
Machine Learning Research: Four Current DirectionsThomas G. DietterichDepartment of Computer ScienceOregon State UniversityCorvallis, OR 97331Final DraftAbstractMachine Learning research has been making great progress in many directions. This article summarizes four ofthese directions and discusses some current open problems. The four directions are (a) improving classi�cationaccuracy by learning ensembles of classi�ers, (b) methods for scaling up supervised learning algorithms, (c)reinforcement learning, and (d) learning complex stochastic models.1 IntroductionThe last �ve years have seen an explosion in machine learning research. This explosion has many causes. First, sep-arate research communities in symbolic machine learning, computational learning theory, neural networks, statistics,and pattern recognition have discovered one another and begun to work together. Second, machine learning tech-niques are being applied to new kinds of problems including knowledge discovery in databases, language processing,robot control, and combinatorial optimization as well as in more traditional problems such as speech recognition,face recognition, handwriting recognition, medical data analysis, game playing, and so on.In this article, I have selected four topics within machine learning where there has been a lot of recent activity.The purpose of the article is to describe the results in these areas to a broader AI audience and to sketch some ofthe open research problems. The topic areas are (a) ensembles of classi�ers, (b) methods for scaling up supervisedlearning algorithms, (c) reinforcement learning, and (d) learning complex stochastic models.The reader should be cautioned that this article is not a comprehensive review of each of these topics. Rather,my goal is to provide a representative sample of the research in each of these four areas. In each of the areas, thereare many other papers that describe relevant work. I apologize to those authors whose work I was unable to includein the article.2 Ensembles of Classi�ersThe �rst topic concerns methods for improving accuracy in supervised learning. I begin by introducing some notation.In supervised learning, a learning program is given training examples of the form f(x1; y1); : : : ; (xm; ym)g for someunknown function y = f(x). The xi values are typically vectors of the form hxi;1; xi;2; : : : ; xi;ni whose componentsare discrete- or real-valued such as height, weight, color, age, and so on. These are also called the features of xi. Iwill use the notation xij to refer to the j-th feature of xi. In some situations, I will drop the i subscript when it isimplied by the context.The y values are typically drawn from a discrete set of classes f1; : : : ;Kg in the case of classi�cation or from thereal line in the case of regression. In this article, I will focus primarily on classi�cation. The training examples maybe corrupted by some random noise.Given a set S of training examples, a learning algorithm outputs a classi�er. The classi�er is an hypothesis aboutthe true function f . Given new x values, it predicts the corresponding y values. I will denote classi�ers by h1; : : : ; hL.An ensemble of classi�ers is a set of classi�ers whose individual decisions are combined in some way (typicallyby weighted or unweighted voting) to classify new examples. One of the most active areas of research in supervisedlearning has been to study methods for constructing good ensembles of classi�ers. The main discovery is thatensembles are often much more accurate than the individual classi�ers that make them up.An ensemble can be more accurate than its component classi�ers only if the individual classi�ers disagree with oneanother (Hansen & Salamon, 1990). To see why, imagine that we have an ensemble of three classi�ers: fh1; h2; h3g1
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Number of classifiers in errorFigure 1: The probability that exactly ` (of 21) hypotheses will make an error, assuming each hypothesis has anerror rate of 0.3 and makes its errors independently of the other hypotheses.and consider a new case x. If the three classi�ers are identical, then when h1(x) is wrong, h2(x) and h3(x) will alsobe wrong. However, if the errors made by the classi�ers are uncorrelated, then when h1(x) is wrong, h2(x) and h3(x)may be correct, so that a majority vote will correctly classify x. More precisely, if the error rates of L hypotheses h`are all equal to p < 1=2 and if the errors are independent, then the probability that the majority vote will be wrongwill be the area under the binomial distribution where more than L=2 hypotheses are wrong. Figure 1 shows this fora simulated ensemble of 21 hypotheses, each having an error rate of 0.3. The area under the curve for 11 or morehypotheses being simultaneously wrong is 0.026, which is much less than the error rate of the individual hypotheses.Of course, if the individual hypotheses make uncorrelated errors at rates exceeding 0.5, then the error rate of thevoted ensemble will increase as a result of the voting. Hence, the key to successful ensemble methods is to constructindividual classi�ers with error rates below 0.5 whose errors are at least somewhat uncorrelated.2.1 Methods for Constructing EnsemblesMany methods for constructing ensembles have been developed. Some methods are general, and they can be appliedto any learning algorithm. Other methods are speci�c to particular algorithms. We begin by reviewing the generaltechniques.2.1.1 Subsampling the Training ExamplesThe �rst method manipulates the training examples to generate multiple hypotheses. The learning algorithm isrun several times, each time with a di�erent subset of the training examples. This technique works especially wellfor unstable learning algorithms|algorithms whose output classi�er undergoes major changes in response to smallchanges in the training data. Decision-tree, neural network, and rule learning algorithms are all unstable. Linearregression, nearest neighbor, and linear threshold algorithms are generally very stable.The most straightforward way of manipulating the training set is called bagging. On each run, bagging presentsthe learning algorithm with a training set that consists of a sample of m training examples drawn randomly withreplacement from the original training set of m items. Such a training set is called a bootstrap replicate of the originaltraining set, and the technique is called bootstrap aggregation (from which the term bagging is derived; Breiman,1996a). Each bootstrap replicate contains, on the average, 63.2% of the original training set, with several trainingexamples appearing multiple times. 2



Table 1: The AdaBoost.M1 algorithm. The formula [[E]] is 1 if E is true and 0 otherwise.Input: a set S, of m labeled examples: S = f(xi; yi); i = 1; 2; : : : ;mg,labels yi 2 Y = f1; : : : ;KgLearn (a learning algorithm)a constant L.[1] initialize for all i: w1(i) := 1=m initialize the weights[2] for ` = 1 to L do[3] for all i: p`(i) := w`(i)=(Pi w`(i)) compute normalized weights[4] h` := Learn(p`) call Learn with normalized weights.[5] �` :=Pi p`(i)[[h`(xi) 6= yi]] calculate the error of h`[7] if �` > 1=2 then[8] L := `� 1[9] goto 13[10] �` := �`=(1 � �`)[11] for all i: w`+1(i) := w`(i)�1�[[h`(xi) 6=yi]]` compute new weights[12] end for[13] Output: hf (x) = argmaxy2Y LX̀=1 �log 1�`� [[h`(x) = y]]Another training set sampling method is to construct the training sets by leaving out disjoint subsets of thetraining data. For example, the training set can be randomly divided into 10 disjoint subsets. Then 10 overlappingtraining sets can be constructed by dropping out a di�erent one of these 10 subsets. This same procedure is employedto construct training sets for 10-fold cross-validation, so ensembles constructed in this way are sometimes called cross-validated committees (Parmanto, Munro, & Doyle, 1996).The third method for manipulating the training set is illustrated by the AdaBoost algorithm, developed byFreund and Schapire (1995, 1996) and shown in Table 1. Like bagging,AdaBoostmanipulates the training examplesto generate multiple hypotheses. AdaBoostmaintains a probability distribution p`(x) over the training examples. Ineach iteration `, it draws a training set of size m by sampling with replacement according the probability distributionp`(x). The learning algorithm is then applied to produce a classi�er h`. The error rate �` of this classi�er on thetraining examples (weighted according to p`(x)) is computed and used to adjust the probability distribution on thetraining examples. (In Table 1, note that the probability distribution is obtained by normalizing a set of weightsw`(i) over the training examples.)The e�ect of the change in weights is to place more weight on training examples that were misclassi�ed by h` andless weight on examples that were correctly classi�ed. In subsequent iterations, therefore, AdaBoost constructsprogressively more di�cult learning problems.The �nal classi�er, hf , is constructed by a weighted vote of the individual classi�ers. Each classi�er is weightedaccording to its accuracy for the distribution p` that it was trained on.In line 4 of the AdaBoost algorithm, the base learning algorithm Learn is called with the probability distributionp`. If the learning algorithm Learn can use this probability distribution directly, then this generally gives betterresults. For example, Quinlan (1996) developed a version of the decision-tree learning program C4.5 that works witha weighted training sample. His experiments showed that it worked extremely well. One can also imagine versions ofbackpropagation that scaled the computed output error for training example (xi; yi) by the weight p`(i). Errors for\important" training examples would cause larger gradient descent steps than errors for unimportant (low-weight)examples.On the other hand, if the algorithm cannot use the probability distribution p` directly, then a training samplecan be constructed by drawing a random sample with replacement in proportion to the probabilities p`. This makesAdaBoost more stochastic, but experiments have shown that this procedure is still very e�ective.Figure 2 compares the performance of C4.5 to C4.5 with AdaBoost.M1 (using random sampling). One point isplotted for each of 27 test domains taken from the Irvine repository of machine learning databases (Merz & Murphy,1996). We can see that most points lie above the line y = x, which indicates that the error rate of AdaBoost is lessthan the error rate of C4.5. Figure 3 compares the performance of bagging (with C4.5) to C4.5 alone. Again, we seethat bagging produces sizeable reductions in the error rate of C4.5 for many problems. Finally, Figure 4 comparesbagging with boosting (both using C4.5 as the underlying algorithm). The results show that the two techniques arecomparable, although boosting appears still to have an advantage over bagging.3
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Error Rate of AdaBoost with C4.5Figure 2: Comparison of AdaBoost.M1 (applied to C4.5) with C4.5 by itself. Each point represents one of 27 testdomains. Points lying above the diagonal line exhibit lower error with AdaBoost.M1 than with C4.5 alone. Basedon data from Freund & Schapire (1996). Up to 100 hypotheses were constructed.
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Error Rate of Bagged C4.5Figure 3: Comparison of bagging (applied to C4.5) with C4.5 by itself. Each point represents one of 27 test domains.Points lying above the diagonal line exhibit lower error with bagging than with C4.5 alone. Based on data fromFreund & Schapire (1996). Bagging voted 100 classi�ers. 4
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Error rate of AdaBoost with C4Figure 4: Comparison of bagging (applied to C4.5) with AdaBoost.M1 (applied to C4.5). Each point representsone of 27 test domains. Points lying above the diagonal line exhibit lower error with boosting than with bagging.Based on data from Freund & Schapire (1996).2.1.2 Manipulating the Input FeaturesA second general technique for generating multiple classi�ers is to manipulate the set of input features available to thelearning algorithm. For example, in a project to identify volcanoes on Venus, Cherkauer (1996) trained an ensembleof 32 neural networks. The 32 networks were based on 8 di�erent subsets of the 119 available input features and4 di�erent network sizes. The input feature subsets were selected (by hand) to group together features that werebased on di�erent image processing operations (such as principal component analysis and the fast fourier transform).The resulting ensemble classi�er was able to match the performance of human experts in identifying volcanoes.Tumer and Ghosh (1996) applied a similar technique to a sonar dataset with 25 input features. However, they foundthat deleting even a few of the input features hurt the performance of the individual classi�ers so much that thevoted ensemble did not perform very well. Obviously, this technique only works when the input features are highlyredundant.2.1.3 Manipulating the Output TargetsA third general technique for constructing a good ensemble of classi�ers is to manipulate the y values that are givento the learning algorithm. Dietterich & Bakiri (1995) describe a technique called error-correcting output coding.Suppose that the number of classes, K, is large. Then new learning problems can be constructed by randomlypartioning the K classes into two subsets A` and B`. The input data can then be re-labeled so that any of theoriginal classes in set A` are given the derived label 0 and the original classes in set B` are given the derived label1. This relabeled data is then given to the learning algorithm, which constructs a classi�er h`. By repeating thisprocess L times (generating di�erent subsets A` and B`), we obtain a ensemble of L classi�ers h1; : : : ; hL.Now given a new data point x, how should we classify it? The answer is to have each h` classify x. If h`(x) = 0,then each class in A` receives a vote. If h`(x) = 1, then each class in B` receives a vote. After each of the L classi�ershas voted, the class with the highest number of votes is selected as the prediction of the ensemble.An equivalent way of thinking about this method is that each class j is encoded as an L-bit codeword Cj , wherebit ` is 1 if and only if j 2 B`. The `-th learned classi�er attempts to predict bit ` of these codewords. When the Lclassi�ers are applied to classify a new point x, their predictions are combined into an L-bit string. We then choosethe class j whose codeword Cj is closest (in Hamming distance) to the L-bit output string. Methods for designing5



