indexOf(',');  

            String value = line.substring( firstComma + 1);  

            int age = Integer.parseInt(value);  

            if (age < 18 || age > 25) return;  

            String key = line.substring(0, firstComma);  

            Text outKey = new Text(key);  

            // Prepend an index to the value so w e know which file  

            // it came from.  

            Text outVal = new Text("2" + value);  

            oc.collect(outKey, outVal);  

        }  

    }  

    public static class Join extends MapReduceBase  

        implements Reducer<Text, Text, Text, Text> {  

 

        public void reduce(Text key,  

                Iterator<Text> iter,  

                OutputCollector<Text, Text> oc,  

                Reporter reporter) throws IOException {  

            // For each value, figure out which file it's from and 

store it  

            // accordingly.  

            List<String> first = new ArrayList<String>();  

            List<String> second = new ArrayList<String>();  

 

            while (iter.hasNext()) {  

                Text t = iter.next();  

                String value = t.to String();  
                if (value.charAt(0) == '1') 

first.add(value.substring(1));  

                else second.add(value.substring(1));  

                reporter.setStatus("OK");  

            }  

 

            // Do the cross product and collect the values  

            for (String s1 : first) {  

                for (String s2 : second) {  

                    String outval = key + "," + s1 + "," + s2;  

                    oc.collect(null, new Text(outval));  

                    reporter.setStatus("OK");  

                }  

            }  

        }  

    }  

    public static class LoadJoined extends MapReduceBase  

        implements Mapper<Text, Text, Text, LongWritable> {  

 

        public void map(  
                Text k,  

                Text val,  

                OutputColle ctor<Text, LongWritable> oc,  

                Reporter reporter) throws IOException {  

            // Find the url  

            String line = val.toString();  

            int firstComma = line.indexOf(',');  

            int secondComma = line.indexOf(',', first Comma);  

            String key = line.substring(firstComma, secondComma);  

            // drop the rest of the record, I don't need it anymore,  

            // just pass a 1 for the combiner/reducer to sum instead.  

            Text outKey = new Text(key);  

            oc.collect(outKey, new LongWritable(1L));  

        }  

    }  

    public static class ReduceUrls extends MapReduceBase  

        implements Reducer<Text, LongWritable, WritableComparable, 

Writable> {  

 

        public void reduce(  
                Text ke y,  

                Iterator<LongWritable> iter,  

                OutputCollector<WritableComparable, Writable> oc,  

                Reporter reporter) throws IOException {  

            // Add up all the values we see  

 

            long sum = 0;  

            wh ile (iter.hasNext()) {  

                sum += iter.next().get();  

                reporter.setStatus("OK");  

            }  

 

            oc.collect(key, new LongWritable(sum));  

        }  

    }  

    public static class LoadClicks extends MapReduceBase  

        i mplements Mapper<WritableComparable, Writable, LongWritable, 

Text> {  

 

        public void map(  

                WritableComparable key,  

                Writable val,  

                OutputCollector<LongWritable, Text> oc,  

                Reporter reporter) throws IOException {  

            oc.collect((LongWritable)val, (Text)key);  

        }  

    }  

    public static class LimitClicks extends MapReduceBase  

        implements Reducer<LongWritable, Text, LongWritable, Text> {  

 

        int count = 0;  

        public  void reduce(  

            LongWritable key,  

            Iterator<Text> iter,  

            OutputCollector<LongWritable, Text> oc,  

            Reporter reporter) throws IOException {  

 

            // Only output the first 100 records  

            while (count < 100 && iter.hasNext()) {  

                oc.collect(key, iter.next());  

                count++;  

            }  

        }  

    }  

    public static void main(String[] args) throws IOException {  
        JobConf lp = new JobConf(MRExample.class);  

        lp.se tJobName("Load Pages");  

        lp.setInputFormat(TextInputFormat.class);  

        lp.setOutputKeyClass(Text.class);  

        lp.setOutputValueClass(Text.class);  

        lp.setMapperClass(LoadPages.class);  

        FileInputFormat.addInputPath(lp, new 

Path("/ user/gates/pages"));  

