CSE 594

University of Washington

Summer 1998

Homework 6

See the web page for some homework guidelines and policies.

NOTE: This assignment is due at the beginning of class on the last class day. No late submissions will be accepted.

This assignment involves use of the O2 OODBMS (now a product of Ardent Software). We will do this assignment in pairs in the PML (Sieg Hall 231). If there is an odd number of people present, there will be one group of three people. As you work through this, remember that if you are typing you should try to keep your partner(s) informed about what’s going on. Similarly, if you’re not in control of the mouse or keyboard, don’t be afraid to ask (e.g., “What the heck are you doing?” works pretty well).

When you are finished you should hand in one copy with both partners’ names on it. I don’t care with whom you work, but you must work with someone. If you have problems or questions while working through these exercises, please let me know by raising your hand or calling my name.

What to turn in: When asked to make a printout, do so. When asked other questions, answer them on a piece of paper. When done with the entire homework, staple your answers together in the order they were asked and turn it in (with all names on the first sheet). I’ve boldfaced key words whenever you are asked something that requires an answer to be printed or written.

1. Login: Each of you has an account on the machine “athena.cs.siena.edu”. Connect to this machine using the Xwin32 program. (If you like, you can connect via orcas by first logging into orcas using Xwin32 then telnetting from there to athena.) If the machine you are using doesn’t have an Xwin session option for either orcas or athena, use “Xutil” to create a new session. This session should use “rexec” to connect, and the command should be “xterm -ls -display $MYIP:0”. Your account name is your last name (or the first eight letters of it if it’s longer than that). Your initial password is “cse594”. You should change that soon. For this exercise, use just one person’s account. You can always save things and email them around later if you want to. These accounts will be available until the end of August (roughly). The accounts use “tcsh” so you can use the arrow keys to scroll through command histories, do file name completion, etc. Whoopee.

2. Start up O2: Once logged in, you start up O2 by using the command “o2 -system <system name> -toolsgraphic &”, where <system name> should be replaced by your account name. Each of you has your own O2 “system” so we won’t have any concurrency control issues. Also, note the lower-case “o” in the “o2” command. Say “Yes” to any windows that may appear asking if you want to accept the connections. Be patient while O2 starts up.
3. Creating a database in O2: In O2, the logical database description is called the “Schema”, and each schema can have many physical DBs associated with it. Normally there is just one, and that is what will use. The general procedure is as follows (it is basically what’s outlined in the CD-ROM tutorial that comes with the book; feel free to examine that concurrently with this, but it’s not necessary):
i. Create a schema (via the “Schemas” button’s “Schemas” menu). Call it whatever you like.

ii. Create the classes. Close the Schema Browser window and notice that your new schema is the current one displayed in the O2Tools window. Use the “Classes” button to open the Class Browser. Create a class. For our purposes, make the class definition “public” (not “private”, as is the default) by checking the proper box. Type in the structural (type) definition for the class (e.g. “tuple (x: integer, y: string)”) and compile the class (from the “Class” menu of the “Class Editor” window). Close the Class Editor window and then create your next class.
iii. When you have created all your classes, confirm all the classes using the “Classes” menu of the “Class Browser” window.
iv. Close the Class Browser window and use the “Schemas” button to create a new base (a physical place to hold data conforming to your new schema. Close the schema browser. You are now ready to populate your DB. You do this by specifying top-level named objects that will be the roots of persistence in this DB.
v. Go to the Names button and create a top-level named object. As an example for the name’s type, you could use “set (foo)” if you have a class named “foo”. Compile the name.
vi. To put data into this object, select the new named object in the Names Browser and from the Names menu select “Display”. This function invokes a graphical data browser that also allows us to update the object in certain ways.
vii. You will see a window with a pencil, an eraser, and three empty boxes. Clicking the right mouse button on one of these empty boxes makes the “new” method available. Create a new object in this set now. The object now exists but it contains no data. Click the right mouse button on the object and use the “edit” method to enter some data into the object in place of the default values. Use the “pencil” button to save your changes to the new object and then again to save the changes to the named top-level object.
viii. Use the “Commit” button to make your changes permanent. Your data is now available for access from the browser, from OQL (which we’ll see next week), and from O2C and other host languages (which we’ll also see next week).
ix. Celebrate. You’ve just created an OODB!
4. Creating a REAL database in O2: OK, that was fun, but let’s exercise some of the more entertaining OODB features now. Create an O2 database that will hold information about pieces of music and their composers. There is a many-many relationship between these two entities (in E/R terminology). Each piece of music has a title, and a sequence of notes. Each notes has a pitch, duration, and volume (these can all be integers), as well as a (possibly empty) unique set of ornamentations (accent, staccato, grace note, etc. – use “string” as the type for this field). Each composer has a name and an age.

i. Printout your class definitions. To do this: from the Classes menu of the Class Browser, choose the “Save All” option. In the “selection” window, append the file name you want to the name of your home directory (which is already in the window). Print that file. (To do so, you’ll want to get it to a UW machine so you can print it to “ps231”, for example. Otherwise, you’ll have to go to New York to get the printout.)

