
1/11/2012 1

3. Concurrency Control

for Transactions

Part One

 CSEP 545 Transaction Processing

Philip A. Bernstein

Copyright ©2012 Philip A. Bernstein

1/11/2012 2

Outline

1. A Simple System Model

2. Serializability Theory

3. Synchronization Requirements

 for Recoverability

4. Two-Phase Locking

5. Preserving Transaction Handshakes

6. Implementing Two-Phase Locking

7. Deadlocks

1/11/2012 3

3.1 A Simple System Model

• Goal - Ensure serializable (SR) executions

• Implementation technique - Delay operations
that may lead to non-SR results (e.g. set locks
on shared data)

• For good performance minimize overhead and
delay from synchronization operations

• First, we’ll study how to get correct (SR) results

• Then, we’ll study performance implications
(mostly in Part Two)

1/11/2012 4

Assumption - Atomic Operations

• We will synchronize Reads and Writes.

• We must therefore assume they’re atomic

– else we’d have to synchronize the finer-grained
operations that implement Read and Write

• Read(x) - returns the current value of x in the DB

• Write(x, val) overwrites all of x (the whole page)

• This assumption of atomic operations allows us
to abstract executions as sequences of reads and
writes (without loss of information).

– Otherwise, what would wk[x] ri[x] mean?

• Also, commit (ci) and abort (ai) are atomic

1/11/2012 5

System Model

Transaction 1 Transaction N

Start, Commit, Abort

 Read(x), Write(x)

Data

Manager

Database

Transaction 2

1/11/2012 6

3.2 Serializability Theory

• The theory is based on modeling executions as

histories, such as

 H1 = r1[x] r2[x] w1[x] c1 w2[y] c2

• First, characterize a concurrency control

algorithm by the properties of histories it allows

• Then prove that any history having these

properties is SR

• Why bother? It helps you understand why

concurrency control algorithms work

1/11/2012 7

Equivalence of Histories

• Two operations conflict if their execution order

affects their return values or the DB state.

– A read and write on the same data item conflict.

– Two writes on the same data item conflict.

– Two reads (on the same data item) do not conflict.

• Two histories are equivalent if they have the

same operations and conflicting operations are

in the same order in both histories.

– Because only the relative order of conflicting

operations can affect the result of the histories.

1/11/2012 8

Examples of Equivalence
• The following histories are equivalent

 H1 = r1[x] r2[x] w1[x] c1 w2[y] c2

 H2 = r2[x] r1[x] w1[x] c1 w2[y] c2

 H3 = r2[x] r1[x] w2[y] c2 w1[x] c1

 H4 = r2[x] w2[y] c2 r1[x] w1[x] c1

• But none of them are equivalent to

 H5 = r1[x] w1[x] r2[x] c1 w2[y] c2

which reverses the order of r2[x] w1[x] in H1,
because r2[x] and w1[x] conflict and

r2[x] precedes w1[x] in H1 - H4, but

r2[x] follows w1[x] in H5.

1/11/2012 9

Serializable Histories

• Definition: A history is serializable (SR) if it is

equivalent to a serial history

• For example,

 H1 = r1[x] r2[x] w1[x] c1 w2[y] c2

is equivalent to

 H4 = r2[x] w2[y] c2 r1[x] w1[x] c1

(Because H1 and H4 have the same operations and

the only conflicting operations, r2[x] and w1[x], are

in the same order in H1 and H4.)

• Therefore, H1 is serializable.

1/11/2012 10

Another Example

• H6 = r1[x] r2[x] w1[x] r3[x] w2[y] w3[x] c3 w1[y] c1 c2

is equivalent to a serial execution of T2 T1 T3,

H7 = r2[x] w2[y] c2 r1[x] w1[x] w1[y] c1 r3[x] w3[x] c3

• Each conflict implies a constraint on any equivalent

serial history:

H6 = r1[x] r2[x] w1[x] r3[x] w2[y] w3[x] c3 w1[y] c1 c2

T2T1 T1T3 T2T1

T2T3

1/11/2012 11

Serialization Graphs

• A serialization graph, SG(H), for history H tells the

effective execution order of transactions in H.

