
1

11/3/01

1. Introduction
CSE 593 Transaction Processing

Philip A. Bernstein

21/3/01

Outline

1. The Basics
2. ACID Properties
3. Atomicity and Two-Phase Commit
4. Availability
5. Performance
6. Styles of System

31/3/01

1.1 The Basics - What’s a Transaction?

• The execution of a program that performs an
administrative function by accessing a shared
database, usually on behalf of an on-line user.

Examples
• Reserve an airline seat. Buy an airline ticket

• Withdraw money from an ATM.

• Verify a credit card sale.

• Order an item from an Internet retailer

• Download a video clip and pay for it

• Play a bid at an on-line auction
41/3/01

The “ities” are What Makes
Transaction Processing (TP) Hard
• Reliability - system should rarely fail

• Availability - system must be up all the time

• Response time - within 1-2 seconds

• Throughput - thousands of transactions/second

• Scalability - start small, ramp up to Internet-scale

• Security – for confidentiality and high finance

• Configurability - for above requirements + low cost

• Atomicity - no partial results

• Durability - a transaction is a legal contract

• Distribution - of users and data

51/3/01

What Makes TP Important?

• It’s at the core of electronic commerce

• Most medium-to-large businesses use TP for
their production systems. The business can’t
operate without it.

• It’s a huge slice of the computer system
market — over $50B/year. Probably the
single largest application of computers.

61/3/01

TP System Infrastructure
• User’s viewpoint

– Enter a request from a browser or other display device
– The system performs some application-specific work,

which includes database accesses
– Receive a reply (usually, but not always)

• The TP system ensures that each transaction
– is an independent unit of work
– executes exactly once, and
– produces permanent results.

• TP system makes it easy to program transactions
• TP system has tools to make it easy to manage

2

71/3/01

TP System Infrastructure …
Defines System and Application Structure

Presentation Manager

Workflow Control
(routes requests)

Database System

Front-End
(Client)

Back-End
(Server)

End-User

Transaction Program

requests

81/3/01

System Characteristics
• Typically < 100 transaction types per application
• Transaction size has high variance. Typically,

– 0-30 disk accesses
– 10K - 1M instructions executed
– 2-20 messages

• A large-scale example: airline reservations
– 150,000 active display devices
– plus indirect access via Internet travel agents
– thousands of disk drives
– 3000 transactions per second, peak

91/3/01

Application Servers
• A software product to create, execute and manage TP

applications

• Formerly called TP monitors. Some people say
App Server = TP monitor + web functionality.

• Programmer writes an app. to process a single request.
App Server scales it up to a large, distributed system
– E.g. application developer writes programs to debit a checking

account and verify a credit card purchase.

– App Server helps system engineer deploy it to 10s/100s of
servers and 10Ks of displays

– App Server helps system engineer deploy it on the Internet,
accessible from web browsers

101/3/01

Application Servers (cont’d)

• Components include
– an application programming interface (API)

(e.g., Enterprise Java Beans)

– tools for program development

– tools for system management (app deployment,
fault & performance monitoring, user mgmt, etc.)

111/3/01

Presentation Server

Workflow Controller

Transaction Server Transaction Server

Network

Requests

Message
Inputs

App Server Architecture, pre-Web
• Boxes below are distributed on an intranet

Queues

121/3/01

Automated Teller Machine
(ATM) Application Example

Workflow
Controller

CIRRUS
Accounts

Credit Card
Accounts

Loan
Accounts

Workflow
Controller

ATM ATM ATM ATMATM ATM ATM ATM

Bank Branch 1 Bank Branch 2 Bank Branch 500

Checking
Accounts

3

131/3/01

Web Server

Workflow Controller

Transaction Server Transaction Server

intranet

Requests

Message
Inputs

Application Server Architecture

Queues

Web Browser
http http

other TP
systems

141/3/01

Internet Retailer

Workflow
Controller

Music Computers

Web
Server

Electronics

The
Internet

Toys … …

151/3/01

System Software Vendor’s View
• TP is partly a component product problem

– Hardware
– Operating system
– Database system
– Application Server

• TP is partly a system engineering problem
– Getting all those components to work together

to produce a system with all those “ilities”.

• This course focuses primarily on
Database System and Application Server

161/3/01

Outline

�1. The Basics
 2. ACID Properties
 3. Atomicity and Two-Phase Commit
 4. Availability
 5. Performance
 6. Styles of System

171/3/01

1.2 The ACID Properties

• Transactions have 4 main properties
– Atomicity - all or nothing

– Consistency - preserve database integrity

– Isolation - execute as if they were run alone

– Durability - results aren’t lost by a failure

181/3/01

Atomicity
• All-or-nothing, no partial results.