Table 2: Results on Five Domains (best error rate in boldface)Test set 200-fold 200-foldTask size C4.5 bootstrap C4.5 random C4.5Vowel 462 0.5758 0.5152 0.4870�Soybean 376 0.1090 0.0984 0.1090Part-of-Speech 3060 0.0827 0.0765 0.0788aNETtalk 7242 0.3000 0.2670��� 0.2500���Letter Recognition 4000 0.2010 0.0038��� 0.0000���Di�erence from C4.5 signi�cant at p < 0:05�; 0:001���: a256-fold random.good error-correcting codes can be applied to choose the codewords Cj (or equivalently, subsets A` and B`).Dietterich and Bakiri report that this technique improves the performance of both the C4.5 and backpropagationalgorithms on a variety of di�cult classi�cation problems. Recently, Schapire (1997) has shown how AdaBoostcan be combined with error-correcting output coding to yield an excellent ensemble classi�cation method that hecalls AdaBoost.OC. The performance of the method is superior to the ECOC method (and to bagging), butessentially the same as another (quite complex) algorithm, called AdaBoost.M2. Hence, the main advantage ofAdaBoost.OC is implementation simplicity: It can work with any learning algorithm for solving 2-class problems.Ricci and Aha (1997) applied a method that combines error-correcting output coding with feature selection.When learning each classi�er, h`, they apply feature selection techniques to choose the best features for learning thatclassi�er. They obtained improvements in 7 out of 10 tasks with this approach.2.1.4 Injecting RandomnessThe last general purpose method for generating ensembles of classi�ers is to inject randomness into the learningalgorithm. In the backpropagation algorithm for training neural networks, the initial weights of the network are setrandomly. If the algorithm is applied to the same training examples but with di�erent initial weights, the resultingclassi�er can be quite di�erent (Kolen & Pollack, 1991).While this is perhaps the most common way of generating ensembles of neural networks, manipulating the trainingset may be more e�ective. A study by Parmanto, Munro, and Doyle (1996) compared this technique to baggingand to 10-fold cross-validated committees. They found that cross-validated committees worked best, bagging secondbest, and multiple random initial weights third best on one synthetic data set and two medical diagnosis data sets.For the C4.5 decision tree algorithm, it is also easy to inject randomness (Kwok & Carter, 1990). The key decisionof C4.5 is to choose a feature to test at each internal node in the decision tree. At each internal node, C4.5 appliesa criterion known as the information gain ratio to rank-order the various possible feature tests. It then chooses thetop-ranked feature-value test. For discrete-valued features with V values, the decision tree splits the data into Vsubsets, depending on the value of the chosen feature. For real-valued features, the decision tree splits the data into2 subsets, depending on whether the value of the chosen feature is above or below a chosen threshold. Dietterich& Kong (1995) implemented a variant of C4.5 that chooses randomly (with equal probability) among the top 20best tests. Table 2 compares a single run of C4.5 to ensembles of 200 classi�ers constructed by bagging C4.5 and byinjecting randomness into C4.5. The results show that injecting randomness obtains the best performance in threeof the domains. In particular, notice that injected randomness obtains perfect test set performance in the letterrecognition task.Ali & Pazzani (1996) injected randomness into the FOIL algorithm for learning Prolog-style rules. FOIL workssomewhat like C4.5 in that it ranks possible conditions to add to a rule using an information-gain criterion. Ali andPazzani computed all candidate conditions that scored within 80% of the top-ranked candidate, and then applieda weighted random choice algorithm to choose among them. They compared ensembles of 11 classi�ers to a singlerun of FOIL and found statistically signi�cant improvements in 15 out of 29 tasks and statistically signi�cant loss ofperformance in only one task. They obtained similar results using 11-fold cross-validation to construct the trainingsets.Raviv and Intrator (1996) combine bootstrap sampling of the training data with injecting noise into the inputfeatures for the learning algorithm. To train each member of an ensemble of neural networks, they draw trainingexamples with replacement from the original training data. The x values of each training example are perturbed byadding Gaussian noise to the input features. They report large improvements in a synthetic benchmark task and amedical diagnosis task.A method closely related to these techniques for injecting randomness is the Markov Chain Monte Carlo (MCMC)method, which has been applied to neural networks by MacKay (1992) and Neal (1993) and to decision trees by6



Chipman, George and McCulloch (1996). The basic idea of the MCMC method (and related methods) is to constructa Markov process that generates an in�nite sequence of hypotheses h`. In a Bayesian setting, the goal is to generatean hypothesis h` with probability P (h`jS), where S is the training sample. P (h`jS) is computed in the usual wayas the (normalized) product of the likelihood P (Sjh`) and the prior probability P (h`) of h`. To apply MCMC, wede�ne a set of operators that convert one h` into another. For a neural network, such an operator might adjust oneof the weights in the network. In a decision tree, the operator might interchange a parent and a child node in thetree or replace one node with another. The MCMC process works by maintaining a current hypothesis h`. At eachstep, it selects an operator, applies it (to obtain h`+1), and then computes the likelihood of the resulting classi�eron the training data. It then decides whether to keep h`+1 or discard it and go back to h`. Under various technicalconditions, it is possible to prove that a process of this kind will eventually converge to a stationary probabilitydistribution in which the h`'s are sampled in proportion to their posterior probabilities. In practice, it can bedi�cult to tell when this stationary distribution is reached. A standard approach is to run the Markov process fora long period (discarding all generated classi�ers) and then collect a set of L classi�ers from the Markov process.These classi�ers are then combined by weighted vote according to their posterior probabilities.2.1.5 Algorithm-Speci�c Methods for Generating EnsemblesIn addition to these general-purpose methods for generating diverse ensembles of classi�ers, there are several tech-niques that can be applied to the backpropagation algorithm for training neural networks.Rosen (1996) trains several neural networks simultaneously and forces the networks to be diverse by adding acorrelation penalty to the error function that backpropagation minimizes. Speci�cally, during training, Rosen keepstrack of the correlations in the predictions of each network. He applies backpropagation to minimize an error functionthat is a sum of the usual squared output prediction error and a term that measures the correlations with the othernetworks. He reports substantial improvements in three simple synthetic tasks.Opitz and Shavlik (1996) take a similar approach, but they employ a kind of genetic algorithm to search for agood population of neural network classi�ers. In each iteration, they apply genetic operators to the current ensembleto generate new network topologies. These are then trained using an error function that combines the usual squaredoutput prediction error with a multiplicative term that incorporates the diversity of the classi�ers. After training thenetworks, they prune the population to retain the N best networks using a criterion that considers both accuracyand diversity. In a comparison with bagging, they found that their method gave excellent results in four real-worlddomains.Abu-Mostafa (1990) and Caruana (1996) describe a technique for training a neural network on auxiliary tasksas well as on the main task. The key idea is to add some output units to the network whose role is to predict thevalues of the auxiliary tasks and to include the prediction error for these auxiliary tasks in the error criterion thatbackpropagation seeks to minimize. Because these auxiliary output units are connected to the same hidden unitsas the primary task outputs, the auxiliary outputs can inuence the behavior of the network on the primary task.Parmanto, et al. (1994) show that diverse classi�ers can be learned by training on the same primary task but withmany di�erent auxiliary tasks. One good source of auxiliary tasks is to have the network attempt to predict one ofits input features (in addition to the primary output task). They apply this method to medical diagnosis problems.More recently, Munro and Parmanto (1997) have developed an approach in which the value of the auxiliaryoutput is determined dynamically by competition among the set of networks. Each network has a primary output yand a secondary (auxiliary) output z. During training, each network looks at the training example xi and computesits primary and secondary output predictions. The network whose secondary output prediction is highest is said tobe the \winner" for this example. It is given a target value for z of 1; the remaining networks are given a targetvalue of 0 for the secondary output. All networks are given the value yi as the target for the primary output. Thee�ect is to encourage di�erent networks to become experts at predicting the secondary output z in di�erent regionsof the input space. Because the primary and secondary outputs share the hidden layer, this causes the errors in theprimary outputs to become decorrelated. They show that this method substantially out-performs an ensemble ofordinary networks trained using di�erent initial random weights when trained on a synthetic classi�cation task.In addition to these methods for training ensembles of neural networks, there are also methods that are speci�cto decision trees. Buntine (1990) developed an algorithm for learning option trees. These are decision trees wherean internal node may contain several alternative splits (each producing its own sub-decision tree). To classify anexample, each of these sub-decision trees is evaluated, and the resulting classi�cations are voted. Kohavi & Kunz(1997) describe an option tree algorithm and compare its performance to bagged C4.5 trees. They show that optiontrees generally match the performance of bagging while producing a much more understandable result.This completes my review of methods for generating ensembles using a single learning algorithm. Of course,one can always generate an ensemble by combining classi�ers constructed by di�erent learning algorithms. Learning7



algorithms based on very di�erent principles will probably produce very diverse classi�ers. However, often someof these classi�ers perform much worse than others. Furthermore, there is no guarantee of diversity. Hence, whenclassi�ers from di�erent learning algorithms are combined, they should be checked (e.g., by cross-validation) foraccuracy and diversity, and some form of weighted combination should be used. This approach has been shown tobe e�ective in some applications (e.g., Zhang, Mesirov, & Waltz, 1992).2.2 Methods for Combining Classi�ersGiven that we have trained an ensemble of classi�ers, how should we combine their individual classi�cation decisions?Many methods have been explored. They can be subdivided into unweighted vote, weighted vote, and gating networks.The simplest approach is to take an unweighted vote as is done in bagging, ECOC, and many other methods.While it may appear that more intelligent voting schemes should do better, the experience in the forecasting literaturehas been that simple, unweighted voting is very robust (Clemen, 1989). One re�nement on simple majority voteis appropriate when each classi�er h` can produce class probability estimates rather than a simple classi�cationdecision. A class probability estimate for data point x is the probability that the true class is k: P (f(x) = kjh`),for k = 1; : : : ;K. We can combine the class probabilities of all of the hypotheses so that the class probability of theensemble is P (f(x) = k) = 1LPL̀=1 P (f(x) = kjh`): The predicted class of x is then the class having the highestclass probability.Many di�erent weighted voting methods have been developed for ensembles. For regression problems, Perrone& Cooper (1993) and Hashem (1993) apply least squares regression to �nd weights that maximize the accuracy ofthe ensemble on the training data. They show that the weight applied to h` should be inversely proportional to thevariance of the estimates of h`. A di�culty with applying linear least squares is that the various hypotheses h` canbe very highly correlated. They describe methods for choosing less correlated subsets of the ensemble and combiningthem by linear least squares.For classi�cation problems, weights are usually obtained by measuring the accuracy of each individual classi�erh` on the training data (or a holdout data set) and constructing weights that are proportional to those accuracies.Ali and Pazzani (1996) describe a method that they call likelihood combination in which they apply the NaiveBayes algorithm (see Section 5.2 below) to learn weights for classi�ers. In AdaBoost, the weight for classi�er h`is computed from the accuracy of h` measured on the weighted training distribution that was used to learn h`. ABayesian approach to weighted vote is to compute the posterior probability of each h`. This method requires thede�nition of a prior distribution P (h`) which is multiplied with the likelihood P (Sjh`) to estimate the posteriorprobability of each h`. Ali and Pazzani experiment with this method. Earlier work on Bayesian voting of decisiontrees was performed by Buntine (1990).The third approach to combining classi�ers is to learn a gating network or a gating function that takes as inputx and produces as output the weights w` to be applied to compute the weighted vote of the classi�ers h`. Jordanand Jacobs (1994) learn gating networks that have the formw` = ez`Pu ezuz` = vT̀xIn other words, z` is the dot product of a parameter vector v` with the input feature vector x. The output weightw` is then the so-called soft-max of the individual z`'s. As with any learning algorithm, there is a risk of over�ttingthe training data by learning the gating function in addition to learning each of the individual classi�ers. (Below wewill discuss the hierarchical mixture of experts method developed by Jordan and Jacobs that learns the h` and thegating network simultaneously.)A fourth approach to combining classi�ers, called stacking, works as follows. Suppose we have L di�erent learningalgorithms A1; : : : ; AL and a set S of training examples f(x1; y1); : : : ; (xm; ym)g. As usual, we apply each of thesealgorithms to our training data to produce hypotheses h1; : : : ; hL. The goal of stacking is to learn a good combiningclassi�er h� such that the �nal classi�cation will be computed by h � (h1(x); : : : ; hL(x)). Wolpert (1992) proposedthe following scheme for learning h� using a form of leave-one-out cross-validation.Let h(�i)` be a classi�er constructed by algorithm A` applied to all of the training examples in S except examplei. In other words, each algorithm is applied to the training data m times, leaving out one training example eachtime. We can then apply each classi�er h(�i)` to example xi to obtain the predicted class ŷì . This gives us a new dataset containing \level 2" examples whose features are the classes predicted by each of the L classi�ers. Each examplehas the form h(ŷ1i ; ŷ2i ; : : : ; ŷLi ); yii. Now we can apply some other learning algorithm to this level 2 data to learn h�.Breiman (1996b) applied this approach to combining di�erent forms of linear regression with very good results.8