• Given history H, SG(H) is a directed graph whose

nodes are the committed transactions and whose

edges are all Ti Tk such that at least one of Ti’s

operations precedes and conflicts with at least one

of Tk’s operations.

H6 = r1[x] r2[x] w1[x] r3[x] w2[y] w3[x] c3 w1[y] c1 c2

SG(H6) = T2 T1 T3

1/11/2012 12

The Serializability Theorem
A history is SR if and only if SG(H) is acyclic.

Proof: (if) SG(H) is acyclic. So let Hs be a serial

history consistent with SG(H). Each pair of

conflicting ops in H induces an edge in SG(H).

Since conflicting ops in Hs and H are in the same

order, HsH, so H is SR.

(only if) H is SR. Let Hs be a serial history equivalent

to H. We claim that if Ti Tk in SG(H), then Ti
precedes Tk in Hs (else Hs ≢ H). If SG(H) had a

cycle, T1T2…TnT1, then T1 would precede

T1 in Hs, a contradiction. So SG(H) is acyclic.

1/11/2012 13

How to Use

the Serializability Theorem

• Characterize the set of histories that a

concurrency control algorithm allows.

• Prove that any such history must have an

acyclic serialization graph.

• Therefore, the algorithm guarantees SR

executions.

• We’ll use this soon to prove that locking

produces serializable executions.

1/11/2012 14

3.3 Synchronization Requirements

 for Recoverability
• In addition to ensuring serializability, synchroni-

zation is needed to implement abort easily.

• When a transaction T aborts, the data manager

wipes out all of T’s effects, including

– Undoing T’s writes that were applied to the DB

• Remember before-images of writes

– Aborting transactions that read values written by T

(these are called cascading aborts)

• Remember which transactions read T’s writes

1/11/2012 15

Recoverability Example

• Example - w1[x] r2[x] w2[y]

– To abort T1, we must undo w1[x] and abort T2

(a cascading abort).

– System should keep before image of x in case T1 aborts

• We may even need to remember other before images.

– System should make T2 dependent on T1

• If T1 aborts T2 aborts.

• We want to avoid some of this bookkeeping.

1/11/2012 16

Recoverability

• If Tk reads from Ti and Ti aborts, then Tk must abort

– Example - w1[x] r2[x] a1 implies T2 must abort

• But what if Tk already committed? We’d be stuck.

– Example - w1[x] r2[x] c2 a1

– T2 can’t abort after it commits

• Executions must be recoverable:
A transaction T’s commit operation must follow the
commit of every transaction from which T read.

– Recoverable - w1[x] r2[x] c1 c2

– Not recoverable - w1[x] r2[x] c2 a1

• Recoverability requires synchronizing operations.

1/11/2012 17

Avoiding Cascading Aborts

• Cascading aborts are worth avoiding to

– Avoid complex bookkeeping, and

– Avoid an uncontrolled number of forced aborts

• To avoid cascading aborts, a data manager should

ensure transactions read only committed data

• Example

– Avoids cascading aborts: w1[x] c1 r2[x]

– Allows cascading aborts: w1[x] r2[x] a1

• A system that avoids cascading aborts also

guarantees recoverability.

1/11/2012 18

Strictness
• It’s convenient to undo a write, w[x], by restoring

its before image (x’s value before w[x] executed)

• Example - w1[x,1] writes the value “1” into x.

– w1[x,1] w1[y,3] c1 w2[y,1] r2[x] a2

– Abort T2 by restoring the before image of w2[y,1] (i.e. 3)

• But this isn’t always possible.

– For example, consider w1[x,2] w2[x,3] a1 a2

– a1 & a2 can’t be implemented by restoring before images

– Notice that w1[x,2] w2[x,3] a2 a1 would be OK

• A system is strict if it only reads or overwrites

committed data.