– E.g. in a money transfer, debit one account, credit the
other. Either debit and credit both run, or neither runs.

– Successful completion is called Commit.

– Transaction failure is called Abort.

• Commit and abort are irrevocable actions.

• An Abort undoes operations that already executed
– For database operations, restore the data’s previous value

from before the transaction

– But some real world operations are not undoable.
Examples - transfer money, print ticket, fire missile

4

191/3/01

Example - ATM Dispenses Money
(a non-undoable operation)

T1: Start
. . .

 Commit
Dispense Money

T1: Start
. . .

 Dispense Money
 Commit

System crashes

Deferred operation
never gets executed

System crashes
Transaction aborts
Money is dispensed

201/3/01

Reading Uncommitted Output Isn’t
Undoable

T1: Start
. . .
Display output

 . . .
If error, Abort

T2: Start
Get input from display
. . .
Commit

User reads output
…
User enters input

Brain
transport

211/3/01

Compensating Transactions
• A transaction that reverses the effect of another

transaction (that committed). For example,
– “Adjustment” in a financial system

– Annul a marriage

• Not all transactions have complete compensations
– E.g. Certain money transfers (cf. “The Firm”)

– E.g. Fire missile, cancel contract

– Contract law has a lot to say about appropriate
compensations

� A well-designed TP application should have a
compensation for every transaction type

221/3/01

Consistency
� Every transaction should maintain DB consistency

– Referential integrity - E.g. each order references an
existing customer number and existing part numbers

– The books balance (debits = credits, assets = liabilities)

� Consistency preservation is a property of a
transaction, not of the TP system
(unlike the A, I, and D of ACID)

• If each transaction maintains consistency,
then serial executions of transactions do too.

231/3/01

Some Notation

• ri[x] = Read(x) by transaction Ti

• wi[x] = Write(x) by transaction Ti

• ci = Commit by transaction Ti

• ai = Abort by transaction Ti

• A history is a sequence of such operations,
in the order that the database system
processed them.

241/3/01

Consistency Preservation Example
T1: Start;
 A = Read(x);
 A = A - 1;
 Write(y, A);
 Commit;

T2: Start;
 B = Read(x);
 C = Read(y);
 If (B > C+1) then B = B - 1;
 Write(x, B);
 Commit;

• Consistency predicate is x > y.

• Serial executions preserve consistency.
Interleaved executions may not.

• H = r1[x] r2[x] r2[y] w2[x] w1[y]
– e.g. try it with x=4 and y=2 initially

5

251/3/01

Isolation
• Intuitively, the effect of a set of transactions

should be the same as if they ran independently

• Formally, an interleaved execution of
transactions is serializable if its effect is
equivalent to a serial one.

• Implies a user view where the system runs each
user’s transaction stand-alone.

• Of course, transactions in fact run with lots of
concurrency, to use device parallelism.

261/3/01

A Serializability Example
T1: Start;
 A = Read(x);
 A = A + 1;
 Write(x, A);
 Commit;

T2: Start;
 B = Read(x);
 B = B + 1;
 Write(y, B);
 Commit;

• H = r1[x] r2[x] w1[x] c1 w2[y] c2

• H is equivalent to executing T2 followed by T1

• Note, H is not equivalent to T1 followed by T2

• Also, note that T1 started before T2 and finished
before T2, yet the effect is that T2 ran first.

271/3/01

Serializability Examples (cont’d)

• Client must control the relative order of transactions,
using handshakes
(wait for T1to commit before submitting T2).

• Some more serializable executions:
r1[x] r2[y] w2[y] w1[x] ≡ T1 T2 ≡ T2 T1

r1[y] r2[y] w2[y] w1[x] ≡ T1 T2 ≡ T2 T1

r1[x] r2[y] w2[y] w1[y] ≡ T2 T1 ≡ T1 T2

• Serializability says the execution is equivalent to
some serial order, not necessarily to all serial orders

281/3/01

Non-Serializable Examples
• r1[x] r2[x] w2[x] w1[x] (race condition)

– e.g. T1 and T2 are each adding 100 to x

• r1[x] r2[y] w2[x] w1[y]
– e.g. each transaction is trying to make x = y,

but the interleaved effect is a swap

• r1[x] r1[y] w1[x] r2[x] r2[y] c2 w1[y] c1
(inconsistent retrieval)
– e.g. T1 is moving $100 from x to y.
– T2 sees only half of the result of T1

• Compare to the OS view of synchronization

291/3/01

Durability
• When a transaction commits, its results will

survive failures (e.g. of the application, OS,
DB system … even of the disk).

