Lecture 11: Provenance and Data privacy

December 8, 2010

Outline

- Database provenance
 - Slides based on Val Tannen's Keynote talk at EDBT 2010
- Data privacy
 - Slides from my UW colloquium talk in 2005

Data Provenance

provenance, n.

The fact of coming from some particular source or quarter origin, derivation [Oxford English Dictionary]

- •Data provenance [BunemanKhannaTan 01]: aims to explain how a particular result (in an experiment, simulation, query, workflow, etc.) was derived.
- •Most science today is **data-intensive**. Scientists, eg., biologists, astronomers, worry about data provenance all the time.

Provenance? Lineage? Pedigree?

- Cf. Peter Buneman:
 - Pedigree is for dogs
 - Lineage is for kings
 - Provenance is for art
- For data, let's be artistic (artsy?)

Database transformations?

Queries

Views

ETL tools

Schema mappings (as used in data exchange)

Outline

• What's with the semirings? Annotation propagation [GK&T PODS 07, GKI&T VLDB 07]

Housekeeping in the zoo of provenance models

Propagating annotations through database operations

Another way to propagate annotations

Another use of +

An example in positive relational algebra (SPJU)

For selection we multiply with two special annotations, 0 and 1

A space of annotations, *K*

A space of annotations, *K*

K-relations: every tuple annotated with some element from *K*.

A space of annotations, *K*

K-relations: every tuple annotated with some element from *K*.

Binary operations on K: corresponds to joint use (join), and + corresponds to alternative use (union and projection).

A space of annotations, K

K-relations: every tuple annotated with some element from *K*.

Binary operations on K: corresponds to joint use (join), and + corresponds to alternative use (union and projection).

We assume *K* contains special annotations 0 and 1.

A space of annotations, K

K-relations: every tuple annotated with some element from *K*.

Binary operations on K: corresponds to joint use (join), and + corresponds to alternative use (union and projection).

We assume *K* contains special annotations 0 and 1.

"Absent" tuples are annotated with 0!

A space of annotations, *K*

K-relations: every tuple annotated with some element from K.

Binary operations on K: corresponds to joint use (join), and + corresponds to alternative use (union and projection).

We assume K contains special annotations 0 and 1.

"Absent" tuples are annotated with 0!

1 is a "neutral" annotation (no restrictions).

A space of annotations, *K*

K-relations: every tuple annotated with some element from K.

Binary operations on K: corresponds to joint use (join), and + corresponds to alternative use (union and projection).

We assume K contains special annotations 0 and 1.

"Absent" tuples are annotated with 0!

1 is a "neutral" annotation (no restrictions).

Algebra of annotations? What are the **laws** of $(K, +, \cdot, 0, 1)$?

Annotated relational algebra

- DBMS query optimizers assume certain equivalences:
 - union is associative, commutative
 - join is associative, commutative, distributes over union
 - projections and selections commute with each other and with union and join (when applicable)
 - Etc., but no $R \bowtie R = R \cup R = R$ (i.e., no idempotence, to allow for bag semantics)
- Equivalent queries should produce same annotations!

Annotated relational algebra

- DBMS query optimizers assume certain equivalences:
 - union is associative, commutative
 - join is associative, commutative, distributes over union
 - projections and selections commute with each other and with union and join (when applicable)
 - Etc., but no $R \bowtie R = R \cup R = R$ (i.e., no idempotence, to allow for bag semantics)
- Equivalent queries should produce same annotations!

Proposition. Above identities hold for queries on K-relations iff $(K, +, \cdot, 0, 1)$ is a **commutative semiring**

Annotated relational algebra

- DBMS query optimizers assume certain equivalences:
 - union is associative, commutative
 - join is associative, commutative, distributes over union
 - projections and selections commute with each other and with union and join (when applicable)
 - Etc., but no $R \bowtie R = R \cup R = R$ (i.e., no idempotence, to allow for bag semantics)
- Equivalent queries should produce same annotations!
 - Hence, for each commutative semiring K we have a K-annotated relational algebra.

What is a commutative semiring?

