
1

3/7/01 1

Replication

CSE593 Transaction Processing

Philip A. Bernstein
Copyright ©2001 Philip A. Bernstein

3/7/01 2

Outline

1. Introduction

2. Primary-Copy Replication

3. Multi-Master Replication

4. Other Approaches

3/7/01 3

1. Introduction
• Replication - using multiple copies of a server

(called replicas) for better availability and
performance.

• If you’re not careful, replication can lead to
– worse performance - updates must be applied to all

replicas and synchronized

– worse availability - some algorithms require multiple
replicas to be operational for any of them to be used

3/7/01 4

Replicated Server
• Can replicate servers on a common resource

– Data sharing - DB servers communicate with shared disk

Resource

Server Replica 1 Server Replica 2

Client

• Helps availability in primary-backup scenario
• Requires replica cache coherence mechanism …
• Hence, this helps performance only if

– little conflict between transactions at different servers or
– loose coherence guarantees (e.g. read committed)

3/7/01 5

Replicated Resource
• To get more improvement in availability,

replicate the resources (too)
• Also increases potential throughput
• This is what’s usually meant by replication
• It’s the scenario we’ll focus on

Resource replica

Server Replica 1 Server Replica 2

ClientClient

Resource replica
3/7/01 6

Synchronous Replication
• Replicas function just like non-replicated servers

• Synchronous replication - transaction updates all
replicas of every item it updates

Start
 Write(x1)
 Write(x2)
 Write(x3)
Commit

x1

x2

x3

• Issues
– Too expensive for most applications, due to heavy

distributed transaction load (2-phase commit)
– Can’t control when updates are applied to replicas

2

3/7/01 7

Synchronous Replication - Issues

R1[xA]

R2[yD] W2[xB]

W1[yC]yD fails

xA fails

Not equivalent to a
one-copy execution,
even if xA and yD
never recover!

• DBMS products support it only in special situations

• If you just use transactions, availability suffers.

• For high-availability, the algorithms are complex and
expensive, because they requires heavy-duty
synchronization of failures.

• … of failures? How do you synchronize failures?

3/7/01 8

Asynchronous Replication
• Asynchronous replication

– Each transaction updates one replica.
– Updates are propagated later to other replicas.

• Primary copy: All transactions update the same copy
• Multi-master: Transactions update different copies

– Useful for disconnected operation, partitioned network

• Both approaches ensure that
– Updates propagate to all replicas
– If new updates stop, replicas converge to the same state

• Only primary copy ensures serializability
– Details later …

3/7/01 9

2. Primary-Copy Replication
• Designate one replica as the primary copy (publisher)

• Transactions may update only the primary copy

• Updates to the primary are sent later to secondary replicas
(subscribers) in the order they were applied to the primary

T1: Start
 … Write(x1) ...
Commit

x1T2

Tn
... Primary

Copy

x2

xm

...

Secondaries
3/7/01 10

Asynchronous Update Propagation
• Collect updates at primary using triggers or the log

• Triggers (Oracle, Rdb, SQL Server, DB2, …)
– On every update at the primary, a trigger fires to store the update in

the update propagation table.

• Post-process (“sniff”) the log to generate update
propagations (SQL Server, DB2, Tandem Non-Stop SQL)
– Off-line, so saves trigger and triggered update overhead, though

R/W log synchronization also has a cost

– Requires admin (what if the log sniffer fails?)

• Optionally identify updated fields to compress log

• Most DB systems support this today.
– First in IBM IMS, Tandem NS SQL, DEC/Rdb, & ad hoc

3/7/01 11

Request Propagation

• Must ensure requests run in the same order at primary and
replica (same requirement as updates).
– Log the requests or extend triggers to capture them.

• Could run request synchronously at all replicas,
but commit even if one replica fails.
– Need a recovery procedure for failed replicas.

• Replicate a request rather than the updates produced by the
request (e.g., a stored procedure call).

SP1: Write(x)
 Write(y)x, y

DB-A w[x]
w[y]

SP1: Write(x)
 Write(y) x, y

DB-B
w[x]
w[y]

replicate

3/7/01 12

Products
• All major DBMS products have a rich primary-copy

replication mechanism

• Differences are in detailed features
– performance
– ease of management
– richness of filtering predicates
– push vs. pull propagation
– stored procedure support
– transports (e.g. Sybase SQLanywhere can use email!)
– …

• The following summary is an incomplete snapshot of
products as of July 1999.

3

3/7/01 13

SQL Server 7.0
• Publication - a collection of articles to subscribe to

• Article – a horiz/vertical table slice or stored proc
– Customizable table filter (WHERE clause or stored proc)

– Stored proc may be transaction protected (replicate on commit).
Replicates the requests instead of each update.