2.3 Why Ensembles WorkI have already given the basic intuition for why ensembles can improve performance: uncorrelated errors made bythe individual classi�ers can be removed by voting. But there is a deeper question lurking here: Why should it bepossible to �nd ensembles of classi�ers that make uncorrelated errors? And there is another question as well: Whyshouldn't we be able to �nd a single classi�er that performs as well as the ensemble?There are at least three reasons why good ensembles can be constructed and why it may be di�cult or impossibleto �nd a single classi�er that performs as well as the ensemble. To understand these reasons, we must consider thenature of machine learning algorithms. Machine learning algorithms work by searching a space of possible hypothesesH for the most accurate hypothesis (that is, the hypothesis that best approximates the unknown function f). Twoimportant aspects of the hypothesis space H are its size and whether it contains good approximations to f .If the hypothesis space is large, then we will need a large amount of training data to constrain the search for goodapproximations. Each training example rules out (or makes less plausible) all those hypotheses in H that misclassifyit. In a 2-class problem, ideally each training example can eliminate half of the hypotheses in H, so we requireO(log jHj) examples to select a unique classi�er from H.The �rst \cause" of the need for ensembles is that the training data may not provide su�cient information forchoosing a single best classi�er fromH. Most of our learning algorithms consider very large hypothesis spaces, so evenafter eliminating hypotheses that misclassify training examples, there are many hypotheses remaining. All of thesehypotheses appear equally accurate with respect to the available training data. We may have reasons for preferringsome of these hypotheses over others (e.g., preferring simpler hypotheses or hypotheses with higher prior probability),but nonetheless, there are typically many plausible hypotheses. From this collection of surviving hypothesis in H,we can easily construct an ensemble of classi�ers and combine them using the methods described above.A second \cause" of the need for ensembles is that our learning algorithms may not be able to solve the di�cultsearch problems that we pose. For example, the problem of �nding the smallest decision tree that is consistent witha set of training examples is NP-hard (Hya�l & Rivest, 1976). Hence, practical decision tree algorithms employsearch heuristics to guide a greedy search for small decision trees. Similarly, �nding the weights for the smallestpossible neural network consistent with the training examples is also NP-hard (Blum & Rivest, 1988). Neuralnetwork algorithms therefore employ local search methods (such as gradient descent) to �nd locally optimal weightsfor the network. A consequence of these imperfect search algorithms is that even if the combination of our trainingexamples and our prior knowledge (e.g., preferences for simple hypotheses, Bayesian priors) determines a unique besthypothesis, we may not be able to �nd it. Instead, we will typically �nd an hypothesis that is somewhat more complex(or has somewhat lower posterior probability). If we run our search algorithms with a slightly di�erent training sampleor injected noise (or any of the other techniques described above), we will �nd a di�erent (suboptimal) hypothesis.Ensembles can be seen therefore as a way of compensating for imperfect search algorithms.A third \cause" of the need for ensembles is that our hypothesis space H may not contain the true functionf . Instead, H may include several equally-good approximations to f . By taking weighted combinations of theseapproximations, we may be able to represent classi�ers that lie outside of H. One way to understand this is tovisualize the decision boundaries constructed by learning algorithms. A decision boundary is a surface such thatexamples that lie on one side of the surface are assigned to a di�erent class than examples that lie on the otherside of the surface. The decision boundaries constructed by decision tree learning algorithms are line segments (ormore generally, hyperplane segments) parallel to the coordinate axes. If the true boundary between two classes is adiagonal line, then decision tree algorithms must approximate that diagonal by a \staircase" of axis-parallel segments(see Figure 5). Di�erent bootstrap training samples (or di�erent weighted samples created by AdaBoost) will shiftthe locations of the staircase approximation, and by voting among these di�erent approximations, it is possible toconstruct better approximations to the diagonal decision boundary.Interestingly, these improved staircase approximations are equivalent to very complex decision trees. However,those trees are so large that were we to include them in our hypothesis space H, the space would be far too largefor the available training data. Hence, we can see that ensembles provide a way of overcoming representationalinadequacies in our hypothesis space.2.4 Open Problems Concerning EnsemblesEnsembles are well-established as a method for obtaining highly accurate classi�ers by combining less accurate ones.There are still many questions, however, about the best way to construct ensembles as well as issues about how bestto understand the decisions made by ensembles.Faced with a new learning problem, what is the best approach to constructing and applying an ensemble ofclassi�ers? In principle, there can be no single best ensemble method, just as there can be no single best learning9



Class 1
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Class 1

Class 2Figure 5: The left �gure shows the true diagonal decision boundary and three staircase approximations to it (of thekind that are created by decision tree algorithms). The right �gure shows the voted decision boundary, which is amuch better approximation to the diagonal boundary.algorithm. However, some methods may be uniformly better than others. And some methods may be better thanothers in certain situations.Experimental studies have shown that AdaBoost is one of the best methods for constructing ensembles ofdecision trees. Schapire (1997) compares AdaBoost.M2 and AdaBoost.OC to bagging and error-correctingoutput coding and shows that the AdaBoostmethods are generally superior. On the other hand, Quinlan (1996) hasshown that in domains with very noisy training data, AdaBoost.M1 can perform very badly|it places high weighton incorrectly-labeled training examples and consequently constructs bad classi�ers. Dietterich and Kong (1995)showed that combining bagging with error-correcting output coding improved the performance of both methods,which suggests that combinations of other ensemble methods should be explored as well. Dietterich and Kong alsoshowed that error-correcting output coding does not work well with highly local algorithms (such as nearest neighbormethods).There have been very few systematic studies of methods for constructing ensembles of neural networks, rule-learning systems, and other types of classi�ers. Much work remains in this area.While ensembles provide very accurate classi�ers, there are problems that may limit their practical application.One problem is that ensembles can require large amounts of memory to store and large amounts of computation toapply. For example, earlier I mentioned that an ensemble of 200 decision trees attains perfect performance on a letter-recognition benchmark task. However, those 200 decision trees require 59 megabytes of storage, which makes themimpractical for most present-day computers. An important line of research, therefore, is to �nd ways of convertingthese ensembles into less redundant representations, perhaps by deleting highly-correlated members of the ensembleor by representational transformations.A second di�culty with ensemble classi�ers is that an ensemble provides little insight into how it makes itsdecisions. A single decision tree can often be interpreted by human users, but an ensemble of 200 voted decisiontrees is much more di�cult to understand. Can methods be found for obtaining explanations (at least locally) fromensembles? One example of work on this question is Craven's TREPAN algorithm (Craven & Shavlik, 1996).3 Scaling Up Machine Learning AlgorithmsA second major research area has explored techniques for scaling up learning algorithms so that they can applyto problems with millions of training examples, thousands of features, and hundreds of classes. Very large machinelearning problems are beginning to arise in database mining applications, where there may be millions of transactionsevery day, and where it is desirable to have machine learning algorithms that can analyze such large data sets injust a few hours of CPU time. Another area where large learning problems arise is in information retrieval fromfull-text databases and the world-wide web. In information retrieval, each word in a document can be treated asan input feature, so each training example may be described by thousands of features. Finally, problems in speech10



recognition, object recognition, and character recognition for Chinese and Japanese present problems with hundredsor thousands of classes that must be discriminated.3.1 Learning with Large Training SetsDecision tree algorithms have been extended to handle large data sets in three di�erent ways. One approach is basedon intelligently sampling subsets of the training data as the tree is grown. To describe how this works, I must reviewhow decision tree algorithms operate.Decision trees are constructed by starting with the entire training set and an empty tree. A test is chosen for theroot of the tree, and the training data are then partitioned into disjoint subsets depending on the outcome of thetest. The algorithm is then applied recursively to each of these disjoint subsets. The algorithm terminates when all(or most) of the training examples within a subset of the data belong to the same class. At that point, a leaf nodeis created and labeled with that class.The process of choosing a test for the root of the tree (or for the root of each subtree) involves analyzing thetraining data and choosing the one feature that is the best predictor of the output class. In a large and redundantdata set, it may be possible to make this choice based on only a sample of the data. Musick, Catlett, and Russell(1992) presented an algorithm that dynamically chooses the sample based on how di�cult the decision is at eachnode. The algorithm typically behaves by using a small sample near the root of the tree and then progressivelyenlarging the sample as the tree grows. This can reduce the time required to grow the tree without reducing theaccuracy of the tree at all.A second approach is based on developing clever data structures that avoid the need to store all training data inrandom access memory. The hardest step for most decision tree algorithms is to �nd tests for real-valued features.These tests usually take the form xj � �, for some threshold value �. The standard approach is to sort the trainingexamples at the current node according to the values of feature xj and then make a sequential pass over the sortedexamples to choose the threshold �. In standard depth-�rst algorithms, the data must be sorted by each candidatefeature xj at each node of the tree, which can become very expensive.Shafer, Agrawal, and Mehta (1996) describe their SPRINT method in which the training data is broken up intoa separate disk �le for each attribute (and sorted by attribute value). For feature j, the disk �le contains records ofthe form hi; xi;j ; yii, where i is the index of the training example, xi;j is the value of feature j for training example i,and yi is the class of example i. To choose a splitting threshold � for feature j, it is a simple matter to make a serialscan of this disk �le and construct class histograms for each potential splitting threshold. Once a value is chosen,the disk �le is partitioned (logically) into two �les, one containing examples with values less than or equal to �, andthe other containing examples with values greater than �. As these �les are written to disk, a hash table is built(in main memory) in which the index for each training example i is associated with the left or right child nodes ofthe newly created split. Then each of the disk �les for the other attributes xl; l 6= j is read and split into a �le forthe left child and a �le for the right child. The index of each example is looked up in the hash table to determinethe child to which it belongs. SPRINT can be parallelized easily, and it has been applied to data sets containing2.5 million examples. Mehta, Agrawal, and Rissanen (1996) have developed a closely-related algorithm, SLIQ, thatmakes more use of main memory but also scales to millions of training examples and is slightly faster than SPRINT.Both SPRINT and SLIQ scale approximately linearly in the number of training examples and the number of featuresaside from the cost of performing the initial sorting of the data (which need only be done once).A third approach to large datasets is to take advantage of ensembles of decision trees (Chan & Stolfo, 1995).The training data can be randomly partitioned into N disjoint subsets. A separate decision tree can be grown fromeach subset in parallel. The trees can then vote to make classi�cation decisions. Although the accuracy of each ofthe individual decision trees is less than the accuracy of a single tree grown with all of the data, the accuracy ofthe ensemble is often better than the accuracy of a single tree. Hence, with N parallel processors, we can achieve aspeedup of N in the time required to construct the decision trees.A fourth approach to the problem of choosing splits for real-valued input features is to \discretize" the values ofsuch features. For example, one feature of a training example might be employee income measured in dollars. Thiscould take on tens of thousands of distinct values, and the running time of most decision-tree learning algorithmsis linear in the number of distinct values of each feature. This problem can be solved by grouping income into asmall number of ranges (e.g., $0{$10,000, $10,000{$25,000, $25,000{$50,000, $50,000{$100,000, and greater than$100,000). If the ranges are chosen well, the resulting decision trees will still be very accurate. Several simple andfast algorithms have been developed for choosing good discretization points (Catlett, 1991; Fayyad & Irani, 1993;Kohavi & Sahami, 1996) prior to running the decision tree algorithms.A very e�ective rule-learning algorithm, called Ripper, has been developed by William Cohen (1995) basedon an earlier algorithm, IREP developed by Furnkranz and Widmer (1994). Ripper constructs rules of the form11



test1 ^ test2 ^ : : : ^ testl ) ci, where each test has the form xj = � (for discrete features) or xj � � or xj > �(for real-valued features). A rule is said to cover a training example if the example satis�es all of the tests on theleft-hand-side of the rule. For a training set of size m, the runtime of Ripper scales as O(m(logm)2). This is amajor improvement over the rule-learning program C4.5rules (Quinlan, 1993), which scales as O(m3).Table 3 shows pseudo-code for Ripper. Ripper works by building an initial set of rules and optimizing the setof rules k times, where k is a parameter (typically set to 2). I describe Ripper for the case where there are only twoclasses, 1 and 2. Examples of class 1 will be referred to as the positive examples, and examples of 2 will be referredto as the negative examples. Ripper can easily be extended to handle larger numbers of classes.To build a set of rules, Ripper constructs one rule at a time. Before learning each rule, it divides the training datainto a growing set (containing 2/3 of the data) and a pruning set (containing the remaining 1/3). It then iterativelyadds tests to the rule until the rule covers no negative examples. Tests are selected via an information gain heuristicdeveloped for Quinlan's FOIL system (Quinlan, 1990). Once a rule is grown, it is immediately pruned by deletingtests in reverse order, testl; testl�1; : : : ; test1, to �nd the pruned rule that maximizes the quantity (p � n)=(p+ n),where p is the number of positive pruning examples covered by the pruned rule and n is the number of negativepruning examples covered by the pruned rule.Once the rule has been grown and pruned, Ripper adds it to the rule set and discards all training examples thatare covered by this new rule. It employs a description length criterion to decide when to stop adding rules. Thedescription length of a set of rules is the number of bits needed to represent the rules plus the number of bits neededto identify the training examples that are exceptions to the rules. Minimum description length criteria of this kindhave been applied very successfully to rule- and tree-learning algorithms (e.g., Quinlan & Rivest, 1989). Ripperstops adding rules when the description length of the rule set is more than 64 bits larger than the best descriptionlength observed so far. It then considers the rules in reverse order and deletes any rule that will reduce the totaldescription length of the rule set.To optimize a set of rules, Ripper considers deleting each rule in turn and re-growing and re-pruning it. Twocandidate replacement rules are grown and pruned. The �rst candidate is grown starting with an empty rule, whereasthe second candidate is grown starting with the current rule. The better of the two candidates is selected (via adescription length heuristic) and added to the rule set.Cohen comparedRipper to C4.5Rules on 37 data sets and found that Ripper matched or beat C4.5Rules in 22of the 37 problems. The rule sets that it �nds are always smaller than those constructed byC4.5Rules. An implemen-tation ofRipper is available for research use from Cohen (http://www.research.att.com/~wcohen/ripperd.html).3.2 Learning with Many FeaturesIn many learning problems, there are hundreds or thousands of potential features describing each input object x.Popular learning algorithms such as C4.5 and backpropagation do not scale well when there are many features.Indeed, from a statistical point of view, examples with many irrelevant, but noisy, input features provide very littleinformation. It is easy for learning algorithms to be confused by the noisy features and construct poor classi�ers.Hence, in practical applications it is wise to carefully choose which features to provide to the learning algorithm.Research in machine learning has sought to automate the selection and weighting of features, and many di�erentalgorithms have been developed for this purpose. An excellent review has been written by Wettschreck, Aha, andMohri (1997). A comprehensive review of the statistical literature on feature selection can be found in Miller (1990).I will discuss a few of the most signi�cant methods here.There are three main approaches that have been pursued. The �rst approach is to perform some initial analysisof the training data and select a subset of the features to feed to the learning algorithm. A second approach is totry di�erent subsets of the features on the learning algorithm, estimate the performance of the algorithm with thosefeatures, and keep the subsets that perform best. The third approach is to integrate the selection and weighting offeatures directly into the learning algorithm. I will discuss two examples of each approach.3.2.1 Selecting and Weighting Features by PreprocessingA simple preprocessing technique is to compute the mutual information (also called the information gain) betweeneach input feature and the class. The mutual information between two random variables is the average reductionin uncertainty about the second variable given a value of the �rst. For discrete feature j, the mutual informationweight wj can be computed aswj =Xv Xc P (y = c; xj = v) � log P (y = c; xj = v)P (y = c)P (xj = v) ;12