An algebraic structure $(K, +, \cdot, 0, 1)$ where:

- K is the domain
- + is associative, commutative, with 0 identity
- is associative, with 1 identity
- distributes over +
- \circ $a \cdot 0 = 0 \cdot a = 0$

is also commutative

Unlike ring, no requirement for inverses to +

semiring

Back to the example

A C

a c
$$(p \cdot p + p \cdot p) \cdot 0$$

a e $p \cdot r \cdot 1$

d c $r \cdot p \cdot 0$

d e $(r \cdot r + r \cdot s + r \cdot r) \cdot 1$

f e $(s \cdot s + s \cdot r + s \cdot s) \cdot 1$

Using the laws: polynomials

Polynomials with coefficients in **N** and annotation tokens as indeterminates *p*, *r*, *s* capture a very general form of **provenance**

Provenance reading of the polynomials

- three different ways to derive **d e**
- two of the ways use only r
- but they use it twice
- the third way uses r once and s once

We used this in **Orchestra** [VLDB07] for update propagation

We used this in **Orchestra** [VLDB07] for update propagation

Delete d b e from R?

We used this in **Orchestra** [VLDB07] for update propagation

Delete d b e from R?

Set
$$r = 0!$$

We used this in **Orchestra** [VLDB07] for update propagation

Delete d b e from R?

Set r = 0!

We used this in **Orchestra** [VLDB07] for update propagation

Delete d b e from R?

Set r = 0!

But are there useful commutative semirings?

(B, ∧, ∨, ⊤, ⊥)	Set semantics
$(\mathbb{N}, +, \cdot, 0, 1)$	Bag semantics
$(P(\Omega), \cup, \cap, \varnothing, \Omega)$	Probabilistic events [FuhrRölleke 97]
(BoolExp(X), Λ , \vee , \top , \bot)	Conditional tables (<i>c</i> -tables) [ImielinskiLipski 84]
$(R_{+}^{\infty}, \min, +, 1, 0)$	Tropical semiring (cost/distrust score/confidence need)
(A, min, max, 0, P) where $A = P < C < S < T < 0$	Access control levels [PODS8]

But are there useful commutative semirings?

(B, ∧, ∨, ⊤, ⊥)	Set semantics
$(\mathbb{N}, +, \cdot, 0, 1)$	Bag semantics
$(P(\Omega), \cup, \cap, \varnothing, \Omega)$	Probabilistic events [FuhrRölleke 97]
(BoolExp(X), Λ , \vee , \top , \bot)	Conditional tables (<i>c</i> -tables) [ImielinskiLipski 84]
$(R_{+}^{\infty}, \min, +, 1, 0)$	Tropical semiring (cost/distrust score/confidence need)
(A, min, max, 0, P) where $A = P < C < S < T < 0$	Access control levels [PODS8]

But are there useful commutative semirings?

(B, ∧, ∨, [⊤] , ⊥)	Set semantics
$(\mathbb{N}, +, \cdot, 0, 1)$	Bag semantics
$(P(\Omega), \cup, \cap, \varnothing, \Omega)$	Probabilistic events [FuhrRölleke 97]
(BoolExp(X), Λ , \vee , \neg , \bot)	Conditional tables (<i>c</i> -tables) [ImielinskiLipski 84]
$(R_+^{\infty}, \min, +, 1, 0)$ top secret	Tropical semiring (cost/distrust score/confidence need)
(A, min, max, 0, P) where $A = P < C < S < T < 0$	Access control levels [PODS8]

public

Outline

- What's with the semirings? Annotation propagation
- Housekeeping in the zoo of provenance models [GK&T PODS 07, FG&T PODS 08, Green ICDT 09]

Semirings for various models of provenance (1)

Lineage [CuiWidomWiener 00 etc.]

Sets of contributing tuples

Semiring: (Lin(X), \cup , \cup^* , \varnothing , \varnothing^*)

Semirings for various models of provenance (2)

(Witness, Proof) why-provenance

[BunemanKhannaTan 01] & [Buneman+ PODS08]

Sets of witnesses (w. =set of contributing tuples)

Semiring: (Why(X), \cup , \cup , \varnothing , { \varnothing })

Semirings for various models of provenance (3)

Minimal witness why-provenance [BunemanKhannaTan 01]

Sets of minimal witnesses

Semiring: (PosBool(X), \land , \lor , \lnot , \bot)

Semirings for various models of provenance (4)

Trio lineage [Das Sarma+ 08]

Bags of sets of contributing tuples (of witnesses)

Semiring: (Trio(X), +, ·, 0, 1) (defined in [Green, ICDT 09])

Semirings for various models of provenance (5)

Polynomials with boolean coefficients [Green, ICDT 09] (B[X]-provenance)

Sets of bags of contributing tuples

Semiring: $(B[X], +, \cdot, 0, 1)$

Semirings for various models of provenance (6)

Provenance polynomials [GKT, PODS 07] (N[X]-provenance)

Bags of bags of contributing tuples

Semiring: $(N[X], +, \cdot, 0, 1)$

A provenance hierarchy

One semiring to rule them all... (apologies!)