• Makes it possible for a transaction to be a legal
contract.

• Implementation is usually via a log
– DB system writes all transaction updates to its log

– to commit, it adds a record “commit(Ti)” to the log

– when the commit record is on disk, the transaction is
committed.

– system waits for disk ack before acking to user
301/3/01

Outline

�1. The Basics
�2. ACID Properties
 3. Atomicity and Two-Phase Commit
 4. Availability
 5. Performance
 6. Styles of System

6

311/3/01

1.3 Atomicity and Two-Phase Commit
• Distributed systems make atomicity harder
• Suppose a transaction updates data managed by

two DB systems.
• One DB system could commit the transaction,

but a failure could prevent the other system from
committing.

• The solution is the two-phase commit protocol.
• Abstract “DB system” by resource manager

(could be a SQL DBMS, message mgr, queue
mgr, OO DBMS, etc.)

321/3/01

Two-Phase Commit
• Main idea - all resource managers (RMs) save a

durable copy of the transaction’s updates before
any of them commit.

• If one RM fails after another commits, the failed
RM can still commit after it recovers.

• The protocol to commit transaction T
– Phase 1 - T’s coordinator asks all participant RMs to

“prepare the transaction”. Participant RMs replies
“prepared” after T’s updates are durable.

– Phase 2 - After receiving “prepared” from all
participant RMs, the coordinator tells all participant
RMs to commit.

331/3/01

Two-Phase Commit
System Architecture

Resource
Manager

Transaction
Manager (TM)

Application Program

Other
Transaction
Managers

1. Start transaction returns a unique transaction identifier
2. Resource accesses include the transaction identifier.
 For each transaction, RM registers with TM
3. When application asks TM to commit, the TM runs
 two-phase commit.

Start
Commit, Abort

Read,
Write

341/3/01

Outline

�1. The Basics
�2. ACID Properties
�3. Atomicity and Two-Phase Commit
 4. Availability
 5. Performance
 6. Styles of System

351/3/01

1.4 Availability
• Fraction of time system is able to do useful work

• Some systems are very sensitive to downtime
– airline reservation, stock exchange, telephone switching
– downtime is front page news

• Contributing factors
– failures due to environment, system mgmt, h/w, s/w
– recovery time

Downtime Availability
1 hour/day 95.8%
1 hour/week 99.41%
1 hour/month 99.86%
1 hour/year 99.9886%
1 hour/20years 99.99942%

361/3/01

1.5 Performance Requirements
• Measured in max transaction per second (tps) or

per minute (tpm), and dollars per tps or tpm.
• Dollars measured by list purchase price plus 5 year

vendor maintenance (“cost of ownership”)
• Workload has this profile:

– 10% application server plus application
– 30% communications system (not counting presentation)
– 50% DB system

• TP Performance Council (TPC) sets standards
– http://www.tpc.org.

• TPC A & B (‘89-’95), now TPC C &W

7

371/3/01

TPC-A/B — Bank Tellers

Start
 Read message from terminal (100 bytes)
 Read+write account record (random access)
 Write history record (sequential access)
 Read+write teller record (random access)
 Read+write branch record (random access)
 Write message to terminal (200 bytes)
Commit

• End of history and branch records are bottlenecks

• Obsolete (a retired standard), but interesting
• Input is 100 byte message requesting deposit/withdrawal
• Database tables = {Accounts, Tellers, Branches, History}

381/3/01

The TPC-C Order-Entry Benchmark

• TPC-C uses heavier weight transactions

Table Rows/Whse Bytes/row

Warehouse 1 89

District 10 95
Customer 30K 655
History 30K 46
Order 30K 24
New-Order 9K 8
OrderLine 300K 54
Stock 100K 306
Item 100K 82

391/3/01

TPC-C Transactions
• New-Order

– Get records describing a warehouse, customer, & district

– Update the district

– Increment next available order number

– Insert record into Order and New-Order tables

– For 5-15 items, get Item record, get/update Stock record

– Insert Order-Line Record

• Payment, Order-Status, Delivery, Stock-Level have
similar complexity, with different frequencies

• tpmC = number of New-Order transaction per min.
401/3/01

Comments on TPC-C
• Enables apples-to-apples comparison of TP systems

• Does not predict how your application will run,
or how much hardware you will need,
or which system will work best on your workload

• Not all vendors optimize for TPC-C. E.g., IBM has
claimed DB2 is optimized for a different workload,
so they have only recently published TPC numbers

411/3/01

Typical TPC-C Numbers
• $10 - $50 / tpmC. Uniform spread across the range.