Table 3: The Ripper algorithm (Cohen, 1995)procedure BuildRuleSet(P ,N)P = positive examplesN = negative examplesRuleSet = fgDL = DescriptionLength(RuleSet;P;N)while P 6= fg// Grow and prune a new rulesplit (P;N) into (GrowPos;GrowNeg) and (PrunePos;PruneNeg)Rule := GrowRule(GrowPos;GrowNeg)Rule := PruneRule(Rule; PrunePos;PruneNeg)add Rule to RuleSetif DescriptionLength(RuleSet; P;N) > DL+ 64 then// Prune the whole rule set and exitfor each rule R in RuleSet (considered in reverse order)if DescriptionLength(RuleSet � fRg; P;N) < DL thendelete R from RuleSetDL := DescriptionLength(RuleSet; P;N)end ifend forreturn (RuleSet)end ifDL := DescriptionLength(RuleSet; P;N)delete from P and N all examples covered by Ruleend whileend BuildRuleSetprocedure OptimizeRuleSet(RuleSet; P;N)for each rule R in RuleSetdelete R from RuleSetUPos := examples in P not covered by RuleSetUNeg := examples in N not covered by RuleSetsplit (UPos;UNeg) into (GrowPos;GrowNeg) and (PrunePos;PruneNeg)RepRule := GrowRule(GrowPos;GrowNeg)RepRule := PruneRule(RepRule; PrunePos;PruneNeg)RevRule := GrowRule(GrowPos;GrowNeg;R)RevRule := PruneRule(RevRule; PrunePos;PruneNeg)choose better of RepRule and RevRule and add to RuleSetend forend OptimizeRuleSetprocedure Ripper(P;N; k)RuleSet := BuildRuleSet(P;N)repeat k times RuleSet := OptimizeRuleSet(RuleSet; P;N)return (RuleSet)end Ripperwhere P (y = c) is the proportion of training examples in class c, and P (xj = v) is the probability that feature j takeson value v. For real-valued features, the sums become integrals which must be approximated. A good approximationis to apply a discretization algorithm, such as the one advocated by Fayyad and Irani (1993), to covert the real-valuedfeature into a discrete-valued feature, and then apply the formula above. Wettschereck and Dietterich (1995) haveobtained good results with nearest-neighbor algorithms using mutual information weighting.A problem with mutual information weighting is that it treats each feature independently. For features whosepredictive power is only apparent in combination with other features, mutual information will assign a weight of zero.For example, a very di�cult class of learning problems involves learning parity functions with random irrelevantfeatures. A parity function over n binary features is equal to 1 if-and-only-if an odd number of the features are equalto 1. Suppose we de�ne a learning problem in which there are four relevant features and 10 irrelevant (random)binary features, and the class is the 4-parity of the four relevant features. The mutual information weights of allfeatures will be approximately zero using the formula above.An algorithm that overcomes this problem (and is one of the most successful preprocessing algorithms to date)is the Relief-F algorithm (Kononenko, 1994), which is an extension of an earlier algorithm called Relief (Kira &Rendell, 1992). The basic idea of these algorithms is to draw examples at random, compute their nearest neighbors,and adjust a set of feature weights to give more weight to features that discriminate the example from neighbors of13



Table 4: The Relief-F algorithm.procedure Relief-F(L;B)L = the number of random examples to drawB = the number of near neighbors to computefor all features j: wj := 0:0pc := the fraction of the training examples belonging to class cfor l := 1 to L dorandomly select an instance (xt; yt)let Hit be the set of B examples (xi; yi) nearest to xt such that yi = yt.for each class c 6= ytlet Mc be a set of B examples (xi; yi) nearest to xt such that yi = c.end forfor each feature jwj := wj � 1LB X(xi;yi)2Hit �(xtj ; xij) +Xc 6=yt py(1� pc)LB X(xi;yi)2Mc �(xtj ; xij)end for jend for lreturn wj 8 j .end Relief-Fdi�erent classes. Speci�cally, let x be a randomly-chosen training example, and let xs and xd be the two trainingexamples nearest to x (in Euclidean distance) in the same class and in a di�erent class, respectively. The goal ofRelief is to set the weight wj on input feature j to bewj = P (xj 6= xdj )� P (xj 6= xsj):In other words, the weight wj should be maximized when xd has a high probability of taking on a di�erent valuefor feature j and xs has a low probability of taking on a di�erent value for feature j. Relief-F computes a morereliable estimate of this probability di�erence by computing the B nearest neighbors of x in each class.Table 4 describes the Relief-F algorithm. In this algorithm, �(u; v) for two feature values u and v is de�ned asfollows: �(u; v) = 8<: ju� vj for real-valued features0 if u = v1 if u 6= v for discrete featuresKononenko, �Simec, and Robnik-�Sikonja (1997) have shown that Relief-F is very e�ective at detecting relevantfeatures, even when those features are highly dependent on other features. For the 4-parity problem mentionedabove (with 10 irrelevant random features), Relief-F can correctly separate the four relevant features from the10 irrelevant ones given 400 training examples. Kononenko computes the 10 nearest neighbors in each class (i.e.,B = 10). In his experiments, he sets the number of sample points L to be equal to the number of training examples,but in large data sets, good results can be obtained from much smaller samples.Kononenko, et al have also experimented with integrating Relief-F into a decision tree learning algorithm calledAssistant-R. They show that Assistant-R is able to perform much better than the original Assistant program(which uses mutual information to choose features) in domains with highly dependent features while giving essentiallythe same performance in domains with independent features.3.2.2 Selecting and Weighting Features by Testing with the Learning AlgorithmJohn, Kohavi, and Peger (1994) describe a computationally expensive method that they call the wrapper methodfor selecting input features. The idea is to generate sets of features, run the learning algorithm using only thosefeatures, and evaluate the resulting classi�ers via 10-fold cross-validation (or via a single holdout set). In 10-foldcross-validation, the training data are subdivided randomly into 10 disjoint equal-sized sets. The learning algorithmis applied 10 times, each time on a training set containing all but one of these subsets. The resulting classi�er istested on the one-tenth of the data that was held out. The performance of the 10 classi�ers (on their 10 respectivehold-out sets) is averaged to provide an estimate of the overall performance of the learning algorithm when trainedwith the given features.Kohavi and John explored step-wise selection algorithms that start with a set of features (e.g., the empty set),and considered adding or deleting a single feature. The possible changes to the feature set are evaluated (via 10-fold cross-validation), and the best change is made. Then, a new set of changes is considered. This method is14



only practical for data sets with relatively small numbers of features and very fast learning algorithms, but it gaveexcellent results on the UC Irvine benchmarks.Moore and Lee (1994) describe a much more e�cient approach to feature selection that combines leave-one-outcross-validation (LOOCV) with the nearest neighbor algorithm. In leave-one-out cross-validation, each trainingexample is temporarily deleted from the training data and the nearest neighbor learning algorithm is applied topredict the class of that example. The total number of classi�cation errors is the leave-one-out cross-validatedestimate of the error rate of the learning algorithm. Moore and Lee use the LOOCV error to compare di�erent setsof features with the goal of �nding the set of relevant features that minimizes the LOOCV error.They combine two very clever ideas to achieve this. The �rst idea is called racing. Suppose we are consideringtwo di�erent sets of relevant features, A and B. We repeatedly choose a training example at random, temporarilydelete it from the training set, and apply the nearest neighbor rule to classify it using features in set A and thefeatures in set B. We count the number of classi�cation errors corresponding to each set. As we process more andmore training examples in this leave-one-out fashion, the error rate for feature set A may become so much largerthan the error rate for B that we can conclude with high con�dence that B is the better feature set and terminatethe race. In their (1994) paper, they apply Bayesian statistics to make this termination decision.The second idea is based on schemas. We can represent each set of relevant features by a bit vector where a 1in position j means that feature j is relevant, and a 0 means it is irrelevant. A schema is a vector containing 0's,1's, and ?'s. A ? in position j means that this feature should be randomly selected to be relevant 50% of the time.Moore and Lee race pairs of schemas against one another as follows. A training example is randomly selected andtemporarily deleted from the training set. The nearest neighbor algorithm is applied to classify it using each of thetwo schemas being raced. To classify an example using a schema, features indicated by a 0 are ignored, featuresindicated by a 1 are selected, and features indicated by a ? are selected with probability 0.5. Suppose, for illustration,that we have 5 features. Moore and Lee begin by conducting 5 simultaneous pairwise races:1???? races against 0?????1??? races against ?0?????1?? races against ??0?????1? races against ???0?????1 races against ????0All of the races are terminated as soon as one of the schemas is found to be better than its opponent. In the nextiteration, all single bit re�nements of the winning schema are raced against one another. For example, suppose theschema ?1 ? ?? was the winner of the �rst race. Then the next iteration involves the following four pairwise races:11??? races against 01????11?? races against ?10???1?1? races against ?1?0??1??1 races against ?1??0This continues until all of the ?'s are removed from the winning schema. Moore and Lee found that this methodnever misses important relevant features, even when the features are highly dependent. However, in some rare cases,the races may take a very long time to conclude. The problem appears to be that the algorithm can be very slowto replace a ? with a 0. In contrast, the algorithm is very quick to replace a ? with a 1. Moore and Lee thereforeinvestigated an algorithm, called Schemata+ that terminates each race after 2000 evaluations (in favor of the 0;using the race statistics to choose the feature least likely to be relevant). The median number of training examplesthat must be evaluated by Schemata+ is only 13% of the number of evaluations required by greedy forward selectionand only 11% of the number of evaluations required by greedy backward elimination while achieving the same levelsof accuracy. An important direction for future research is to compare the accuracy and speed of Schemata+ andRelief-F, to see which works better with various learning algorithms.3.2.3 Integrating Feature Weighting into the Learning AlgorithmI now discuss two methods that integrate feature selection directly into the learning algorithm. Both of them havebeen shown to work well experimentally, and the second method, calledWinnow, works extremely well in problemswith thousands of potentially relevant input features.The �rst algorithm is called the Variable-kernel Similarity Metric or VSM method (Lowe, 1995). VSM is aform of Gaussian radial basis function method. To classify a new data point xt, it de�nes a multivariate Gaussianprobability distribution ' centered on xt with standard deviation �. Each example (xi; yi) in the training data set15



\votes" for class yi with an amount '(jjxi � xtjj;�). The class with the highest vote is assigned to be the classyt = f(xt) of the data point xt.The key to the e�ectiveness of VSM is that it learns a weighted distance metric for measuring the distancebetween the new data point x and each training point xi. VSM also adjusts the size � of the Gaussian distributiondepending on the local density of training examples in the neighborhood of xt.In detail, VSM is controlled by a set of learned feature weights w1; : : : ; wn, a kernel radius parameter r, and anumber of neighbors R. To classify a new data point xt, VSM �rst computes the weighted distances to the R nearestneighbors (xi; yi): di =vuut nXj=1w2j (xtj � xij)2:It then computes a kernel width � from the average distance to the R=2 nearest neighbors:� = 2rR R=2Xi=1 di:Finally, it computes the probability that the next point xt belongs to each class c (the quantity vi is the \vote" fromtraining example i): vi = exp�� d2i2��P [f(xt) = c] = RXi=1 vi[[yi = c]]viVSM then guesses the class with the highest probability.How does VSM learn the values of the feature weights and the kernel radius r? By performing gradient descentsearch to minimize the leave-one-out cross-validated accuracy of the VSM classi�er. Lowe (1995) shows how tocompute the gradient of the LOOCV error with respect to each of the weights wj and the parameter r. Starting withinitial values for these parameters, VSM computes the R nearest neighbors of each training examples (xi; yi). Itthen computes the gradient and performs a search in the direction of the gradient to minimize LOOCV error (whilekeeping this set of nearest neighbors �xed). The search along the direction of the gradient is called a line search, andthere are several e�cient algorithms available (Press, Flannery, Teukolsky, & Verrerling, 1992). Even though theweights are changing during the line search, the set of nearest neighbors (and the gradient) is not recomputed. Oncethe error is minimized along this direction of the gradient, the R nearest neighbors are recomputed, a new gradientis computed, and a new line search is performed. Lowe applied the conjugate gradient algorithm to select each newsearch direction, and he reports that generally only 5{30 line searches were required to minimize the LOOCV error.The resulting classi�ers gave excellent results on two challenging benchmark tasks.The last feature weighting algorithm I will discuss is theWinnow algorithm developed by Littlestone (Littlestone,1988). Winnow is a linear threshold algorithm for 2-class problems with binary (i.e., 0/1-valued) input features. Itclassi�es a new example x into class 2 if Xj wjxj > �and into class 1 otherwise. Winnow is an online algorithm; it accepts examples one-at-a-time and updates theweights wj as necessary. Pseudo-code for the algorithm is shown in Table 5.Winnow initializes its weights wj to 1. It then accepts a new example (x; y) and applies the threshold rule tocompute the predicted class y0. If the predicted class is correct (y0 = y), Winnow does nothing. However, if thepredicted class is wrong, Winnow updates its weights as follows. If y0 = 0 and y = 1, then the weights are too low,so for each feature xj = 1, wj := wj � �, where � is a number greater than 1 called the promotion parameter. Ify0 = 1 and y = 0, then the weights were too high, so for each feature xj = 1, it decreases the corresponding weightby setting wj := wj � �, where � is a number less than 1 called the demotion parameter.The fact that Winnow leaves the weights unchanged when the predicted class is correct is somewhat puzzlingto many people. It turns out to be critical for its successful behavior, both theoretically and experimentally. Oneexplanation is that, like AdaBoost, this strategy focusesWinnow's attention on its mistakes. Another explanationis that it helps prevent over�tting.Littlestone's theoretical analysis of Winnow introduced the worst-case mistake bound method. The idea is toassume that the true function y = f(x) belongs to some set of classi�ers H and derive a bound on the maximum16