        FileOutputFormat.setOutputPath(lp,  

            new Path("/user/gates/tmp/indexed_pages"));  

        lp.setNumReduceTasks(0);  

        Job loadPages = new Job(lp);  

 

        JobConf lfu = new JobConf(MRExample.class);  

        lfu.s etJobName("Load and Filter Users");  

        lfu.setInputFormat(TextInputFormat.class);  

        lfu.setOutputKeyClass(Text.class);  

        lfu.setOutputValueClass(Text.class);  

        lfu.setMapperClass(LoadAndFilterUsers.class);  

        FileInputFormat.add InputPath(lfu, new 
Path("/user/gates/users"));  

        FileOutputFormat.setOutputPath(lfu,  

            new Path("/user/gates/tmp/filtered_users"));  

        lfu.setNumReduceTasks(0);  

        Job loadUsers = new Job(lfu);  

 

        JobConf join = new JobConf( MRExample.class);  

        join.setJobName("Join Users and Pages");  

        join.setInputFormat(KeyValueTextInputFormat.class);  

        join.setOutputKeyClass(Text.class);  

        join.setOutputValueClass(Text.class);  

        join.setMapperClass(IdentityMap per.class);  

        join.setReducerClass(Join.class);  

        FileInputFormat.addInputPath(join, new 

Path("/user/gates/tmp/indexed_pages"));  

        FileInputFormat.addInputPath(join, new 

Path("/user/gates/tmp/filtered_users"));  

        FileOutputFormat.se tOutputPath(join, new 

Path("/user/gates/tmp/joined"));  

        join.setNumReduceTasks(50);  
        Job joinJob = new Job(join);  

        joinJob.addDependingJob(loadPages);  

        joinJob.addDependingJob(loadUsers);  

 

        JobConf group = new JobConf(MRE xample.class);  

        group.setJobName("Group URLs");  

        group.setInputFormat(KeyValueTextInputFormat.class);  

        group.setOutputKeyClass(Text.class);  

        group.setOutputValueClass(LongWritable.class);  

        group.setOutputFormat(SequenceFi leOutputFormat.class);  

        group.setMapperClass(LoadJoined.class);  

        group.setCombinerClass(ReduceUrls.class);  

        group.setReducerClass(ReduceUrls.class);  

        FileInputFormat.addInputPath(group, new 

Path("/user/gates/tmp/joined"));  

        FileOutputFormat.setOutputPath(group, new 

Path("/user/gates/tmp/grouped"));  

        group.setNumReduceTasks(50);  

        Job groupJob = new Job(group);  

        groupJob.addDependingJob(joinJob);  

 

        JobConf top100 = new JobConf(MRExample.class);  

        top100.setJobName("Top 100 sites");  

        top100.setInputFormat(SequenceFileInputFormat.class);  

        top100.setOutputKeyClass(LongWritable.class);  

        top100.setOutputValueClass(Text.class);  

        top100.setOutputFormat(SequenceFileOutputF ormat.class);  

        top100.setMapperClass(LoadClicks.class);  

        top100.setCombinerClass(LimitClicks.class);  

        top100.setReducerClass(LimitClicks.class);  

        FileInputFormat.addInputPath(top100, new 

Path("/user/gates/tmp/grouped"));  

        FileOutputFormat.setOutputPath(top100, new 

Path("/user/gates/top100sitesforusers18to25"));  

        top100.setNumReduceTasks(1);  

        Job limit = new Job(top100);  

        limit.addDependingJob(groupJob);  

 

        JobControl jc = new JobControl("Find top  100 sites for users 

18 to 25");  

        jc.addJob(loadPages);  

        jc.addJob(loadUsers);  

        jc.addJob(joinJob);  

        jc.addJob(groupJob);  

        jc.addJob(limit);  
        jc.run();  

    }  

}  

170 lines of code, 4 hours to write
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In Pig Latin

Users = load ‘users’ as (name, age);

Fltrd = filter Users by

age >= 18 and age <= 25; 

Pages = load ‘pages’ as (user, url);

Jnd = join Fltrd by name, Pages by user;

Grpd = group Jnd by url;

Smmd = foreach Grpd generate group,

COUNT(Jnd) as clicks;

Srtd = order Smmd by clicks desc;

Top5 = limit Srtd 5;

store Top5 into ‘top5sites’;

9 lines of code, 15 minutes to write
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But can it fly?
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Essence of Pig

• Map-Reduce is too low a level to program, SQL too high

• Pig Latin, a language intended to sit between the two:

– Imperative

– Provides standard relational transforms (join, sort, etc.)