– Top 49 price/performance results on MS SQL Server & Win 2000.
– Fujitsu at $21. Sybase at $27. IBM DB2 at $32. Oracle at $36

• System cost $153K (Intergraph) - $14.2M (IBM)

• Examples of high throughput
– Compaq 550K tpmC, $10.4M, $21/tpmC (MS SQL, MS COM+)
– IBM 441K tpmC, $14.2M, $32/tpmC (IBM DB2, MS COM+)

• Examples of low cost (all use MS SQL Server, COM+)
– Compaq, 20.2K tpmC, $201K, $10/tpmC
– Dell, 30.2K tpmC, $335K, $11/tpmC
– HP, 33.1K tpmC, $393K, $12/tpmC

• Results are very sensitive to date published.
421/3/01

TPC/W – Web Retailer
• Introduced 12/99. One published measurement so far.

• Features - DB accesses to generate dynamic web pages,
secure UI, secure payments (via secure socket layer (SSL))

• Scale factor: 1K – 10M items (in the catalog).

• Web Interactions per sec (WIPS) @ ScaleFactor

– IBM: 1262 WIPS@ 10,000; $277 / WIPS; $350K total

• Profiles - shop (WIPS), browse (WIPSb), order (WIPSo)

• Tables – {Customer, Order, Order-Line, Item, Author,
CreditCardTxns, Address, Country}

• Transactions – HomeWeb, ShoppingCart, AdminRequest,
AdminConfirm, CustomerRegister, BuyRequest,
BuyConfirm, OrderInquiry, OrderDisplay, Search,
SearchResult, NewProducts, BestSellers, ProductDetail,

8

431/3/01

Outline

�1. The Basics
�2. ACID Properties
�3. Atomicity and Two-Phase Commit
�4. Availability
�5. Performance
 6. Styles of System

441/3/01

1.6 TP is System Engineering
• Compare it to other kinds of system engineering …

• Batch processing - Submit a job and receive file output.

• Time sharing - Invoke programs in a process, which
may interact with the process’s display

• Real time - Submit requests that have a deadline

• Client/server - PC calls a server over a network to
access files or run applications

• Decision support - Submit queries to a shared database,
and process the result with desktop tools

• TP - Submit a request to run a transaction

451/3/01

TP vs. Batch Processing (BP)

• A BP application is usually uniprogrammed so
serializability is trivial. TP is multiprogrammed.

• BP performance is measured by throughput.
TP is also measured by response time.

• BP can optimize by sorting transactions by the file key.
TP must handle random transaction arrivals.

• BP produces new output file. To recover, re-run the app.
• BP has fixed and predictable load, unlike TP.
• But, where there is TP, there is almost always BP too.

– TP gathers the input. BP post-processes work that has weak
response time requirements

– So, TP systems must also do BP well.

461/3/01

TP vs. Timesharing (TS)
• TS is a utility with highly unpredictable load. Different

programs run each day, exercising features in new
combinations.

• By comparison, TP is highly regular.

• TS has less stringent availability and atomicity
requirements. Downtime isn’t as expensive.

471/3/01

TP vs. Real Time (RT)
• RT has more stringent response time requirements. It may

control a physical process.

• RT deals with more specialized devices.

• RT doesn’t need or use a transaction abstraction
– usually loose about atomicity and serializability

• In RT, response time goals are usually more important
than completeness or correctness. In TP, correctness is
paramount.

481/3/01

TP and Client/Server (C/S)

• Is commonly used for TP, where client prepares
requests and server runs transactions

• In a sense, TP systems were the first C/S systems,
where the client was a terminal

9

491/3/01

TP and Decision Support Systems
(DSSs)

• DSSs run long queries, usually with lower data integrity
requirements than TP.

• A.k.a. data warehouse (DSS is the more generic term.)

• TP systems provide the raw data for DSSs.

501/3/01

Outline

�1. The Basics
�2. ACID Properties
�3. Atomicity and Two-Phase Commit
�4. Availability
�5. Performance
� 6. Styles of System

511/3/01

What’s Next?

• This chapter covered TP system structure and
properties of transactions and TP systems

• The rest of the course drills deeply into each
of these areas, one by one.