Table 5: The Winnow algorithmprocedure Winnow(�; �; �)� > 1 is the promotion parameter� < 1 is the demotion parameter� is the thresholdinitialize wj := 1 for all jfor each training example (x; y)z :=Pj wj � xjy0 := n 0 if z < �1 if z � �if y0 = 0 and y = 1 thenwj := wj � � for each j such that xj = 1end ifelse if y0 = 1 and y = 0 thenwj := wj � � for each j such that xj = 1end ifend forend Winnownumber of mistakes that Winnow will make when an adversary is allowed to choose f and allowed to choose theorder in which the training examples are presented to Winnow. Littlestone proves the following result:Theorem 1 Let f be a disjunction of r out of its n input features. Then Winnow will learn f and make no morethan 2 + 3r(1 + lgn) mistakes. (For � = 2, � = 1=2, and � = n.)This theorem shows that the convergence time ofWinnow is linear in the number of relevant features r and onlylogarithmic in the total number of features n. Similar results hold for other values of the �, �, and � parameters,which permits Winnow to learn functions where u out of v of the features must be 1 and many other interestingclasses of boolean functions.Winnow is an example of an exponential update algorithm. The weights of the relevant features grow exponen-tially, while the weights of the irrelevant features shrink exponentially. General results in computational learningtheory have developed similar exponential update algorithms for many applications. A common property of thesealgorithms is that they excel when the number of relevant features is small compared to the total number of features.Winnow has been applied to several experimental learning problems. Blum (1997) describes an application to acalendar scheduling task. In this task, a calendar system is given a description of a proposed meeting (including thelist of invitees and their properties). It must then predict the start-time, day-of-week, location, and duration of themeeting. There were 34 input features available, some with many possible values. Blum de�ned boolean featurescorresponding to all possible values of all pairs of the input features. For example, given two input features event-typeand position-of-attendees, he would de�ne a separate boolean feature for each legal combination, such as event-type =meeting and position-of-attendees = grad-student. This gave a total of 59,731 boolean input features. He then appliedWinnow with � = 3=2 and � = 1=2. He modi�ed Winnow to prune (set to zero) weights that become very small(less than 0.00001).Winnow found that 561 of the Boolean features were actually useful for prediction. Its accuracy was betterthan that of the best previous classi�er for this task (which employed a greedy forward selection algorithm to selectrelevant features for a decision tree learning algorithm).Golding and Roth (1996) describe an application ofWinnow to context-sensitive spelling correction. This is thetask of identifying spelling errors where one legal word is substituted for another, such as It's not to late, where tois substituted for too. The Random House dictionary (Flexner, 1983) lists many sets of commonly-confused words,and Golding and Roth developed a separate Winnow classi�er for each of the listed sets (e.g., fto, too, twog).Winnow's task is to decide whether each occurrance of these words is correct or incorrect based on its context.Golding and Roth use two kinds of boolean input features. The �rst kind are context words. A context word is afeature that is true if a particular word (e.g., \cloudy") appears within 10 words before or after the target word. Thesecond kind are collocation features. These test for a string of 2 words or part-of-speech tags immediately adjacentto the target word. For example, the sequence \htargeti to VERB" is a collocation feature that checks whether thetarget word is immediately followed by the word \to" and then a word that can potentially be a verb (according to adictionary lookup). Based on the 1-million word Brown corpus (Ku�cera & Francis, 1967), Golding and Roth de�nedmore than 10,000 potentially relevant features. 17
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Modified Bayes AccuracyFigure 6: Comparison of the percentage of correct classi�cations for a modi�ed Bayesian method and Winnow for21 sets of frequently-confused words. Trained on 80% of the Brown corpus and tested on the remaining 20%. Pointslying above the line y = x correspond to cases where Winnow is more accurate.Golding and Roth applied Winnow (with � = 3=2, � varying between 0.5 and 0.9, and � = 1). They comparedits accuracy to the best previous method, which is a modi�ed naive Bayesian algorithm. Figure 6 shows the resultsfor 21 sets of frequently-confused words.An important advantage of Winnow, in addition to its speed and ability to operate online, is that it can adaptrapidly to changes in the target function. This was shown to be very important in the calendar scheduling problem,where the scheduling of di�erent types of meetings may shift when semesters change (or during summer break).Blum's experiments showed that Winnow was able to respond quickly to such changes. By comparison, to enablethe decision tree algorithm to respond to changes, it was necessary to decide which old training examples could bedeleted. This is di�cult to do, because while some kinds of meetings may change with the change in semesters, othermeetings may stay the same. A decision to keep, for example, only the most recent 180 training examples, meansthat examples of rare meetings whose scheduling does not change will be lost, which hurts the performance of thedecision tree approach. In contrast, because Winnow only revises the weights on features when they have the value1, features describing such rare meetings are likely to retain their weights even as the weights for other features arebeing modi�ed rapidly.3.3 Summary: Scaling Up Learning AlgorithmsThis concludes my review of methods for scaling up learning algorithms to apply to very large problems. With thetechniques described here, problems having one million training examples can be solved in reasonable amounts ofcomputer time. However, it is not clear whether the current stock of ideas will permit the solution of problems withbillions of training examples. An important open problem is to gather more practical experience with very largeproblems, so that we can understand their properties and determine where these algorithms fail.A recurring theme is the use of subsamples of the training data to make critical intermediate decisions (such asthe choice of relevant features). Another theme is the development of e�cient online algorithms, such as Winnow.These are \anytime" algorithms that can produce a useful answer regardless of how long they are permitted to run.The longer they run, the better the result that they produce.An important open topic is the problem of handling thousands of output classes. Section 2 has already describedthe two methods that are most appropriate in this case: error-correcting output coding and AdaBoost.OC. Bothof these methods should scale well with the number of classes. Error-correcting output coding has been tested on18



problems with up to 126 classes, but tests on very large problems with thousands of classes have not yet beenperformed.4 Reinforcement LearningThe previous two sections have discussed problems in supervised learning from examples. This section addressesproblems of sequential decision making and control that come under the heading of reinforcement learning.Work in reinforcement learning dates back to the earliest days of arti�cial intelligence when Arthur Samueldeveloped his famous checkers program (Samuel, 1959). More recently, there have been several important advancesin the practice and theory of reinforcement learning. Perhaps the most famous work is Gerry Tesauro's (1992) TD-gammon program, which has learned to play backgammon better than any other computer program and almost aswell as the best human players. Two other interesting applications are the work of Zhang and Dietterich (1995) onjob shop scheduling and Crites and Barto (1995) on real-time scheduling of passenger elevators.Kaelbling, Littman, and Moore (1996) have published an excellent survey of reinforcement learning and Mahade-van and Kaelbling (1996) report on a recent NSF-sponsored workshop on the subject. Two new books (Barto &Sutton, 1997; Bertsekas & Tsitsiklis, 1996) describe the newly-developed reinforcement learning algorithms and thetheory behind them. I will summarize these developments here.4.1 An Introduction to Dynamic ProgrammingThe most important insight of the past �ve years is that reinforcement learning is best analyzed as a form of online,approximate dynamic programming (Barto, Bradtke, & Singh, 1995). I will introduce this insight using the followingnotation. Consider a robot interacting with an external environment. At each time t, the environment is in somestate st, and the robot has available some set of actions A. The robot executes an action at, which causes theenvironment to move to a new state st+1. A convenient way of specifying the desired behavior of the robot is tode�ne an immediate reward function R(st; a; st+1) that speci�es a real-valued reward for this transition from st tost+1. For example, we can assign a positive reward to actions that reach a desired goal location and we can assign anegative reward to undesirable actions such as colliding with walls, people, or other robots. The immediate rewardin all other states could be de�ned to be zero.Our long-term goal for the robot can then be de�ned as some function of the immediate rewards it receives. Acommonly-used criterion is the cumulative discounted reward,1Xt=0 tR(st; a; st+1);where 0 �  < 1 is a discount factor that controls the relative importance of short-term and long-term rewards.A procedure or rule for choosing each action a given state s is called the policy of the robot, and it can beformalized as a function a = �(s). The goal of reinforcement learning algorithms is to compute the optimal policy,denoted ��, which maximizes the cumulative discounted reward.Researchers in dynamic programming (e.g., Bellman, 1957) found it convenient to de�ne a real-valued functionf�(s) called the value function of policy �. The value function f�(s) gives the expected cumulative discounted rewardthat will be received by starting in state s and executing policy �. It can be de�ned recursively by the formula,f�(s) =Xs0 P (s0js; �(s)) � [R(s; �(s); s0) + f�(s0)]; (1)where P (s0js; �(s)) is the probability that the next state will be s0 given that the current state is s and we take action�(s).Given a policy �, a reward runction R, and the transition probability function P , it is possible to compute thevalue function f� by solving the system of linear equations containing one equation of the form of Equation (1) foreach possible state s. The system of equations can be solved via standard methods, such as Gaussian Eliminationor Gauss-Seidel iteration or it can be solved iteratively by converting the equation into an assignment statement:f�(s) :=Xs0 P (s0js; �(s)) � [R(s; �(s); s0) + f�(s0)]: (2)This assignment statement is called a simple backup, because it can be viewed as taking the current estimated value(s)f�(s0) and \backing them up" to compute a revised estimate for f�(s). An example is shown in Figure 7. In state s,19
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Table 7: The Value Iteration Algorithmprocedure ValueIteration(P;R)let f be an arbitrary initial value functionrepeat until f is unchanged in all statesfor each state s, perform a Bellman backup (Equation 4)endfor each state s, compute the optimal policy (Equation 3)end ValueIterationpossible resulting state s0. By performing enough Bellman backups in every state, we can converge to the optimalvalue function f�. This is called the Value Iteration algorithm, and it is summarized in Table 7.Unfortunately, value iteration can be more di�cult than policy iteration because (a) each backup is a moreexpensive Bellman backup rather than a simple backup and (b) the value function may take a very long time toconverge. Indeed, it is possible for the optimal policy to have converged long before the value function converges.A hybrid algorithm that combines aspects of both value iteration and policy iteration is called Modi�ed PolicyIteration. This algorithm is essentially the same as Policy Iteration except that only a �xed number of simple backupsare performed in each state in each iteration. This means that the estimated value function for the current policy f�does not completely converge to the correct value function, but under fairly mild conditions, it can be shown thatthe algorithm will still converge to the optimal policy.All three of these algorithms|policy iteration, value iteration, and modi�ed policy iteration|require performingbackups in every state, so their running time scales with the number of states. In fact, value iteration may run foran in�nite amount of time without converging. Policy iteration requires time at least O(n3) for problems with nstates just to compute the value of the policy in each iteration. For small problems, this is not a di�culty, but forproblems of interest in arti�cial intelligence, the state space often has 1020 or 1040 possible states, which rendersthese algorithms infeasible. Bellman termed this the curse of dimensionality, because the number of states, andhence the running time, increases exponentially with the number of dimensions in the state space.Another drawback of these algorithms is that they require a complete \model" of the system, by which I meanthe transition probabilities P (s0js; a) and the reward function R(s; a; s0). There are many applications where thismodel is unavailable (e.g., in a robot interacting with an unknown environment) or where the model cannot easily beconverted into a transition probability matrix. For example, in the elevator control problem studied by Crites andBarto (1995), a software simulator is available that can take a current state s and a proposed action a and generatethe next state s0 according to the transition probability distribution. However, that distribution is not explicitlyrepresented anywhere, so it is not available for direct use by a dynamic programming algorithm. The problem ofconstructing an explicit probability transition matrix and reward function has been called the curse of modeling, andin many problems it is just as severe than the curse of dimensionality. Reinforcement learning algorithms provide away of overcoming these two curses.Reinforcement learning algorithms have introduced three key innovations: (a) stochastic approximation of back-ups, (b) value function approximation, and (c) model-free learning. I will discuss these innovations in the context ofan algorithm known as TD(�) developed by Sutton (1988).4.2 Temporal Di�erence Learning and TD(�)I will begin by describing a simpli�ed version of Sutton's TD(�) algorithm, called TD(0). TD(0) is a method forcomputing approximate simple backups online. Suppose we are in state s and we follow the current policy by takingaction a = �(s). If we are interacting with a real external environment (or with a simulator), the environment makesa probabilistic transition to a new state s0 and produces the immediate reward R(s; a; s0). The TD(0) algorithmobserves this new state and reward and updates the value function as follows:f�(s) := (1� �) � f�(s) + � � [R(s; a; s0) + f�(s0)];where � is a learning rate parameter. Typical values for � are between 0.01 and 0.5. (Technically, the � values mustshrink to zero over time in order for TD(0) to converge.)The basic idea of TD(0) is that if we visit s many times and apply action a many times, then by sampling overtime, we will get the same e�ect as if we performed a simple backup. We can do this by sampling from the probabilitydistribution P (s0js; a) rather than by having direct computational access to P .21