1/11/2012 19

Strictness (cont’d)
• More precisely, a system is strict if it only executes

ri[x] or wi[x] if all previous transactions that wrote x

committed or aborted.

• Examples (“…” marks a non-strict prefix)

– Strict: w1[x] c1 w2[x] a2

– Not strict: w1[x] w2[x] … c1 a2

– Strict: w1[x] w1[y] c1 r2[x] w2[y] a2

– Not strict: w1[x] w1[y] r2[x] … c1 w2[y] a2

– To see why strictness matters in the above histories,

consider what happens if T1 aborts.

• “Strict” implies “avoids cascading aborts.”

1/11/2012 20

3.4 Two-Phase Locking

• Basic locking - Each transaction sets a lock on each

data item before accessing the data

– The lock is a reservation

– There are read locks and write locks

– If one transaction has a write lock on x, then no other

transaction can have any lock on x

• Example

– rli[x], rui[x], wli[x], wui[x] denote lock/unlock operations

– wl1[x] w1[x] rl2[x] r2[x] is impossible

– wl1[x] w1[x] wu1[x] rl2[x] r2[x] is OK

1/11/2012 21

Basic Locking Isn’t Enough

• Basic locking doesn’t guarantee serializability

• rl1[x] r1[x] ru1[x] wl1[y] w1[y] wu1[y]c1

 rl2[y] r2[y] wl2[x] w2[x] ru2[y] wu2[x] c2

• Eliminating the lock operations, we have

 r1[x] r2[y] w2[x] c2 w1[y] c1 which isn’t SR

• The problem is that locks aren’t being released

properly.

1/11/2012 22

Two-Phase Locking (2PL) Protocol

• A transaction is two-phase locked if:

– Before reading x, it sets a read lock on x

– Before writing x, it sets a write lock on x

– It holds each lock until after it executes the
corresponding operation

– After its first unlock operation, it requests no new locks.

• Each transaction sets locks during a growing phase
and releases them during a shrinking phase.

• Example - on the previous page T2 is two-phase
locked, but not T1 since ru1[x] < wl1[y]

– use “<” for “precedes”.

1/11/2012 23

2PL Theorem: If all transactions in an execution are

two-phase locked, then the execution is SR.

Proof: Let H be a 2PL history and Ti Tk in SG.
– Then Ti read x and Tk later wrote x,

– Or Ti wrote x and Tk later read or wrote x

• If Ti Tk, then Ti released a lock before Tk

obtained some lock.

• If Ti Tk Tm, then Ti released a lock before Tm

obtained some lock (because Tk is two-phase).

• If Ti ... Ti, then Ti released a lock before Ti

obtained some lock, breaking the 2-phase rule.

• So there cannot be a cycle in SG(H). By the

Serializability Theorem, H is SR.

1/11/2012 24

2PL and Recoverability

• 2PL does not guarantee recoverability

• This non-recoverable execution is 2-phase locked

 wl1[x] w1[x] wu1[x] rl2[x] r2[x] c2 … c1

– Hence, it is not strict and allows cascading aborts

• However, holding write locks until after commit or

abort guarantees strictness

– Hence avoids cascading aborts and is recoverable

– In the above example, T1 must commit before its first

unlock-write (wu1): wl1[x] w1[x] c1 wu1[x] rl2[x] r2[x] c2

1/11/2012 25

Automating Locking
• 2PL can be hidden from the application.

• When a data manager gets a Read or Write

operation from a transaction, it sets a read or write

lock.

• How does the data manager know it’s safe to

release locks (and be two-phase)?

• Ordinarily, the data manager holds a transaction’s

locks until it commits or aborts. A data manager

– Can release read locks after it receives commit

– Releases write locks only after it processes commit,

to ensure strictness.

1/11/2012 26

3.5 Preserving Transaction Handshakes

• Read and Write are the only operations the

system will control to attain serializability.

• So, if transactions communicate via messages,

then implement SendMsg as Write, and

ReceiveMsg as Read.