ii. On a separate sheet, propose two additional ways of modeling the piece-composer relationship. What are the pros and cons of your scheme vs. the other two?
iii. Again on a separate sheet, design a relational schema to model this data. Include primary and foreign key information and domains.
iv. Based on your answers above, what are some advantages to designing an OO schema when compared to designing a relational schema?
v. If you have not already done so, create one or more named objects so there is actually somewhere for data to go. What are the names and types of your named objects? Propose at least one alternative collection of named, top-level objects and list its pros and cons when compared to yours.
vi. Populate your named object(s) with a minimal amount of data. Use the browser to achieve this. When you have a little bit of data in there, let me know so I can take a look.
5. Subclasses: To illustrate some other important OODBMS concepts, we’ll create another database (therefore another schema and base) in O2. This database models information about naval warships. Each warship has a name (string) and a displacement (an integer, the number of tons). In addition, there are the following special kinds of warships that have some other information:

a. Gunships are ships that carry large guns, such as battleships or cruisers. For these ships, we wish to record the number of guns and the size of those guns (assume they are all the same size).

b. Carriers hold aircraft. For these we wish to record the length of the flight deck and the set of warships that escort the carrier when it sails.
c. Submarines, for which we want to record the maximum safe depth. You may assume no gunship or carrier is a submarine.
d. Battlecarriers are both gunships and carriers, and have all the information associated with either.

SEE NEXT PAGE FOR SOME HINTS!!!

i. Create the classes for the above. Don’t forget to make classes public, compile them, and confirm them all when done. To create a class Y as a subclass of some other class X, you must first create X. Then, with the superclass selected in the Class Browser, simply create a new class. It will be a subclass of the selected class and will inherit all its attributes, methods, etc. If the type structure of the class is “tuple” (which these all should be), you need only specify the new attributes in the subclass definition. For example, if X has attributes A and B, and Y also has the attribute C, the type definition for Y is: “tuple (C: integer)”. A and B will be placed there automatically. Finally, when a class needs to have more than once superclass, first create it as a subclass of one of the superclasses then connect it to its other superclasses using the “create inherits” item of the “classes” menu.

ii. Create five named, top-level objects, each of which will hold a set of objects of one of the classes you have defined. Don’t forget to compile each name.
iii. Using the browser, enter complete information for at least one ship into each of your five names objects. For now, leave the “escorts” field of all Carriers uninitialized. When you have your objects populated, let me know so I can take a look.
iv. Print your class definitions.
v. Print your name definitions (there is a “save all” names option in the Name Browser).
vi. Why do you suppose I let you leave the “escorts” fields at their default values?
6. Object sharing and extents: Well, that was all very wonderful, but suppose that I want to maintain extents for every one of those five classes of warship. Suppose that I want the named objects I created in Part (5) above to be those extents. For example, the named object containing Carrier objects should contain (an OID for) every Carrier (and thus for every Battlecarrier as well). The named object containing simple warships should contain references to every ship in my database, whether it be a Submarine, Carrier, Gunship, Battlecarrier, or none of the above, etc. How do I make this happen automatically? I must write an “init” method for each of the five classes. I’ll walk you through the software to create an init method for Gunships and then you’ll do the rest. “Init” is a method that gets invoked whenever an object is created, similar to a C++ constructor. Note that to do this, you’ll be making changes to the schema. In O2, you can only modify a schema when it’s not connected to any of your bases. To “disconnect” the schema from the base, go to the Schema Browser, and choose “Set” from the “Schemas” menu.

i. To ensure that every Gunship goes into the Gunships and Warships extents (or whatever you called them), go to the Class Browser, select the class for which you want to define the method, and choose “Create” from the “Methods” menu. Call the method “init”. Make its visibility public and leave its signature blank. In the “body” section, we want to add two statements, one to place the newly-created object into each of the Gunships and Warships extents. Since these two extents are named, top-level DB objects, they are available to your code here. The following statement will add the newly-created object to the Gunships extent:

Gunships = Gunships + unique set (self);

The “+” is set union. “self” is a built-in keyword referring to the newly-created object. The “unique set” syntax creates a set containing exactly one object: self. This allows the union to take place, and it assumes you created the extents as “unique set”s rather than “set”s. A shorthand for the above statement is:

Gunships += unique set (self);

 Complete the Gunship::init method and compile it.

ii. Do the same for the other four classes and their extents.

iii. Print the code for the Battlecarrier::init method (the “Method Editor” window’s “Method” menu has a “Save” option).

iv. Using the data browser, add a new Battlecarrier. How many references to this object now exist in the database? How many copies of the actual data for that object exist?
v. Now suppose we want to be able to delete a warship from the database. We could write a method called “nuke” (for example) to do this. Assuming we had such a method (we’ll see how to write one next week), what happens to the space on disk used by a warship after all references to it have been removed? Where does such a method need to look in order to ensure that all references to the warship have been removed from the database (be specific)?