• Snapshot replication makes a copy

• Transactional replication maintains the copy by
propagating updates from publisher to subscribers
– Post-processes log to store updates in Distribution DB

– Distribution DB may be separate from the publisher DB

– Updates can be pushed to or pulled from subscriber

– Can customize propagated updates using stored procs

3/7/01 14

SQL Server 7.0 (cont’d)
• Immediate updating subscriber

– Can update data, synchronizing with publisher via 2PC

– Uses triggers to capture updates (Not For Replication disables
trigger for updates from the publisher)

– Subscriber sends before/after row timestamp. Publisher checks row
didn’t change since subscriber’s current copy

– Publisher then forwards updates to other subscribers

• Access control lists protect publishers from unauthorized
subscribers

• Merge replication- described later

3/7/01 15

Oracle 8i
• Like SQL Server, can replicate updates to table fragments

or stored proc calls at the master copy

• Uses triggers to capture updates in a deferred queue
– Updates are row-oriented, identified by primary key

– Can optimize by sending keys and updated columns only

• Group updates by transaction, which are propagated:
– Either serially in commit order or

– in parallel with some dependent transaction ordering: each read
reads the “commit number” of the data item; updates are ordered
by dependent commit number

• Snapshots are updated in a batch refresh.
– Pushed from master to snapshots, using queue scheduler

3/7/01 16

DB2
• Very similar feature set to SQL Server and Oracle

• Filtered subscriber (no stored proc replication (?))
– Create snapshot, then update incrementally (push or pull)

• Captures DB2 updates from the DB2 log
– For other systems, captures updates using triggers

• Many table type options:
– Read-only snapshot copy, optionally with timestamp

– Aggregates, with cumulative or incremental values

– Consistent change data, optionally with row versions

– “Replica” tables, for multi-master updating

• Interoperates with many third party DBMS’s

3/7/01 17

Failure Handling
• Secondary failure - nothing to do till it recovers

– At recovery, apply the updates it missed while down

– Needs to determine which updates it missed,
just like log-based recovery

– If down for too long, it may be faster to get a whole copy

• Primary failure – Products just wait till it recovers
– Can get higher availability by electing a new primary

– A secondary that detects primary’s failure announces a new
election by broadcasting its unique replica identifier

– Other secondaries reply with their replica identifier

– The largest replica identifier wins

3/7/01 18

Failure Handling (cont’d)

• Primary failure (cont’d)
– All replicas must now check that they have the

same updates from the failed primary

– During the election, each replica reports the id of the
last log record it received from the primary

– The most up-to-date replica sends its latest updates to
(at least) the new primary.

– Could still lose an update that committed at the primary and
wasn’t forwarded before the primary failed …
but solving it requires synchronous replication
(2-phase commit to propagate updates to replicas)

4

3/7/01 19

Communications Failures
• Secondaries can’t distinguish a primary failure from a

communication failure that partitions the network.

• If the secondaries elect a new primary and the old primary
is still running, there will be a reconciliation problem
when they’re reunited. This is multi-master.

• To avoid this, one partition must know it’s the only one
that can operate, and can’t communicate with other
partitions to figure this out.

• Could make a static decision.
The partition that has the primary wins.

• Dynamic solutions are based on Majority Consensus

3/7/01 20

Majority Consensus
• Whenever a set of communicating replicas detects a

replica failure or recovery, they test if they have a
majority (more than half) of the replicas.

• If so, they can elect a primary

• Only one set of replicas can have a majority.

• Doesn’t work well with even number of copies.
– Useless with 2 copies

• Quorum consensus
– Give a weight to each replica

– The replica set that has a majority of the weight wins

– E.g. 2 replicas, one has weight 1, the other weight 2

3/7/01 21

3. Multi-Master Replication
• Some systems must operate when partitioned.

– Requires many updatable copies, not just one primary

– Conflicting updates on different copies are detected late

• Classic example - salesperson’s disconnected laptop
Customer table (rarely updated) Orders table (insert mostly)

Customer log table (append only)

– So conflicting updates from different salespeople are rare

• Use primary-copy algorithm, with multiple masters
– Each master exchanges updates (“gossips”) with other replicas

when it reconnects to the network

– Conflicting updates require reconciliation (i.e. merging)

• In Lotus Notes, Access, SQL Server, Oracle, …

3/7/01 22

Example of Conflicting Updates
A Classic Race Condition

Replica 1

Initially x=0
T1: X=1

Primary

Initially x=0

Send (X=1)

Replica 2

Initially x=0

T2: X=2
Send (X=1)

X=1

X=1

X=2

Send (X=2)

X=2
Send (X=2)

• Replicas end up in different states

3/7/01 23

Thomas’ Write Rule
• To ensure replicas end up in the same state

– Tag each data item with a timestamp

– A transaction updates the value and timestamp of data items
(timestamps monotonically increase)

– An update to a replica is applied only if the update’s timestamp
is greater than the data item’s timestamp