st+1s s s s s s s stt–1t–2t–3t–4t–5t–6t–7Figure 8: A sequence of states. The eligibility of each state (with � = 0:8) is shown as a vertical bar.This strategy allows TD(0) to compute the value of a policy without having an explicit model. The environmentserves as its own model!When Sutton developed TD(0), he also introduced a second idea. Instead of storing a separate value f�(s) foreach state s, suppose we represent the value function as a neural network (or some other di�erentiable functionapproximator) of the form f(s;W ), where W is a vector of adjustable weights. With this representation, we can'tdirectly assign a value to a state, but we can adjust the weights so that f(s;W ) is closer to the desired value. Wedo this by de�ning an error function:J(W ) = 12�f�(s;W )� [R(s; a; s0) + f�(s0;W )]�2:This is the squared di�erence between the current estimated value of state s, f�(s;W ), and the backed-up value.This is called the temporal di�erence error. Our goal is to modify W to reduce the temporal di�erence error J(W ).Di�erentiating J(W ) (and treating only the �rst occurrence of W as adjustable), we obtain the learning ruleW :=W � �rW f(s;W )�f�(s;W )� [R(s; a; s0) + f�(s0;W )]�;where rW f(s;W ) is the gradient of f with respect to the weights W . This takes a step of size � in the direction ofthe decreasing gradient scaled by the size of the temporal di�erence error.By using a smoothly parameterized function approximation f(s;W ), TD(0) can circumvent the curse of dimen-sionality provided that f(s;W ) can accurately approximate the true value function f(s) with a small number ofparameters W .Sutton introduced one other wonderful idea in the TD(�) algorithm|the eligibility trace. Suppose we havevisited a sequence of states s1, s2, . . . , st, st+1, and we are updating the value of f(st;Wt). Sutton suggested thatwe might want to update the values of the preceding states as well, since the key idea of dynamic programmingis to propagate information about expected rewards backward through the state space. Sutton proposed that weshould remember the gradient rWt�if(st�i;Wt�i) for each state st�i, for i = 1; : : : ; n, that we have visited. When weupdate f(st;Wt) by taking a step in the direction of �rWtf(st;Wt), we will also take a smaller step in the directionof �rWt�1f(st�1;Wt�1) and an even smaller step in the direction of �rWt�2f(st�2;Wt�2) and so on. Each stepsizewill be decreased by a factor of � < 1. This gives us the learning ruleW :=W � � 1Xi=0 �irWt�if(st�i;Wt�i)!�f�(st;W )� [R(st; a; st+1) + f�(st+1;W )]�:The value of �i is called the eligibility of state st�i. Figure 8 shows the eligibility of a sequence of states as a bargraph.The in�nite sum P1i=0 �irW f(st�i;Wt�i) can be implemented by maintaining a current gradient vector G:Gt := �Gt�1 +rWtf(st;Wt):With this change, we get the full algorithm TD(�) shown in Table 8. Readers familiar with the momentum methodfor stabilizing backpropagation will note that the eligibility trace mechanism is very similar. However, in the mo-mentum method, previous weight changes are remembered, while in the eligibility trace, previous gradient vectorsare remembered and future temporal di�erences determine the stepsize along those previous gradients.There have been many theoretical studies of the behavior of TD(�). The most general results have been obtainedby Tsitsiklis and Van Roy (1996). They analyze the case where the function approximator f(s;W ) is a linear22



Table 8: The TD(�) algorithm for computing the value of a policy �procedure TD(�; �; ; �; s0)initialize G = 0initialize W randomlys0 is the starting statewhile W has not converged dotake action a = �(st)observe resulting state st+1 and reward R(st; a; st+1)G := �G+rW f(st;W )W :=W � �G � �f(st;W )� [R(st; a; st+1) + f(st+1;W )]�end whilereturn W which de�nes f�end TDcombination of �xed (and arbitrary) orthogonal basis functions. To analyze how well f(s;W ) can approximate f�,some notion of the distance between two value functions is needed. Tsitsiklis and Van Roy de�ne the followingmeasure: jjf � f�jjD =  Xs [f(s)� f�(s)]2D(s)!1=2 ;where D(s) is the probability that the policy � visits state s.Using this measure, let f̂� be the best approximation of f� that can be represented by a linear combination ofthe given basis functions. Tsitsiklis and Van Roy prove that TD(�) will converge to a function f such thatjjf � f�jjD � jjf̂� � f�jjD1� (1� �)=(1� �) :The quantity on the left-hand side is the error between the function f learned by TD(�) and the true valuefunction f� for policy �. The numerator on the right-hand side is the inherent approximation error resulting fromthe use of a linear combination of the given, �xed basis functions. The denominator is the error that results fromthe fact that approximation errors in one state will be propagated backward to earlier states. For large �, thedenominator approaches 1 (no error), but for � = 0, the denominator becomes 1 � , which could be very small,and hence produce very large errors. For this result to hold, it is essential that the backups performed by TD(�) beperformed according to the current policy �. If this condition is not observed, then TD(�) may fail to converge.The TD(�) algorithm provides a way of computing the value of a �xed policy without direct access to thetransition probabilities and reward function. However, this is only of limited utility unless we can perform the policyimprovement step from Equation (3) and thereby implement the policy iteration algorithm. Unfortunately, policyimprovement requires access to a model that can generate the possible next states and their probabilities.4.3 Applications of TD(�)There are many domains where such a model is available. For example, in game-playing settings, such as backgam-mon, it is easy to compute the set of available moves from each state and the probabilities of all successor states.Hence, TD(�) can be combined with policy improvement to learn an optimal policy for backgammon. This is whatTesauro did in his famous TD-gammon system (Tesauro, 1992, 1995).TD-gammon employs a neural network representation of the value of a state. The state of the backgammon gameis described by a vector of 198 features that encode the locations of the pieces on the board and the values shownon the dice. TD-gammon begins with a randomly-initialized neural network. It plays a series of games against itself.At each step, it makes a full one-step lookahead search, applies the neural network to evaluate each of the resultingstates, and makes the move corresponding to the highest backed up value. In short, it applies Equation (3) tocompute the action to perform next. This is a form of local policy improvement. After making the move, it observesthe resulting state and applies the TD(�) rule to update the value function. In e�ect, TD-gammon is executing aform of modi�ed policy iteration where it alternates between one step of policy evaluation (the TD(�) update) andone step of policy improvement (the computation of the best move to make).There is no guarantee that this algorithm will converge to the optimal policy. Indeed, it is easy to constructexamples where the strategy of always performing the best action based on the current approximation to the value23



Start Goal

Figure 9: Two networks of roads around a mountain. Without exploration, an initial policy that follows the northernroads will never discover that the southern roads provide a shorter route to the goal.function, f(s;W ), will lead to a local minimum. For example, consider the navigation problem shown in Figure 9.There is a large mountain separating the start state from the goal. A network of roads passes to the north of themountain, and a similar (and shorter) network passes to the south. Suppose that our initial policy takes us to thenorth side and we eventually reach the goal. After updating our value function using TD(�), suppose that the northside still appears to be shorter than the south side (because our estimates for the values of the states along the southside are too high). Then, in future trials we will continue to take the north roads, and we will never try the southernroute.This is called the problem of exploration. The heart of the problem is that to �nd the optimal policy, it isnecessary to prove that every o�-policy action leads to worse expected results than the actions of the optimal policy.In this situation, it is essential to explore the southern path to determine whether it is worse (or better!) than thenorthern path. The strategy of always taking the action that appears to be optimal based on the current valuefunction is called the pure exploitation strategy. The example in Figure 9 shows that the pure exploitation strategywill not always �nd the optimal policy. Hence, online reinforcement learning algorithms must balance exploitationwith exploration.Fortunately, in backgammon, the random dice rolls inject so much randomness into the game that TD-gammonthoroughly investigates the possible moves in the game. Experimentally, the performance of TD-gammon is out-standing. It plays much better than any other computer program, and it is nearly as good as the world's best players.The results of three versions of the program in three separate matches against human players are shown in Table 9.In some situations, the moves chosen by TD-gammon have been adopted by expert humans.A similar strategy was applied by Zhang and Dietterich (1995) to the problem of job-shop scheduling. In job-shop scheduling, a set of tasks must be scheduled to avoid resource conicts. Each task requires certain resourcesthroughout its duration, and each task has prerequisite tasks that must be completed before it can be executed. Anoptimal schedule is one that completes all of its tasks in the minimum amount of time while satisfying all resourceand prerequisite constraints.Zweben, Daun, and Deale (1994) developed a repair-based search space for this task in which each state is acomplete schedule (i.e., all tasks have assigned start times). The starting state is a critical path schedule in whichevery task is scheduled as early as possible subject to its prerequisite constraints and ignoring its resource constraints.The actions in this search space identify the earliest constraint violation and repair it by moving tasks later in time(thus lengthening the schedule). The search terminates when a violation-free schedule is found.Zhang and Dietterich reformulated this as a reinforcement learning problem where the optimal policy will choosea sequence of repairs that will produce the shortest possible schedule. The immediate reward function gives a smallcost to each repair action and a �nal reward that is inversely proportional to the �nal length of the schedule. Zhang24