– Schemas are optional, used when available, can be defined at 
runtime

– User Defined Functions are first class citizens

– Opportunities for advanced optimizer but optimizations by 
programmer also possible
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How It Works

Parser

Script
A = load

B = filter

C = group

D = foreach

Logical Plan
Semantic
Checks

Logical Plan
Logical
Optimizer

Logical Plan

Logical to
Physical
TranslatorPhysical Plan

Physical
To MR
Translator

MapReduce
Launcher

Jar to
hadoop

Map-Reduce Plan

Logical Plan ≈ 
relational algebra

Plan standard 
optimizations

Physical Plan = 
physical operators 
to be executed

Reduce stages

Map-Reduce Plan =  
physical operators 
broken into Map, 
Combine, and 
Reduce stages
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Cool Things We’ve Added In the Last Year

• Multiquery – Ability to combine multiple group bys into a 
single MR job (0.3)

• Merge join – If data is already sorted on join key, do join via 
merge in map phase (0.4)

• Skew join – Hash join for data with skew in join key.  Allows 
splitting of key across multiple reducers to handle skew. 
(0.4)

• Zebra – Contrib project that provides columnar storage of 
data (0.4)

• Rework of Load and Store functions to make them much 
easier to write (0.7, branched but not released)

• Owl, a metadata service for the grid (committed, will be 
released in 0.8).
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Fragment Replicate Join

Pages Users

Aka
“Broakdcast Join”
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Fragment Replicate Join

Users = load ‘users’ as (name, age);

Pages = load ‘pages’ as (user, url);

Jnd = join Pages by user, Users by name using “replicated”;

Pages Users

Aka
“Broakdcast Join”
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Fragment Replicate Join

Users = load ‘users’ as (name, age);

Pages = load ‘pages’ as (user, url);

Jnd = join Pages by user, Users by name using “replicated”;

Pages Users

Aka
“Broakdcast Join”
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Fragment Replicate Join

Users = load ‘users’ as (name, age);

Pages = load ‘pages’ as (user, url);

Jnd = join Pages by user, Users by name using “replicated”;

Pages Users

Map 1Map 1

Map 2Map 2

Aka
“Broakdcast Join”
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Fragment Replicate Join

Users = load ‘users’ as (name, age);

Pages = load ‘pages’ as (user, url);

Jnd = join Pages by user, Users by name using “replicated”;

Pages Users

Map 1Map 1

Map 2Map 2

Users

Users

Pages
block 1

Pages
block 2

Aka
“Broakdcast Join”
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Hash Join

Pages Users
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Hash Join

Pages Users

Users = load ‘users’ as (name, age);

Pages = load ‘pages’ as (user, url);

Jnd = join Users by name, Pages by user;
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Hash Join

Pages Users

Users = load ‘users’ as (name, age);

Pages = load ‘pages’ as (user, url);

Jnd = join Users by name, Pages by user;
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Hash Join

Pages Users

Users = load ‘users’ as (name, age);

Pages = load ‘pages’ as (user, url);

Jnd = join Users by name, Pages by user;

Map 1Map 1

User
block n

Map 2Map 2

Page
block m
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Hash Join

Pages Users

Users = load ‘users’ as (name, age);

Pages = load ‘pages’ as (user, url);

Jnd = join Users by name, Pages by user;

Map 1Map 1

User
block n

Map 2Map 2

Page
block m

(1, user)

(2, name)



- 64 -

Hash Join

Pages Users

Users = load ‘users’ as (name, age);

Pages = load ‘pages’ as (user, url);

Jnd = join Users by name, Pages by user;

