
1/11/2012 1

2. Atomicity & Durability

Using Shadow Paging

CSEP 545 Transaction Processing
for E-Commerce

Philip A. Bernstein

Copyright ©2012 Philip A. Bernstein

1/11/2012 2

Introduction

• To get started on the Java-C# project, you need

to implement atomicity and durability in a

centralized resource manager (i.e. a database).

• We recommend you use shadowing.

• This section provides a quick introduction.

– It’s described in the textbook: Chapter 7, Section 6.

• A more thorough explanation of the overall topic

of database recovery will be presented in a

couple of weeks.

1/11/2012 3

Review of Atomicity & Durability

• Atomicity - a transaction is all-or-nothing

• Durability – the results of a committed

transaction will survive failures

• Problem

– The only hardware operation that is atomic with

respect to failure and whose result is durable is

“write one disk block”

– But the database doesn’t fit on one disk block!

1/11/2012 4

Shadowing in a Nutshell

• The database is a tree whose root is a single disk block

• There are two copies of the tree, the master and shadow

• The root points to the master copy

• Updates are applied to the shadow copy

• To install the updates, overwrite the root so it points to

the shadow, thereby swapping the master and shadow

– Before overwriting the root, none of the transaction’s updates

are part of the disk-resident database

– After overwriting the root, all of the transaction’s updates are

part of the disk-resident database

– Which means the transaction is atomic and durable

1/11/2012 5

More Specifically …

• The database consists of a set of files.

• Each file F consists of a page table FPt and

a set of pages that FPt points to.

• A database root page points to each file’s

master page table.

• To start, assume that
– Transactions run serially.

I.e., at most one transaction runs at any given time.

– For each page table, the transaction has a private

shadow copy in main-memory.

1/11/2012 6

Initial State of Files A and B and

Transaction Ti

APt,i

 1

 2

 3
...

BPt,i

 1

 2

 3
...

a

b

A1

APt,m

1

2

3
...

BPt,m

1

2

3
...

A2

B1

B2

Initial

State D

I

S

K

Main

Memory

For Ti
DB root

1/11/2012 7

Without Recovery Support:

Ti Overwrites A2 and B2

APt,i

 1

 2

 3
...

BPt,i

 1

 2

 3
...

a

b

A1

APt,m

1

2

3
...

BPt,m

1

2

3
...

A2, new

B1

B2, new

Initial

State D

I

S

K

Main

Memory

For Ti
DB root

1/11/2012 8

What Could Go Wrong?
• Atomicity violation: A failure while Ti is running

can leave the disk state as

[A2,new , B2] or [A2 , B2,new]

– Could be a failure of Ti or hardware or the OS

• This could corrupt a multi-page data structure,

making it unintelligible.

• Even if the state is [A2,new , B2,new], readers can’t

tell whether Ti completed.

– If Ti completed, maybe it would have re-written one

of those pages, or have written a third page B3

1/11/2012 9

To Write a Page P

• Transaction writes a shadow copy of page P to

disk (i.e. does not overwrite the master copy).

• Transaction updates its page table for P’s file to

point to the shadow copy of P.

• Transaction marks P’s entry in the page table

(to remember which pages were updated).

1/11/2012 10

After Writing Page B2

APt,i

 1

 2

 3
...

BPt,i

 1

 2

 3
...

a

b

A1

APt,m

1

2

3
...

BPt,m

1

2

3
...

A2

B1

B2,old

Initial

State D

I

S

K

Main

Memory

For Ti
DB root



B2,new

1/11/2012 11

After Writing Page A1

APt,i

 1

 2

 3
...

BPt,i

 1

 2

 3
...

a

b

A1, old APt,m

1

2

3
...

BPt,m

1

2

3
...

A2

B1

B2,old

Initial

State D

I

S

K

Main

Memory

For Ti

DB root



B2,new

A1, new


1/11/2012 12

What if the System Fails?

• Main memory is lost

• The current transaction is effectively aborted

• But the database is still consistent

1/11/2012 13

To Commit Ti
1. First copy APt,i and BPt,i to disk

APt,i

 1

 2

 3
...

BPt,i

 1

 2

 3
...

a

b

A1, old APt,m

1

2

3
...

BPt,m

1

2

3
...

A2

B1

B2,old

Initial

State D

I

S

K

DB root

B2,new

A1, new

1/11/2012 14

To Commit Ti (cont’d)
2. Then overwrite DB root to point to the new Pt’s.

APt,i

 1

 2

 3
...

BPt,i

 1

 2

 3
...

a

b

A1, old APt,m

1

2

3
...

BPt,m

1

2

3
...

A2

B1

B2,old

Initial

State D

I

S

K

DB root

B2,new

A1, new

• This is the atomic hardware operation that commits Ti.

1/11/2012 15

• What if two transactions update different pages of a file?

– If they share their main-memory shadow copy of the page table,
then committing one will commit the other’s updates too!

• One solution: File-grained locking (but poor concurrency).

• Better solution: use a private shadow-copy of each page
table, per transaction. To commit T, do the following
within a critical section :

– For each file F modified by T

• Get a private copy C of last committed value of F’s page tbl.

• Update C’s entries for pages modified by T.

• Store C on disk.

– Write a new master record, which swaps page tables for the files
updated by T, thereby installing just T’s updates.

Shadow Paging with Shared Files

1/11/2012 16

Managing Available Disk Space

• Treat the list of available pages, Avail, like
another file

• The DB root points to the master Avail

• When a transaction allocates a page, update its
shadow Avail list

• When a transaction commits, write a shadow
copy of Avail to disk

• Committing the transaction swaps the master
Avail list and the shadow

1/11/2012 17

Final Remarks
• A transaction doesn’t need to write shadow pages to disk

until it is ready to commit

– Saves disk writes if a transaction writes a page multiple times or
if it aborts

• Main benefit of shadow paging is that doesn’t require
much code

– Was used in the Gemstone OO DBMS (1980’s)

• But it is not good for TPC benchmarks

– How many disk updates per transaction?

– How to do record level locking?

• Most database products use logging.

– Faster execution time, and more functional, but much more code.

1/11/2012 18

Your Project

• You need not use the exact data structure

presented here.

• In particular, you don’t necessarily need a page

abstraction.

• There are design tradeoffs for you to figure out.

1/11/2012 19

References

• Textbook, Section 7.6.

• P. A. Bernstein, V. Hadzilacos, N. Goodman,

Concurrency Control and Recovery in Database

Systems, Chapter 6, Section 7 (pp. 201-204)

– The book is downloadable from

http://research.microsoft.com/pubs/ccontrol/

• Originally proposed by Raymond Lorie in “Physical

Integrity in a Large Segmented Database”ACM

Transactions on Database Systems, March 1977.