• Else, you could have the following:

 w1[x] r2[x] send2[M] receive1[M]

– Data manager didn’t know about send/receive and

thought the execution was SR.

• Also watch out for brain transport.

1/11/2012 27

Transactions Can Communicate via Brain

Transport

T1: Start

 . . .

 Display output

 Commit

T2: Start

 Get input from display

 . . .

 Commit

User reads output

…

User enters input

Brain
transport

1/11/2012 28

Brain Transport (cont’d)

• For practical purposes, if the user waits for T1 to

commit before starting T2, then the data manager

can ignore brain transport.

• This is called a transaction handshake

(T1 commits before T2 starts).

• Reason - Locking preserves the order imposed by

transaction handshakes

– e.g., it serializes T1 before T2.

1/11/2012 29

2PL Preserves Transaction Handshakes

• 2PL serializes transactions consistent with all

transaction handshakes. I.e. there’s an equivalent

serial execution that preserves the transaction order

in all transaction handshakes.

• This isn’t true for arbitrary SR executions. E.g.

– r1[x] w2[x] c2 r3[y] c3 w1[y] c1

– T2 commits before T3 starts, but the only equivalent

serial execution is T3 T1 T2

– The history can’t occur using 2PL. Try adding lock ops:

rl1[x] r1[x] wl1[y] ru1[x] wl2[x] w2[x] c2 wu2[x]

but now we’re stuck, since we can’t set rl3[y] r3[y].

How to show whether a given

history H was produced by 2PL?

• H could have been produced via 2PL iff you can

add lock operations to H, following 2PL protocol.

• First add rl1[x]: rl1[x] r1[x] w2[x] c2 r3[y] c3 w1[y] c1

– Next, T2 must have set wl2[x] before executing w2[x]

• So r1[x] must have released rl1[x] before w2[x] ran

• Since T1 is 2PL, it must have write-locked y before unlocking x

– rl1[x] r1[x] wl1[y] ru1[x] wl2[x] w2[x] c2 wu2[x]

• Now we’re stuck, since T3 could not have set rl3[y] before r3[y],

since T1 could not have unlocked y until after w1[y].

– Hence, H could not have been produced by 2PL.

 1/18/2012 30

1/11/2012 31

2PL Preserves Transaction

Handshakes (cont’d)

• Stating this more formally …

• Theorem:

 For any 2PL execution H,

 there is an equivalent serial execution Hs,

 such that for all Ti, Tk,

 if Ti committed before Tk started in H,

 then Ti precedes Tk in Hs.

1/11/2012 32

Brain Transport One Last Time

• If a user reads displayed output of Ti and

wants to use that output as input to transaction Tk,

then he/she should wait for Ti to commit before

starting Tk.

• The user can then rely on transaction handshake

preservation to ensure Ti is serialized before Tk.

1/11/2012 33

3.6 Implementing Two-Phase Locking

• Even if you never implement a DB system, it’s

valuable to understand locking implementation,

because it can have a big effect on performance.

• A data manager implements locking by

– Implementing a lock manager

– Setting a lock for each Read and Write

– Handling deadlocks.

1/11/2012 34

System Model

Transaction 1 Transaction N

Database

System

Start,

SQL Ops

Commit, Abort

Query Optimizer

Query Executor

Access Method

(record-oriented files)

Page-oriented Files

Database

1/11/2012 35

How to Implement SQL

• Query Optimizer - translates SQL into an ordered

expression of relational DB operators (Select,

Project, Join)

• Query Executor - executes the ordered expression

by running a program for each operator, which in

turn accesses records of files

• Access methods - provides indexed record-at-a-

time access to files (OpenScan, GetNext, …)

• Page-oriented files - Read or Write (page address)

1/11/2012 36

Which Operations Get Synchronized?