Map 1Map 1

User
block n

Map 2Map 2

Page
block m

Reducer 1Reducer 1

Reducer 2Reducer 2

(1, user)

(2, name)

(1, fred)
(2, fred)
(2, fred)

(1, jane)
(2, jane)
(2, jane)
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Skew Join

Pages Users
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Skew Join

Pages Users

Users = load ‘users’ as (name, age);

Pages = load ‘pages’ as (user, url);

Jnd = join Pages by user, Users by name using “skewed”;
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Skew Join

Pages Users

Users = load ‘users’ as (name, age);

Pages = load ‘pages’ as (user, url);

Jnd = join Pages by user, Users by name using “skewed”;
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Skew Join

Pages Users

Users = load ‘users’ as (name, age);

Pages = load ‘pages’ as (user, url);

Jnd = join Pages by user, Users by name using “skewed”;

Map 1Map 1

Pages
block n

Map 2Map 2

Users
block m
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Skew Join

Pages Users

Users = load ‘users’ as (name, age);

Pages = load ‘pages’ as (user, url);

Jnd = join Pages by user, Users by name using “skewed”;

Map 1Map 1

Pages
block n

Map 2Map 2

Users
block m

S
P
S
P

S
P
S
P
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Skew Join

Pages Users

Users = load ‘users’ as (name, age);

Pages = load ‘pages’ as (user, url);

Jnd = join Pages by user, Users by name using “skewed”;

Map 1Map 1

Pages
block n

Map 2Map 2

Users
block m

(1, user)

(2, name)

S
P
S
P

S
P
S
P
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Skew Join

Pages Users

Users = load ‘users’ as (name, age);

Pages = load ‘pages’ as (user, url);

Jnd = join Pages by user, Users by name using “skewed”;

Map 1Map 1

Pages
block n

Map 2Map 2

Users
block m

Reducer 1Reducer 1

Reducer 2Reducer 2

(1, user)

(2, name)

(1, fred, p1)
(1, fred, p2)
(2, fred)

(1, fred, p3)
(1, fred, p4)
(2, fred)

S
P
S
P

S
P
S
P
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Merge Join

Pages Users

aaron
.
.
.
.
.
.
.
.

zach

aaron
.
.
.
.
.
.
.
.

zach
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Merge Join

Pages Users

aaron
.
.
.
.
.
.
.
.

zach

aaron
.
.
.
.
.
.
.
.

zach

Users = load ‘users’ as (name, age);

Pages = load ‘pages’ as (user, url);

Jnd = join Pages by user, Users by name using “merge”;
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Merge Join

Pages Users

aaron
.
.
.
.
.
.
.
.

zach

aaron
.
.
.
.
.
.
.
.

zach

Users = load ‘users’ as (name, age);

Pages = load ‘pages’ as (user, url);

Jnd = join Pages by user, Users by name using “merge”;
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Merge Join

Pages Users

aaron
.
.
.
.
.
.
.
.

zach

aaron
.
.
.
.
.
.
.
.

zach

Users = load ‘users’ as (name, age);

Pages = load ‘pages’ as (user, url);

Jnd = join Pages by user, Users by name using “merge”;

Map 1Map 1

Map 2Map 2

Users

Users

Pages

Pages

aaron…
amr

aaron
…

amy…
barb

amy
…
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Multi-store script

A = load ‘users’ as (name, age, gender, 

city, state);

B = filter A by name is not null;

C1 = group B by age, gender;

D1 = foreach C1 generate group, COUNT(B);

store D into ‘bydemo’;

C2= group B by state;

D2 = foreach C2 generate group, COUNT(B);

store D2 into ‘bystate’;

load usersload users filter nullsfilter nulls

group by stategroup by state

group by age, 
gender

group by age, 
gender

apply UDFsapply UDFs

apply UDFsapply UDFs

store into 
‘bystate’
store into 
‘bystate’

store into 
‘bydemo’
store into 
‘bydemo’
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Multi-Store Map-Reduce Plan

mapmap filterfilter

local rearrangelocal rearrange

splitsplit

local rearrangelocal rearrange

reducereduce

demuxdemux
packagepackage packagepackage

foreachforeach foreachforeach
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What are people doing with Pig