A path downward from K_1 to K_2 indicates that there exists an **onto** (surjective) semiring homomorphism $h: K_1 \rightarrow K_2$

Using homomorphisms to relate models

Homomorphism?

$$h(x+y) = h(x)+h(y)$$
 $h(xy)=h(x)h(y)$ $h(0)=0$ $h(1)=1$
Moreover, for these homomorphisms $h(x)=x$

Containment and Equivalence [Green ICDT 09]

Arrow from K_1 to K_2 indicates K_1 containment (equivalence) implies K_2 cont. (equiv.)

All implications not marked ←→ are strict

Data Security

• Based on my colloquium talk from 2005

Data Security

Dorothy Denning, 1982:

 Data Security is the science and study of methods of protecting data (...) from unauthorized disclosure and modification

Data Security = <u>Confidentiality</u> + <u>Integrity</u>

Data Security

- Distinct from <u>systems</u> and <u>network</u> security
 - Assumes these are already secure
- Tools:
 - Cryptography, information theory, statistics, ...
- Applications:
 - An <u>enabling</u> technology

Outline

An attack

Data security research today

- In Massachusetts, the Group Insurance Commission (GIC) is responsible for purchasing health insurance for state employees
- GIC has to publish the data:

GIC(zip, dob, sex, diagnosis, procedure, ...)

This is private! Right?

 Sweeney paid \$20 and bought the voter registration list for Cambridge Massachusetts:

VOTER(name, party, ..., zip, dob, sex)

GIC(zip, dob, sex, diagnosis, procedure, ...)

This is private! Right?

zip, dob, sex

- William Weld (former governor) lives in Cambridge, hence is in VOTER
- 6 people in VOTER share his dob
- only 3 of them were man (same sex)
- Weld was the only one in that zip
- Sweeney learned Weld's medical records!

All systems worked as specified, yet an important data has leaked

How do we protect against that ?

Some of today's research in data security address breaches that happen even if all systems work correctly

Today's Approaches

- K-anonymity
 - Useful, but not really private
- Differential privacy
 - Private, but not really useful

k-Anonymity

<u>Definition</u>: each tuple is equal to at least k-1 others

Anonymizing: through suppression and generalization

First	Last	Age	Race
Harry	Stone	34	Afr-Am
John	Reyser	36	Cauc
Beatrice	Stone	47	Afr-am
John	Ramos	22	Hisp

Hard: NP-complete for supression only Approximations exists

k-Anonymity

<u>Definition</u>: each tuple is equal to at least k-1 others

Anonymizing: through suppression and generalization

First	Last	Age	Race
*	Stone	30-50	Afr-Am
John	R*	20-40	*
*	Stone	30-50	Afr-am
John	R*	20-40	*

Hard: NP-complete for supression only Approximations exists

[Dwork'05]

Differential Privacy

• A randomized algorithm A is differentially private if by removing/inserting one tuple in the database, the output of A is "almost the same", i.e. every possible outcome for A has almost the same probability

Differential Privacy

- How can we achieve that ? Add some random noise to the result of A
- For example:
 - Query: select count(*) from R where blah
 - Add some random noise (Laplacian distribution: e^{-x/x0})
- Problem: can only ask a limited number of queries
 - Must keep track of the queries answered, then deny
 - Cannot release "the entire data"

Privacy

 All these techniques address confidentiality, but they are often claim privacy

- Privacy is more complex:
 - "Is the right of individuals to determine for themselves when, how and to what extent information about them is communificatived' (23) others"

Take Home Lessons

- Data management does not stop at normal forms and query optimization
- Our field (Computer Science) is becoming datacentric. Dominated by massive amounts of data.
- This affects businesses, science, society
- Watch the data management & data mining fields for excitement future innovations