– You only need to keep timestamps of data items that were
recently updated (where an older update could still be floating
around the system)

• All multi-master products use some variation of this

• Robert Thomas, ACM TODS, June ’79
– Same article that invented majority consensus

3/7/01 24

Thomas Write Rule ⇒ Serializability
Replica 1

T1: read x=0 (TS=0)
T1: X=1, TS=1

Primary

Initially x=0,TS=0

Send (X=1, TS=1)

Replica 2

T1: read x=0 (TS=0)

T2: X=2, TS=2
Send (X=1, TS=1)

X=1, TS=1

X=1,TS=1X=2, TS=2
Send (X=2, TS=2)

• Replicas end in the same state, but neither T1 nor T2 reads
the other’s output, so the execution isn’t serializable.

X=2, TS=2

Send (X=2, TS=2)

5

3/7/01 25

Multi-Master Performance

• The longer a replica is disconnected and
performing updates, the more likely it will need
reconciliation

• The amount of propagation activity increases with
more replicas
– If each replica is performing updates,

the effect is quadratic

3/7/01 26

Microsoft Access and SQL Server
• Multi-master replication without a primary

• Each row R of a table has 4 additional columns
– globally unique id (GUID)

– generation number, to determine which updates from other
replicas have been applied

– version number = the number of updates to R

– array of [replica, version number] pairs, identifying the largest
version number it got for R from every other replica

• Uses Thomas’ write rule, based on version numbers
– Access uses replica id to break ties. SQL Server 7 uses

subscriber priority or custom conflict resolution.

3/7/01 27

Generation Numbers (Access/SQL cont’d)

• Each replica has a current generation number

• A replica updates a row’s generation number
whenever it updates the row

• A replica knows the generation number it had when it
last exchanged updates with R´, for every replica R´.

• A replica increments its generation number every time
it exchanges updates with another replica.

• So, when exchanging updates with R′, it should send
all rows with a generation number larger than what it
had when last exchanging updates with R′.

3/7/01 28

Duplicate Updates (Access/SQL cont’d)

• Some rejected updates are saved for later analysis

• To identify duplicate updates to discard them -
– When applying an update to x, replace x’s array of

[replica, version#] pairs by the update’s array.

– To avoid processing the same update via many paths,
check version number of arriving update against the array

• Consider a rejected update to x at R from R´, where
– [R´, V] describes R´ in x’s array, and

– V´ is the version number sent by R´.

– If V ≥ V´, then R saw R´’s updates

– If V < V´, then R didn’t see R´’s updates, so store it in the
conflict table for later reconciliation

3/7/01 29

Oracle 8i (revisited)
• Masters replicate entire tables

– Updates are pushed from master to masters and to snapshots
(synchronous or asynchronous)

– Updates include before values (you can disable if conflicts are
impossible)

– They recommend masters should always be connected

• Snapshots are updatable ⇒ “multi-master”
– Each propagation transaction updates its queue entry

(instead of update-oriented generation numbers)

• Conflict detection
– Before-value at replica is different than in update

– Uniqueness constraint is violated

– Row with the update’s key doesn’t exist

3/7/01 30

Oracle 8i Conflict Resolution
• Built-in resolution strategies (defined per column-group)

– Add difference between the old and new values of the originating
site to the destination site

– Average the value of the current site and the originating site

– Min or max of the two values

– The one with min or max timestamp

– The site or value with maximum priority

– Can apply methods in sequence: e.g., by time , then by priority.

• Can call custom procs to log, notify, or resolve the conflict
– Parameters - update’s before/after value and row’s current value

• For a given update, if no built-in or custom conflict
resolution applies, then the entire transaction is logged.

6

3/7/01 31

4. Other Approaches

• Non-transactional replication using timestamped updates
and variations of Thomas’ write rule
– directory services are managed this way

• Quorum consensus per-transaction
– Read and write a quorum of copies

– Each data item has a version number and timestamp

– Each read chooses a replica with largest version number

– Each write increments version number one greater than any one
it has seen

– No special work needed during a failure or recovery

3/7/01 32

Other Approaches (cont’d)
• Read-one replica, write-all-available replicas

– Requires careful management of failures and recoveries

• E.g., Virtual partition algorithm
– Each node knows the nodes it can communicate with, called

its view

– Transaction T can execute if its home node has a
view including a quorum of T’s readset and writeset
(i.e. the data it can read or write)

– If a node fails or recovers, run a view formation protocol
(much like an election protocol)

– For each data item with a read quorum, read the latest
version and update the others with smaller version #.

3/7/01 33

Summary

• State-of-the-art products have rich functionality.
– It’s a complicated world for app designers

– Lots of options to choose from

• Most failover stories are weak
– Fine for data warehousing

– For 24×7 TP, need better integration with cluster
node failover