• At Yahoo ~70% of Hadoop jobs are Pig jobs

• Being used at Twitter, LinkedIn, and other companies

• Available as part of Amazon EMR web service and Cloudera
Hadoop distribution

• What users use Pig for:

– Search infrastructure

– Ad relevance

– Model training

– User intent analysis

– Web log processing

– Image processing

– Incremental processing of large data sets
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What We’re Working on this Year

• Optimizer rewrite

• Integrating Pig with metadata

• Usability – our current error messages might as well be 
written in actual Latin

• Automated usage info collection

• UDFs in python
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Research Opportunities

• Cost based optimization – how does current RDBMS technology carry 
over to MR world?

• Memory Usage – given that data processing is very memory intensive 
and Java offers poor control of memory usage, how can Pig be written 
to use memory well?

• Automated Hadoop Tuning – Can Pig figure out how to configure 
Hadoop to best run a particular script?

• Indices, materialized views, etc. – How do these traditional RDBMS 
tools fit into the MR world?

• Human time queries – Analysts want access to the petabytes of data 
available via Hadoop, but they don’t want to wait hours for their jobs to 
finish; can Pig find a way to answer analysts question in under 60 
seconds?

• Map-Reduce-Reduce – Can MR be made more efficient for multiple 
MR jobs?

• How should Pig integrate with workflow systems?

• See more:  http://wiki.apache.org/pig/PigJournal
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Learn More

• Visit our website:  http://hadoop.apache.org/pig/

• On line tutorials

– From Yahoo, http://developer.yahoo.com/hadoop/tutorial/

– From Cloudera, http://www.cloudera.com/hadoop-training

• A couple of Hadoop books are available that include 
chapters on Pig, search at your favorite bookstore

• Join the mailing lists:

– pig-user@hadoop.apache.org for user questions

– pig-dev@hadoop.apache.com for developer issues

• Contribute your work, over 50 people have so far
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Pig Latin Mini-Tutorial

(will skip in class; please read in 
order to do homework 7)



Outline

Based entirely on Pig Latin: A not-so-
foreign language for data processing, 
by Olston, Reed, Srivastava, Kumar, 
and Tomkins, 2008

Quiz section tomorrow: in CSE 403
(this is CSE, don’t go to EE1)
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Pig-Latin Overview

• Data model = loosely typed nested 
relations

• Query model = a sql-like, dataflow 
language

• Execution model:

– Option 1: run locally on your machine

– Option 2: compile into sequence of 
map/reduce, run on a cluster supporting 
Hadoop

84



Example

• Input: a table of urls: 
(url, category, pagerank)

• Compute the average pagerank of all 
sufficiently high pageranks, for each 
category

• Return the answers only for categories 
with sufficiently many such pages

85



First in SQL…

86

SELECT category, AVG(pagerank)

FROM urls

WHERE pagerank > 0.2

GROUP By category

HAVING COUNT(*) > 106



…then in Pig-Latin

87

good_urls = FILTER urls BY pagerank > 0.2

groups = GROUP good_urls BY category

big_groups = FILTER groups 

BY COUNT(good_urls) > 106

output = FOREACH big_groups GENERATE

category, AVG(good_urls.pagerank)



Types in Pig-Latin

• Atomic: string or number, e.g. ‘Alice’ or 55

• Tuple: (‘Alice’, 55, ‘salesperson’)

• Bag: {(‘Alice’, 55, ‘salesperson’),
(‘Betty’,44, ‘manager’), …}

• Maps: we will try not to use these

88



Types in Pig-Latin

Bags can be nested !

• {(‘a’, {1,4,3}), (‘c’,{ }), (‘d’, {2,2,5,3,2})}

Tuple components can be referenced by 
number

• $0, $1, $2, …

89
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Loading data

• Input data = FILES !

– Heard that before ?