Record-oriented operations

Page-oriented operations

SQL operations
Query Optimizer

Query Executor

Access Method

(record-oriented files)

Page-oriented Files

• It’s a tradeoff between

– Amount of concurrency and

– Runtime expense and programming complexity

of synchronization

1/11/2012 37

Lock Manager

• A lock manager services the operations

– Lock(trans-id, data-item-id, mode)

– Unlock(trans-id, data-item-id)

– Unlock(trans-id)

• It stores locks in a lock table. Lock op inserts

[trans-id, mode] in the table. Unlock deletes it.

Data Item List of Locks Wait List

x [T1,r] [T2,r] [T3,w]

y [T4,w] [T5,w] [T6, r]

1/11/2012 38

Lock Manager (cont’d)

• Caller generates data-item-id, e.g. by hashing data

item name

• The lock table is hashed on data-item-id

• Lock and Unlock must be atomic, so access to the

lock table must be “locked”

• Lock and Unlock are called frequently. They must

be very fast. Average < 100 instructions.

– This is hard, in part due to slow compare-and-swap

operations needed for atomic access to lock table.

1/11/2012 39

Lock Manager (cont’d)

• In MS SQL Server

– Locks are approx 32 bytes each.

– Each lock contains a Database-Id, Object-Id, and other

resource-specific lock information such as record id

(RID) or key.

– Each lock is attached to lock resource block (64 bytes)

and lock owner block (32 bytes).

1/11/2012 40

Locking Granularity

• Granularity - size of data items to lock

– e.g., files, pages, records, fields

• Coarse granularity implies

– Very few locks, so little locking overhead

– Must lock large chunks of data, so high chance of

conflict, so concurrency may be low

• Fine granularity implies

– Many locks, so high locking overhead

– Locking conflict occurs only when two transactions try

to access the exact same data concurrently

• High performance TP requires record locking

1/11/2012 41

Multigranularity Locking (MGL)

• Allow different txns to lock at different granularity

– Big queries should lock coarse-grained data (e.g. tables)

– Short transactions lock fine-grained data (e.g. rows)

• Lock manager can’t detect these conflicts

– Each data item (e.g., table or row) has a different id

• Multigranularity locking “trick”

– Exploit the natural hierarchy of data containment

– Before locking fine-grained data, set intention locks on coarse

grained data that contains it

– e.g., before setting a read-lock on a row, get an

intention-read-lock on the table that contains the row

– An intention-read-lock conflicts with a write lock on the same item

1/11/2012 42

3.7 Deadlocks

• A set of transactions (txns) is deadlocked if every

transaction in the set is blocked and will remain

blocked unless the system intervenes

– Example rl1[x] granted

 rl2[y] granted

 wl2[x] blocked

 wl1[y] blocked and deadlocked

• Deadlock is 2PL’s way to avoid non-SR executions

– rl1[x] r1[x] rl2[y] r2[y] … can’t run w2[x] w1[y] and be SR

• To repair a deadlock, you must abort a transaction

– Releasing a txn T’s lock without aborting T breaks 2PL

1/11/2012 43

Deadlock Prevention
• Never grant a lock that can lead to deadlock

• Often advocated in operating systems

• Useless for TP, because it would require running

transactions serially

– Example to prevent the previous deadlock,

rl1[x] rl2[y] wl2[x] wl1[y], the system can’t grant rl2[y]

• Avoiding deadlock by resource ordering is unusable

in general, since it overly constrains applications

– But may help for certain high frequency deadlocks

• Setting all locks when txn begins requires too much

advance knowledge and reduces concurrency

1/11/2012 44

Deadlock Detection
• Detection approach: Detect deadlocks automatically

and abort a deadlocked transactions (the victim)

• It’s the preferred approach, because it

– Allows higher resource utilization and

– Uses cheaper algorithms

• Timeout-based deadlock detection - If a transaction

is blocked for too long, then abort it

– Simple and easy to implement

– But aborts unnecessarily and

– Some deadlocks persist for too long

1/11/2012 45

Detection Using Waits-For Graph

• Explicit deadlock detection - Use a Waits-For Graph

– Nodes = {transactions}

– Edges = {Ti Tk | Ti is waiting for Tk to release a lock}

– Example (previous deadlock) T1 T2

• Theorem: If there’s a deadlock, then the waits-for

graph has a cycle

1/11/2012 46

Detection Using Waits-For Graph

(cont’d)
• So, to find deadlocks

– When a transaction blocks, add an edge to the graph.