Table 9: Summary of the Performance of TD-gammon against some of the world's best players. The results areexpressed in net points won (or lost) and in points won per game. Taken from Tesauro (1995).Program Training Games Opponents ResultsTDG 1.0 300,000 Robertie, Davis, �13 pts/51 gamesMagriel (�0:25 ppg)TDG 2.0 800,000 Goulding, Woolsey �7 pts/38 gamesSnellings, Russell, (�0:18 ppg)SylvesterTDG 2.1 1,500,000 Robertie �1 pts/40 games(�0:02 ppg)and Dietterich applied TD(�) with a feed-forward neural network to represent the value function. The actions in thisdomain are deterministic, so deliberate exploration is needed. Their system makes a random exploratory move witha given probability, �, which is gradually decreased during learning. After learning, their system �nds schedules thatare substantially shorter than the best previous method (for the same expenditure of CPU time). This approach ofconverting combinatorial optimization problems into reinforcement learning problems should be applicable to manyother important industrial domains.These two applications show that when a simulator is available for a task, it is possible to solve the reinforcementlearning problem using TD(�) even in very large search spaces. However, in domains involving interaction withhard-to-model real-world environments (e.g., robot navigation, factory automation), some other method is needed.Two approaches have been explored.One approach is to learn a predictive model of the environment by interacting with it. Each interaction withthe environment provides a training example for supervised learning of the form s0 = env(s; a), where env is theenvironment, s and a are the current state and action, and s0 is the resulting state. Standard supervised learningalgorithms can be applied to learn this model, which can then be combined with TD(�) to learn an optimal policy.The second approach is a model-free algorithm called Q-learning, developed by Watkins (Watkins, 1989; Watkins& Dayan, 1992), which is the subject of the next section.4.4 Model-free Reinforcement Learning (Q-learning)Q-learning is an online approximation of value iteration. The key to Q-learning is to replace the value function f(s)with an action-value function, Q(s; a). The quantity Q(s; a) gives the expected cumulative discounted reward ofperforming action a in state s and then pursuing the current policy thereafter. Hence, the value of a state is themaximum of the Q values for that state: f(s) = maxa Q(s; a):We can write down the Q version of the Bellman equation as follows:Q(s; a) =Xs0 P (s0js; a) hR(s0js; a) + maxa0 Q(s0; a0)i :The role of the Q function is illustrated in Figure 10, where it is contrasted with the value function f . In the leftpart of the �gure, we see that the Bellman backup updates the value of f(s), by considering the values f(s0) of statesthat result from di�erent possible actions. In the right part of the �gure, the analogous backup works by taking thebest of the values Q(s0; a0) and backing them up to compute an updated value for Q(s; a).The Q function can be learned by an algorithm that exploits the same insight as TD(0)|online sampling of thetransition probabilities|and an additional idea|online sampling of the available actions. Speci�cally, suppose wehave visited state s, performed action a, and observed the resulting state s0 and immediate reward R(s; a; s0). Wecan update the Q function as follows:Q(s; a) := (1� �)Q(s; a) + � � �R(s; a; s0) + maxa Q(s0; a)�:Suppose that every time we visit state s, we choose the action a uniformly at random. Then the e�ect will be toapproximate a full Bellman backup (see Equation 4). Each value Q(s; a) will be the expected cumulative discountedreward of executing action a in s, and the maximum of these values will be f(s). The random choice of a ensures that25
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Figure 10: A comparison of the value function f and the Q function. Black nodes represent situations where theagent has chosen an action. White nodes are states where the agent has not yet chosen an action.we learn Q values for every action available in state s. The online updates ensure that we experience the resultingstates s0 in proportion to their probabilities P (s0js; a).In general, we can choose which actions to perform in any way we like, as long as there is a non-zero probabilityof performing every action in every state. Hence, a reasonable strategy is to choose the best action (i.e., the onewhose estimated value Q(s; a) is largest) most of the time but to choose a random action with some small probability.Watkins proves that as long as every action is performed in every state in�nitely many times, the Q function willconverge to the optimal function Q� with probability 1.Once we have learned Q�, we must convert it into a policy. While this presented an insurmountable di�culty forTD(0), it is trivial for the Q representation. The optimal policy can be computed as��(s) = argmaxa Q�(s; a):Crites and Barto (1995) applied Q-learning to a problem of controlling four elevators in a 10-story o�ce buildingduring peak \down tra�c." People press elevator call buttons on the various oors of the building to call the elevatorto that oor. Once inside the elevator, they may also press destination buttons to request that the elevator stopat various oors. The elevator control decisions are (a) to decide, after stopping at a oor, which direction to gonext, and (b) to decide, when approaching a oor, whether to stop at that oor or skip it. Crites and Barto appliedrules to make the �rst decision, so the reinforcement learning problem is to learn whether to stop or skip oors. Thegoal of the controller is to minimize the square of the time that passengers must wait for the elevator to arrive afterpressing the call button.Crites and Barto used a team of four Q-learners, one for each of the four elevator cars. Each Q-function wasrepresented as a neural network with 47 input features, 20 sigmoidal hidden units, and 2 linear output units (torepresent Q(s; stop) and Q(s; skip)). The immediate reward was the (negative of the) squared wait time since theprevious action. They employed a form of random exploration in which exploratory actions are more likely to bechosen if they have higher estimated Q values.Figure 11 compares the performance of the learned policy to that of eight heuristic algorithms, including the bestnon-proprietary algorithms. The left-hand graph shows the squared wait time, while the right-hand graph shows thepercentage of passengers that had to wait more than 60 seconds for the elevator. The learned Q policy performsbetter than all of the other methods.Another interesting application of Q learning is to the problem of assigning radio channels for cellular tele-phone tra�c. Singh and Bertsekas (1997) showed that Q learning could �nd a much better policy than some quitesophisticated and complex published methods.4.5 Open Problems in Reinforcement LearningMany important problems remain unsolved in reinforcement learning, which reects the relative youth of the �eld.I discuss a few of these problems here. 26
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Figure 11: Comparison of learned elevator policy Q with eight published heuristic policies.First, the use of multilayer sigmoidal neural networks for value function approximation has worked, but there isno reason to believe that such networks are well-suited to reinforcement learning. First, they tend to forget episodes(both good and bad), unless they are retrained on those episodes frequently. Second, the need to make small gradientdescent steps makes learning very slow, particularly in the early stages. An important open problem is to clarify whatproperties an ideal value function approximator would possess and to develop function approximators with thoseproperties. Initial research suggests that value function approximators should be \local averagers" that compute thevalue of a new state by interpolating among the values of previously visited states (Gordon, 1995).A second key problem is to develop reinforcement methods for hierarchical problem solving. For very large searchspaces, where the distance to the goal and the branching factor are big, no search method can work well. Often suchlarge search spaces have a hierarchical (or approximately hierarchical) structure that can be exploited to reduce thecost of search. There have been several studies of ideas for hierarchical reinforcement learning (e.g., Singh, 1992;Dayan & Hinton, 1993; Kaelbling, 1993).The third key problem is to develop intelligent exploration methods. Weak exploration methods that rely onrandom or biased random choice of actions cannot be expected to scale well to large, complex spaces. A property of thesuccessful applications shown above (particularly backgammon and job-shop scheduling) is that even random searchwill reach a goal state and receive a reward. In domains where success is contingent on a long sequence of successfulchoices, random search has a very low probability of receiving any reward. More intelligent search methods, suchas means-ends analysis, need to be integrated into reinforcement learning systems as they have been integrated intoother learning architectures such as Soar (Laird, Newell, & Rosenbloom, 1987) and Prodigy (Minton, Carbonell,Knoblock, Kuokka, Etzioni, & Gil, 1989).A fourth problem is that optimizing cumulative discounted reward is not always appropriate. In problems wherethe system needs to operate continuously, a better goal is to maximize the average reward per unit time. However,algorithms for this criterion are more complex and not as well-behaved. Several new methods have been put forwardrecently (Schwartz, 1993; Mahadevan, 1996; Ok & Tadepalli, 1996).The �fth, and perhaps most di�cult, problem is that existing reinforcement learning algorithms assume that theentire state of the environment is visible at each time step. This is not true in many applications, such as robotnavigation or factory control, where the available sensors provide only partial information about the environment.A few algorithms for the solution of hidden-state reinforcement learning problems have been developed (Cassandra,Kaelbling, & Littman, 1994; Littman, Cassandra, & Kaelbling, 1995; McCallum, 1995; Parr & Russell, 1995).Exact solution appears to be very di�cult. The challenge is to �nd approximate methods that scale well to largehidden-state applications.Despite these very substantial open problems, reinforcement learning methods are already being applied to awide range of industrial problems where traditional dynamic programming methods are infeasible. Researchers inthe area are optimistic that reinforcement learning algorithms can solve many problems that have resisted solutionby machine learning methods in the past. Indeed, the general problem of choosing actions to optimize expectedutility is exactly the problem faced by general intelligent agents. Reinforcement learning provides one approach toattacking these problems.
27



5 Learning Stochastic ModelsThe �nal topic that I will discuss is the area of learning stochastic models. Traditionally, researchers in machinelearning have sought very general-purpose learning algorithms|such as decision tree, rule, neural network, andnearest neighbor algorithms|that could e�ciently search a large and exible space of classi�ers for a good �t totraining data. While these algorithms are very general, they have a major drawback. In a practical problem wherethere is extensive prior knowledge, it can be quite di�cult to incorporate this prior knowledge into these very generalalgorithms. A secondary problem is that the classi�ers constructed by these general learning algorithms are oftendi�cult to interpret|their internal structure may not have any correspondence to the real-world process that isgenerating the training data.Over the past �ve years or so there has been tremendous interest in a more knowledge-based approach basedon stochastic modeling. A stochastic model is a model that describes the real-world process by which the observeddata are generated. Sometimes the terms generative stochastic model and causal model are used to emphasize thisperspective. The stochastic model is typically represented as a probabilistic network|a graph structure that capturesthe probabilistic dependencies (and independencies) among a set of random variables. Each node in the graph has anassociated probability distribution, and from these individual distributions, the joint distribution of the observed datacan be computed. To solve a learning problem, the programmer designs the structure of the graph and chooses theforms of the probability distributions. This yields a stochastic model with many free parameters (i.e., the parametersof the node probability distributions). Given a training sample, learning algorithms can be applied to determinethe values of the free parameters and thereby �t the model to the data. Once a stochastic model has been learned,probabilistic inference can be carried out to support tasks such as classi�cation, diagnosis, and prediction.More details on probabilistic networks are given in two recent textbooks: Jensen (1996) and Castillo, Gutierrez,and Hadi (1997).5.1 Probabilistic NetworksFigure 12 is an example of a probabilistic network that might be used to diagnose diabetes. There are six variables(with their abbreviations):� Age: Age of patient (A),� Preg: Number of pregnancies (N),� Mass: Body mass (M),� Insulin: Blood insulin level (after a glucose tolerance test) (I),� Glucose: Blood glucose level (after a glucose tolerance test) (G), and� Diabetes: True if the patient has diabetes (D).In a medical diagnosis setting, the �rst �ve variables would be observed and then the computer would estimate theprobability that the patient has diabetes (i.e., estimate the probability that the Diabetes variable is true).This network corresponds to the following decomposition of the joint probability distribution among the sixvariables: P (A;N;M; I;G;D) = P (A) � P (N) � P (M jA;N) � P (DjM;A;N) � P (I jD) � P (GjI;D):Each node in the network corresponds to a probability distribution of the form P (NodejParents), where the Parents ofNode are the nodes with arcs pointing to Node. In other words, if we believe the network is a correct representationof the relationships among the variables, then it should be possible to factor the joint probability distribution intothe product of these smaller distributions.The structure of the network|particularly the arcs that are absent|can be viewed as specifying conditionalindependencies. Two variables A and B are conditionally independent given C ifP (A;BjC) = P (AjC) � P (BjC):In the graph, Age a�ects Insulin only through the Diabetes node, so Age and Insulin are conditionally independentgiven Diabetes. More generally, given the values of its parents, a node is independent of all other nodes in the graphexcept its descendents. Formally,P (A;BjParents(A)) = P (BjParents(A)) � P (AjParents(A));28
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Figure 12: A probabilistic network for diabetes diagnosisTable 10: Probability tables for the Age, Preg, and Mass nodes from Figure 12. A learning algorithm must �ll in theactual probability values based on the observed training data.Age P (A)0-2526-5051-75>75Preg P (N)01> 1
P (M jA;N)Age Preg 0-50 51-100 >1000-25 00-25 10-25 >126-50 026-50 126-50 >151-75 051-75 151-75 >1>75 0>75 1>75 >1unless B is a descendent of A.In addition to specifying the structure of the network, we need to specify how each probability distribution willbe represented. One standard approach is to discretize the variables into a small number of values and representeach probability distribution as a table. For example, suppose we discretized Age into the values f0-25, 26-50, 51-75,>75g, Preg into the values f0, 1, >1g, and Mass into the values f0-50kg, 51-100kg, >100kgg. Then the probabilitydistributions for those three nodes could be represented by the probability tables shown in Table 10. The learningtask is to �ll in the probability values in these tables. The table for P (A) requires 3 independent parameters (becausethe four values must sum to 1). The table for P (N) requires 2 parameters, and the table for P (M jA;N) requies 24parameters (because each row must sum to 1). Similar tables would be required for the other 3 nodes in the network.Given a set of training examples, this learning problem is very easy to solve. Each probability can be computeddirectly from the training data. For example the cell P (N = 1) can be computed as the number of patients inthe sample that had exactly 1 pregnancies. The parameter P (M = 51-100jA = 26-50; N = 1) is the fraction oftraining examples with Age = 26-50 and Preg = 1 that have a Mass = 51-100kg. Technically, these are the maximumlikelihood estimates of each of the probabilities. A di�culty that can arise is that some of the cells in the tables mayhave very few examples, so the resulting probability estimates are very uncertain. One solution to this is to smoothprobabilities for \adjacent" cells in the table. For example, we might require that P (M = 51-100jA = 26-50; N = 1)have a value similar to P (M = 51-100jA = 26-50; N = >1). Of course we could also take an ensemble approach andgenerate an ensemble of �tted stochastic models, as described in Section 2 above.The process of learning a stochastic model consists of three steps: (a) choosing the graphical structure, (b)specifying the form of the probability distribution at each node in the graph, and (c) �tting the parameters of thoseprobability distributions to the training data. In most current applications, steps (a) and (b) are performed by auser and step (c) is performed by a learning algorithm. However, below I briey discuss methods for automating29
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x1 x2 x3 xnFigure 13: Probabilistic network for the Naive Bayes classi�erstep (a)|learning the graphical structure.Once we have learned the model, how can we apply it to predict whether new patients have diabetes? For a newcase, we will observe the values of all of the variables in the model except for the Diabetes node. Our goal is tocompute the probability of that node|that is, we seek the distribution P (DjA;N;M; I;G). We could pre-computethis distribution o�ine before observing any of the data, but the resulting conditional probability table would beimmense. A better approach is to wait until the values of the variables have been observed, and then compute thesingle corresponding row of the class probability table.This inference problem has been studied intensively, and a very general and elegant algorithm|the junction treealgorithm|has been developed (Jensen, Lauritzen, & Olesen, 1990). In addition, e�cient online algorithms havebeen discovered (e.g., D'Ambrosio, 1993). In the worst case, these algorithms require exponential time, but if theprobabilistic network is sparsely connected, the running time is quite reasonable.5.2 The Naive Bayes Classi�erA very simple approach to stochastic modeling for classi�cation problems is the so-called \naive" Bayes classi�er(Duda & Hart, 1973). In this approach, the training examples are assumed to be produced by the probabilisticnetwork shown in Figure 13, where the class variable is y, and the features are x1; : : : ; xn. According to this model,the environment generates an example by �rst choosing (stochastically) which class to generate. Then, once the classis chosen, the features describing the example are generated independently according to their individual distributionsP (xj jy).In most applications, the values of the features are discretized so that each feature takes on only a small numberof discrete values. The probability distributions are represented as tables as in the diabetes example, and the networkcan be learned directly from the training data by counting the fraction of examples in each class that take on eachfeature value.Because of the simple form of the network, it is easy to derive a classi�cation rule through the application ofBayes' rule. Suppose there are only two classes f1; 2g. Then our decision rule is to classify a new example into class1 if P (y = 1jx) > P (y = 2jx), or equivalently, if P (y = 1jx)=P (y = 2jx) > 1. By Bayes' rule, we can writeP (y = 1jx) = P (xjy = 1) � P (y = 1)P (x)P (y = 2jx) = P (xjy = 2) � P (y = 2)P (x)Dividing the �rst equation by the second allows us to cancel the normalizing denominator P (x) and obtainP (y = 1jx)P (y = 2jx) = P (xjy = 1) � P (y = 1)P (xjy = 2) � P (y = 2)The quantity P (xjy = i) is just the product of the individual probabilities P (xj jy = 1), so we haveP (y = 1jx)P (y = 2jx) = P (x1jy = 1) � P (x2jy = 1) � � �P (xnjy = 1) � P (y = 1)P (x1jy = 2) � P (x2jy = 2) � � �P (xnjy = 2) � P (y = 2) :This gives the decision rule that we should classify an example into class 1 if and only ifP (x1jy = 1)P (x1jy = 2) � P (x2jy = 1)P (x2jy = 2) � � � P (xnjy = 1)P (xnjy = 2) � P (y = 1)P (y = 2) > 1:30
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Naive Bayes AccuracyFigure 14: Comparison of C4.5 and the naive Bayesian classi�er on 28 data sets.Despite the fact that the naive Bayes model barely deserves the name \model" in many applications, it performssurprisingly well. Figure 14 compares the performance of C4.5 to the naive Bayes classi�er on 28 benchmark tasks(Domingos & Pazzani, 1996). The results show that except for a few domains where naive Bayes performs verybadly, it is typically competitive with or superior to C4.5. Domingos and Pazzani showed that the algorithm is veryrobust to violations of the assumption that the features are generated independently.5.3 Naive unsupervised learningAn important application of stochastic models is to problems of unsupervised learning. In unsupervised learning,we are given a collection of examples fx1; : : : ;xmg, and our goal is to construct some model of how these examplesare generated. For example, we might believe that these examples belong to some collection of classes, and wewant to determine the properties of those classes. This is sometimes called clustering the data into classes, andmany algorithms have been developed that apply a measure of the distance between two examples to group togethernearby examples.A stochastic modeling approach for unsupervised learning works essentially the same way as for supervisedlearning. We begin by de�ning the structure of the model as a probabilistic network. One commonly-used model isthe same \naive" network used by the naive Bayes classi�er shown in Figure 13.Although we can use the same network structure, the problem of learning the parameters of the network is muchmore di�cult, because our data do not contain the values of the class variable y. This is a simple case of the problemof �tting stochastic models that contain hidden variables, which are variables whose values are not observed in thetraining data.Many di�erent algorithms have been developed for �tting networks containing hidden variables. As with thenaive Bayes classi�cation algorithm, the basic goal (at least for this article) is to compute the maximum likelihoodestimates of the parameters of the network, which I will refer to as the vector of weights W . In other words, wewant to �nd the value of W that maximizes P (SjW ), where S is the observed training sample. This is typicallyformulated as the equivalent problem of maximizing the log likelihood: logP (SjW ). Under the assumption that eachtraining example in S is generated independently, this is equivalent to maximizing Pi logP (xijW ), where xi is thei-th training example.I briey sketch three algorithms: gradient descent, the expectation-maximization algorithm, and Gibbs sampling.31