• The LOAD command parses an input 
file into a bag of records

• Both parser  (=“deserializer”) and output 
type are provided by user

91



Loading data

92

queries = LOAD ‘query_log.txt’

USING myLoad( )

AS (userID, queryString, timeStamp)



Loading data

• USING userfuction( )  -- is optional

– Default deserializer expects tab-delimited file

• AS type – is optional

– Default is a record with unnamed fields; refer to 
them as $0, $1, …

• The return value of LOAD is just a handle to a 
bag

– The actual reading is done in pull mode, or 
parallelized

93



FOREACH

94

expanded_queries = 

FOREACH queries

GENERATE userId, expandQuery(queryString)

expandQuery( ) is  a UDF that produces likely expansions
Note: it returns a bag, hence expanded_queries is a  nested bag



FOREACH

95

expanded_queries = 

FOREACH queries

GENERATE userId, 
flatten(expandQuery(queryString))

Now we get a flat collection
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FLATTEN

Note that it is NOT a first class function !

(that’s one thing I don’t like about Pig-latin)

• First class FLATTEN:

– FLATTEN({{2,3},{5},{},{4,5,6}}) = {2,3,5,4,5,6}

– Type: {{T}} � {T}

• Pig-latin FLATTEN

– FLATTEN({4,5,6}) = 4, 5, 6

– Type: {T} � T, T, T, …, T       ?????
97



FILTER

98

real_queries =  FILTER queries BY userId neq ‘bot’

Remove all queries from Web bots:

real_queries =  FILTER queries 
BY NOT isBot(userId)

Better: use a complex UDF to detect Web bots:



JOIN

99

join_result = JOIN results BY queryString
revenue BY queryString

results:       {(queryString, url, position)}
revenue:     {(queryString, adSlot, amount)}

join_result : {(queryString, url, position, adSlot, amount)}
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GROUP BY

101

grouped_revenue = GROUP revenue BY queryString

query_revenues =

FOREACH grouped_revenue

GENERATE queryString,

SUM(revenue.amount) AS totalRevenue

revenue:     {(queryString, adSlot, amount)}

grouped_revenue: {(queryString, {(adSlot, amount)})}
query_revenues: {(queryString, totalRevenue)}



Simple Map-Reduce

102

map_result = FOREACH input 

GENERATE FLATTEN(map(*))

key_groups = GROUP map_result BY $0

output = FOREACH key_groups
GENERATE reduce($1)

input  : {(field1, field2, field3, . . . .)}

map_result :  {(a1, a2, a3, . . .)}
key_groups : {(a1, {(a2, a3, . . .)})}



Co-Group

103

grouped_data = 
COGROUP results BY queryString,

revenue BY queryString;

results: {(queryString, url, position)}
revenue: {(queryString, adSlot, amount)}

grouped_data: {(queryString, results:{(url, position)}, 
revenue:{(adSlot, amount)})}

What is the output type in general ?



Co-Group

104
Is this an inner join, or an outer join ?



Co-Group

105

url_revenues = FOREACH grouped_data
GENERATE

FLATTEN(distributeRevenue(results, revenue));

grouped_data: {(queryString, results:{(url, position)}, 
revenue:{(adSlot, amount)})}

distributeRevenue is a UDF that accepts search re-
sults and revenue information for a query string at a time,
and outputs a bag of urls and the revenue attributed to them.



Co-Group v.s. Join

106

grouped_data = COGROUP results BY queryString,
revenue BY queryString;

join_result = FOREACH grouped_data
GENERATE FLATTEN(results), 

FLATTEN(revenue);

grouped_data: {(queryString, results:{(url, position)}, 
revenue:{(adSlot, amount)})}

Result is the same as JOIN



Asking for Output: STORE

107

STORE query_revenues INTO `myoutput'
USING myStore();

Meaning: write query_revenues to the file ‘myoutput’



Implementation

• Over Hadoop !

• Parse query:

– Everything between LOAD and STORE �
one logical plan

• Logical plan � sequence of 
Map/Reduce ops

• All statements between two 
(CO)GROUPs � one Map/Reduce op

108



Implementation

109



Bloom Filters

Dan Suciu -- CSEP544 Fall 2010        110

We *WILL* discuss in class !