– Periodically check for cycles in the waits-for graph.

• Need not test for deadlocks too often.

– A cycle won’t disappear until you detect it and break it.

• When a deadlock is detected, select a victim from

the cycle and abort it.

• Select a victim that hasn’t done much work

– E.g., has set the fewest locks.

1/11/2012 47

Cyclic Restart

• Transactions can cause each other to abort forever.

– T1 starts running. Then T2 starts running.

– They deadlock and T1 (the oldest) is aborted.

– T1 restarts, bumps into T2 and again deadlocks

– T2 (the oldest) is aborted ...

• Choosing the youngest in a cycle as victim avoids

cyclic restart, since the oldest running transaction is

never the victim.

• Can combine with other heuristics, e.g. fewest-locks

1/11/2012 48

MS SQL Server

• Aborts the transaction that is “cheapest” to roll
back.

– “Cheapest” is determined by the amount of log
generated.

– Allows transactions that you’ve invested a lot in to
complete.

• SET DEADLOCK_PRIORITY LOW
(vs. NORMAL) causes a transaction to sacrifice
itself as a victim.

1/11/2012 49

Distributed Locking

• Suppose a transaction can access data at many

data managers

• Each data manager sets locks in the usual way

• When a transaction commits or aborts, it runs

two-phase commit to notify all data managers it

accessed

• The only remaining issue is distributed deadlock

1/11/2012 50

Distributed Deadlock
• The deadlock spans two nodes.

Neither node alone can detect it.

• Timeout-based detection is popular. Its weaknesses

are less important in the distributed case:

– Aborts unnecessarily and some deadlocks persist too long

– Possibly abort younger unblocked transaction to avoid

cyclic restart

rl1[x]

wl2[x] (blocked)

Node 1

rl2[y]

wl1[y] (blocked)

Node 2

1/11/2012 51

Oracle Deadlock Handling

• Uses a waits-for graph for single-server

deadlock detection.

• The transaction that detects the deadlock is

the victim.

• Uses timeouts to detect distributed

deadlocks.

1/11/2012 52

Fancier Dist’d Deadlock Detection

• Use waits-for graph cycle detection with a central

deadlock detection server

– More work than timeout-based detection, and

there’s no evidence it performs better

– Phantom deadlocks? - No, because each waits-for edge

is an SG edge. So, WFG cycle => SG cycle

(modulo spontaneous aborts)

• Path pushing (a.k.a. flooding) - Send paths Ti …

 Tk to each node where Tk might be blocked.

– Detects short cycles quickly

– Hard to know where to send paths

– Possibly too many messages

1/11/2012 53

Locking Performance

• The following is oversimplified. We’ll revisit it.

• Deadlocks are rare.

– Typically 1-2% of transactions deadlock.

• Locking performance problems are not rare.

• The problem is too much blocking.

• The solution is to reduce the “locking load”.

• Good heuristic – If more than 30% of transactions

are blocked, then reduce the number of concurrent

transactions.

1/11/2012 54

Lock Conversions

• Lock conversion - upgrading an r-lock to a w-lock

– e.g., Ti = read(x) … write(x)

• This is one place where deadlocks are an issue

– If two txns convert a lock concurrently, they’ll deadlock

(both get an r-lock on x before either gets a w-lock).

– To avoid the deadlock, a caller can get a w-lock first and

down-grade to an r-lock if it doesn’t need to write.

– We’ll see other solutions later.

• This is step 3 of the course project. Its main purpose

is to ensure you understand the lock manager code.

1/11/2012 55

What’s Coming in Part Two?

• Locking Performance

• More details on multigranularity locking

• Hot spot techniques

• Query-Update Techniques

• Phantoms

• B-Trees and Tree locking