Lecture on Bloom Filters

Not described in the textbook !

Lecture based in part on:

• Broder, Andrei; Mitzenmacher, Michael 
(2005), "Network Applications of Bloom 
Filters: A Survey", Internet Mathematics 1 (4): 
485–509

• Bloom, Burton H. (1970), "Space/time trade-
offs in hash coding with allowable errors", 
Communications of the ACM 13 (7): 422–42

111Dan Suciu -- CSEP544 Fall 2010        



Pig Latin Example Continued

112

Users(name, age)
Pages(user, url)

SELECT Pages.url, count(*) as cnt
FROM Users, Pages
WHERE Users.age in [18..25]

and Users.name = Pages.user
GROUP BY Pages.url
ORDER DESC cnt

Dan Suciu -- CSEP544 Fall 2010        



Example

Problem: many Pages, but only a few 
visited by users with age 18..25

• Pig’s solution:

– MAP phase sends all pages to the 
reducers

• How can we reduce communication 
cost ?

113Dan Suciu -- CSEP544 Fall 2010        



Hash Maps

• Let S = {x1, x2, . . ., xn} be a set of 
elements

• Let m > n

• Hash function h : S � {1, 2, …, m}

114

S = {x1, x2, . . ., xn} 

1 2 m

0 0 1 0 1 1 0 0 1 1 0 0H=



Hash Map = Dictionary

The hash map acts like a dictionary

• Insert(x, H) = set bit h(x) to 1

– Collisions are possible

• Member(y, H) = check if bit h(y) is 1

– False positives are possible

• Delete(y, H) = not supported !

– Extensions possible, see later

115Dan Suciu -- CSEP544 Fall 2010        
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Example (cont’d)

• Map-Reduce task 1

– Map task: compute a hash map H of User names, where 
age in [18..25].  Several Map tasks in parallel.

– Reduce task: combine all hash maps using OR.  One 
single reducer suffices.

• Map-Reduce task 2

– Map tasks 1: map each User to the appropriate region

– Map tasks 2: map only Pages where user in H to 
appropriate region

– Reduce task: do the join
116

Why don’t we
lose any Pages?
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Analysis

• Let S = {x1, x2, . . ., xn}

• Let j = a specific bit in H (1 ≤ j ≤ m)

• What is the probability that j remains 0 after 
inserting all n elements from S into H ?

• Will compute in two steps

117Dan Suciu -- CSEP544 Fall 2010        



Analysis

• Recall |H| = m

• Let’s insert only xi into H

• What is the probability that bit j is 0 ?

118Dan Suciu -- CSEP544 Fall 2010        
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Analysis

• Recall |H| = m

• Let’s insert only xi into H

• What is the probability that bit j is 0 ?

• Answer: p = 1 – 1/m

119Dan Suciu -- CSEP544 Fall 2010        
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Analysis

• Recall |H| = m, S = {x1, x2, . . ., xn}

• Let’s insert all elements from S in H

• What is the probability that bit j remains 
0 ?
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Analysis

• Recall |H| = m, S = {x1, x2, . . ., xn}

• Let’s insert all elements from S in H

• What is the probability that bit j remains 
0 ?

• Answer: p = (1 – 1/m)n

121Dan Suciu -- CSEP544 Fall 2010        
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Probability of False Positives

• Take a random element y, and check 
member(y,H)

• What is the probability that it returns true ?

122Dan Suciu -- CSEP544 Fall 2010        
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Probability of False Positives

• Take a random element y, and check 
member(y,H)

• What is the probability that it returns true ?

• Answer: it is the probability that bit h(y) is 1, 
which is f = 1 – (1 – 1/m)n ≈ 1 – e-n/m
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Analysis: Example

• Example: m = 8n, then 

f ≈ 1 – e-n/m = 1-e-1/8 ≈ 0.11

• A 10% false positive rate is rather high…

• Bloom filters improve that (coming next)
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Bloom Filters

• Introduced by Burton Bloom in 1970

• Improve the false positive ratio

• Idea: use k independent hash functions
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Bloom Filter = Dictionary

• Insert(x, H) = set bits h1(x), . . ., hk(x) to 1

– Collisions between x and x’ are possible

• Member(y, H) = check if bits h1(y), . . ., hk(y) 
are 1

– False positives are possible

• Delete(z, H) = not supported !

– Extensions possible, see later
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Example Bloom Filter k=3

127

Insert(x,H)

Member(y,H)

y1 = is not in H (why ?);  y2 may be in H (why ?)



Choosing k

Two competing forces:

• If k = large

– Test more bits for member(y,H) � lower false 
positive rate

– More bits in H are 1 � higher false positive rate

• If k = small

– More bits in H are 0 � lower positive rate

– Test fewer bits for member(y,H) � higher rate
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Analysis

• Recall |H| = m,  #hash functions = k

• Let’s insert only xi into H

• What is the probability that bit j is 0 ?
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Analysis

• Recall |H| = m,  #hash functions = k

• Let’s insert only xi into H

• What is the probability that bit j is 0 ?

• Answer: p = (1 – 1/m)k
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Analysis

• Recall |H| = m, S = {x1, x2, . . ., xn}

• Let’s insert all elements from S in H

• What is the probability that bit j remains 
0 ?
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Analysis

• Recall |H| = m, S = {x1, x2, . . ., xn}

• Let’s insert all elements from S in H

• What is the probability that bit j remains 
0 ?

• Answer: p = (1 – 1/m)kn ≈ e-kn/m
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Probability of False Positives

• Take a random element y, and check 
member(y,H)

• What is the probability that it returns 
true ?
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Probability of False Positives

• Take a random element y, and check 
member(y,H)

• What is the probability that it returns 
true ?

• Answer: it is the probability that all k bits 
h1(y), …, hk(y) are 1, which is:

134
f = (1-p)k ≈ (1 – e-kn/m)k



Optimizing k

• For fixed m, n, choose k to minimize the 
false positive rate f

• Denote g = ln(f) = k ln(1 – e-kn/m)

• Goal: find k to minimize g

135
m /nk  = ln 2 × m /n



Bloom Filter Summary

Given n = |S|,  m = |H|, 
choose k  = ln 2 × m /n hash functions

136f = (1-p)k ≈ (½)k =(½)(ln 2)m/n ≈ (0.6185)m/n

p ≈ e-kn/m = ½Probability that some bit j is 1

Expected distribution m/2 bits 1, m/2 bits 0

Probability of false positive



Bloom Filter Summary

• In practice one sets m = cn, for some constant c

– Thus, we use c bits for each element in S

– Then f ≈  (0.6185)c = constant

• Example: m = 8n, then 

– k = 8(ln 2) = 5.545 (use 6 hash functions)

– f ≈ (0.6185)m/n = (0.6185)8 ≈ 0.02 (2% false positives)

– Compare to a hash table: f ≈ 1 – e-n/m = 1-e-1/8 ≈ 0.11
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Set Operations

Intersection and Union of Sets:

• Set S � Bloom filter H

• Set S’ � Bloom filter H’

• How do we computed the Bloom filter for 
the intersection of S and S’ ?
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Set Operations

Intersection and Union:

• Set S � Bloom filter H

• Set S’ � Bloom filter H’

• How do we computed the Bloom filter 
for the intersection of S and S’ ?

• Answer: bit-wise AND:  H ∧ H’
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Counting Bloom Filter

Goal: support delete(z, H)

Keep a counter for each bit j

• Insertion � increment counter

• Deletion � decrement counter

• Overflow � keep bit 1 forever

Using 4 bits per counter:

Probability of overflow ≤ 1.37 10-15
× m
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Application: Dictionaries

Bloom originally introduced this for 
hyphenation

• 90% of English words can be hyphenated 
using simple rules

• 10% require table lookup

• Use “bloom filter” to check if lookup 
needed
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Application: Distributed Caching

• Web proxies maintain a cache of (URL, 
page) pairs

• If a URL is not present in the cache, they 
would like to check the cache of other 
proxies in the network

• Transferring all URLs is expensive !

• Instead: compute Bloom filter, exchange 
periodically
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