5.3.1 Gradient Descent for Bayes NetworksRussell, Binder, Koller, and Kanazawa (1995) describe a method for computing the gradient of the log likelihood:rW logP (xijW ). Let us focus on a particular node in the network representing variable V . Let U be the parents ofV , and let w = P (V = vjU = u) be the entry in the conditional probability table for V when V = v and U = u.Then Russell et al. show that @ logP (xijW )@w = P (V = v; U = ujW;xi)w :The conditional probability in the numerator can be computed by any algorithm for inference in probabilistic networks(including the junction tree algorithm mentioned above).Using this formula, the gradient of the parameters of a network can be computed with respect to a trainingsample S. We can then apply standard gradient descent algorithms, such as �xed step size methods or the conjugategradient algorithm, to search for the maximum likelihood set of weights. One subtlety is that we must ensure thatthe weights lie between 0 and 1 and sum to 1 appropriately. It su�ces to constrain and renormalize them aftereach step of gradient descent. Russell et al have tested this algorithm on a wide variety of probabilistic networkstructures.5.3.2 The Expectation Maximization AlgorithmThe second algorithm I will discuss is the Expectation Maximization (EM) algorithm (Dempster, Laird, & Rubin,1976). EM can be applied to probabilistic networks if the node probability distributions belong to the exponentialfamily of distributions (which includes the binomial, multinomial, exponential, poisson, and normal distributions,and many others). In particular, conditional probability tables have multinomial distributions, so the EM algorithmcan be applied to the case I am considering in this article.The EM algorithm is an iterative algorithm that starts with an initial value for W and incrementally modi�es Wto increase the likelihood of the observed data. One way to understand EM is to imagine that each training exampleis augmented to include parameters describing values of the hidden variables. For concreteness, consider the simplecase of Figure 13 with the class variable y hidden. Assume y takes on two values 1 and 2. Then we would augmenteach training example with P (y = 1jx) and P (y = 2jx). (Actually, the P (y = 2jx) is redundant in this case, becauseP (y = 2jx) = 1 � P (y = 1jx)). More generally, each observed example xi will be augmented with the expectedvalues of the su�cient statistics for describing the probability distribution of the hidden variables.The EM algorithm alternates between two steps until W converges:� E-step: Given the current value of W , compute the augmentations P (yi = 1jxi) and P (yi = 2jxi) for eachexample xi.� M-step: Given the augmented data set, compute the maximum likelihood estimates for W under the as-sumption that the probability distribution of the values of the hidden variables is correctly speci�ed in eachaugmented training example.In the case of Figure 13, the E-step applies Bayes' theorem:P (yi = 1jxi) = P (xijyi = 1) � P (yi = 1)P (xi)All of the quantities on the right-hand side can be computed given the current value forW . The quantity P (xijyi = 1)is the product of P (xij jyi = 1) for each feature j, and P (yi = 1) is the current estimated probability of generatingan example in class 1, P (y = 1).The M-step for naive Bayes classi�cation must estimate each of the weights from the augmented training examples.To estimate P (y = 1), we sum the augmented value P (yi = 1) over all i and divide by the sample size m:P (y = 1) = 1mXi P (yi = 1):To estimate the conditional probability that feature xj is 1 for examples in class 1, we take each training example ithat has xij = 1, sum up the augmented values P (yi = 1), and divide by the total P (y = 1):P (xj = 1jy = 1) = 1P (y = 1) Xfijxij=1gP (yi = 1):32



In e�ect, we treat each augmented training example as if it were a member of class 1 with probability P (yi = 1) andas if it were a member of class 2 with probability 1� P (yi = 1).A well-known application of the EM algorithm in unsupervised clustering is the Autoclass program (Cheeseman,Self, Kelly, Taylor, Freeman, & Stutz, 1988). In addition to discrete variables (of the kind I have been discussing),Autoclass can handle continuous variables. Instead of computing the maximum likelihood estimates of the param-eters, it adopts a prior probability distribution over the parameter values and computes the maximum a posterioriprobability (MAP) values. This is easily accomplished by a minor modi�cation of EM. One of the most interestingapplications of Autoclass was to the problem of analyzing the infrared spectra of stars. Autoclass discovered a newclass of star, and this discovery was subsequently accepted by astronomers (Cheeseman et al., 1988).5.3.3 Gibbs SamplingThe �nal algorithm that I will discuss is a Monte Carlo technique called Gibbs sampling (Geman & Geman, 1984).Gibbs sampling is a method for generating random samples from a joint probability distribution P (A1; : : : ; An)when sampling directly from the joint distribution is di�cult. Suppose we know the conditional distribution of eachvariable Ai in terms of all of the others: P (A1jA2; : : : ; An), P (A2jA1; A3; : : : ; An), . . . , P (AnjA1; : : : ; An�1). TheGibbs sampler works as follows. We start with a set of arbitrary values, a1; : : : ; an, for the random variables. Foreach value of i, we then sample a new value ai for random variable Ai according to the distribution P (AijA1 =a1; : : : ; Ai�1 = ai�1; Ai+1 = ai+1; : : : ; An = an). If we repeat this long enough, then under certain mild conditionsthe empirical distribution of these generated points will converge to the joint distribution.How is this useful for learning in probabilistic networks? Suppose we wish to take a full Bayesian approachto learning the unknown parameters in the network. In such cases, we want to compute the posterior probabilityof the unknown parameters given the data. Let W denote the vector of unknown parameters. In a full Bayesianapproach, we treatW as a random variable with a prior probability distribution P (W ). Given the training examplesfx1; : : : ;xmg, we want to compute P (W jx1; : : : ;xm). This is very di�cult, because of the hidden classes y1; : : : ; ym.However, using the Gibbs sampler, we can generate samples from the distributionP (W; y1; : : : ; ymjx1; : : : ;xm):Then, by simply ignoring the y values, we obtain samples for W : W1; : : : ;WL.These W values constitute an ensemble of learned values for the network parameters. To classify a new datapoint x, we can apply each of the values of W` to predict the class of x and have them vote. The voting is withequal weight. If some W values have higher posterior probability than others, then they will appear more often inour sample.To apply the Gibbs sampler to our unsupervised learning problem, we begin by choosing random initial valuesfor the parameters W of the network and setting ` to zero. We then repeat the following loop L times.1. Compute new values for y1; : : : ; yn: From the probabilistic network in Figure 13, we can compute P (yijW;xi),because we know (current guesses for) W and (observed values for) xi. To sample from this distribution, weip a biassed coin with probability of heads P (yijW;xi).2. Compute new values for W : Let w0 be the parameter that represents the probability of generating anexample from class 0. Suppose the prior distribution, P (w0), is the uniform distribution for all values 0 � w0 �1. Let m0 be the number of training examples (currently) assigned to class 0. Then the posterior probabilityP (w0jy1; : : : ; ym) has a special form known as a Beta distribution with parameters m0 + 1 and m �m0 + 1.Algorithms are available for drawing samples from this distribution.Similarly, let wjv0 be the parameter that represents the probability that the j-th feature will have the valuev when drawn from class zero: P (xj = vjyj = 0). Again assuming uniform priors for P (wjv0), this variablealso has a Beta distribution with parameters cjv0 + 1 and m0 � cjv0 + 1, where cjv0 is the number of trainingexamples in class 0 having xj = v. As with w0, we can sample from this distribution.We can do the same thing for the parameters concerning class 1: wjv1.3. Record the value of the parameter vector. Let ` := `+ 1 and set W` :=W .To allow the Gibbs sampler to converge to a stationary distribution, we should perform some number of iterationsin which we skip Step 3, before recording L values of the parameter vector. This procedure gives us an ensemble ofL probabilistic networks which can be applied to classify new data points.33
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Figure 15: Probabilistic model describing a mixture of expertsThere is a close resemblance between Gibbs sampling and the EM algorithm. In both algorithms, the trainingexamples are augmented with information about the hidden variables. In EM, this information describes the prob-ability distribution of the hidden variables, whereas in Gibbs sampling, this information consists of random valuesdrawn according to that probability distribution. In EM, the parameters are recomputed to be their maximumlikelihood estimates based on the current values of the hidden variables, whereas in Gibbs sampling, new parametervalues are sampled from the posterior distribution given the current values of the hidden variables. Hence, EM canbe viewed as a maximum likelihood (or MAP) approximation to Gibbs sampling.One potential problem that can arise in Gibbs sampling is caused by symmetries in the stochastic model. In thecase we are considering, for example, suppose there are two true underlying hidden classes, class A and class B. Wewant the model to generate examples from class A when y = 1 and from class B when y = 2. However, there isnothing to force the model to do this. It could just as easily use y = 1 to represent examples of class B and y = 2to represent examples of class A. If permitted to run long enough, in fact, the Gibbs sampler should explore bothpossibilities. If our sample of weight vectors W` includes weight vectors corresponding to both of these alternatives,then when we combine these weight vectors, we will get bad results. In practice, this problem often does not arise,but in general, steps must be taken to remove symmetries from the model (see Neal, 1993).Gibbs sampling is a very general method; it can often be applied in situations where the EM algorithm cannot.The generality of Gibbs sampling has made it possible to construct a general-purpose programming environment,called BUGS, for learning stochastic models (Gilks, Thomas, & Spiegelhalter, 1993). In this environment, the userspeci�es the graph structure of the stochastic model, the form of the probability distribution at each node, and priordistributions for each parameter. The system then develops a Gibbs sampling algorithm for �tting this model to thetraining data. BUGS can be downloaded from http://www.mrc-bsu.cam.ac.uk/bugs/.5.4 More Sophisticated Stochastic ModelsThis section presents three examples of more sophisticated stochastic models that have been developed: the Hier-archical Mixture of Experts (HME) model, the Hidden Markov Model (HMM), the Dynamic Probabilistic Network(DPN). Like the naive model from Figure 13, these models can be applied to a wide number of problems withoutperforming the kind of detailed modeling of causal connections that we performed in the diabetes example fromFigure 12.5.4.1 The Hierarchical Mixture of ExpertsThe Hierarchical Mixture of Experts (HME) model (Jordan & Jacobs, 1994) is intended for supervised learning insituations where one believes the training data are being generated by a mixture of separate \experts." For example,in a speech recognition system, we might face the task of distinguishing the spoken words \Bee", \Tree", \Gate",and \Mate". This naturally decomposes into two hard sub-problems: (a) distinguishing \Bee" from \Tree" and (b)distinguishing \Gate" from \Mate".Figure 15 shows the probabilistic network for a simple mixture-of-experts model for this case. According to thismodel, a training example (xi; yi) is generated by �rst generating the data points xi, then choosing an \expert" eistochastically (depending on the value of xi), and then choosing the class yi depending on the values of xi and ei.34
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Figure 16: The mixture of experts model viewed as a specialized neural networkThere are two things to note about this model. First, the direction of causality is reversed from the naive Bayesnetwork of Figure 13. Second, if we assume that all of the features of each xi will always be observed, we do not needto model the probability distribution P (X) on the bottom node in the graph. Third, unless we make some strongassumptions, the probability distribution P (Y jX;E) is going to be extremely complex, because it must specify theprobability of the classes as a function of every possible combination of features for X and expert E.In their development of this general model, Jordan and Jacobs assume that each probability distribution hassimple form (see Figure 16, which shows the model as a kind of neural network classi�er). Each value of the randomvariable E speci�es a di�erent \expert". The input features x are fed into each of the experts and into a \gatingnetwork". The output of each expert is a probability distribution over the possible classes. The output of the gateis a probability distribution over the experts. This overall model has the following analytical form:P (yjx) =Xe ge(x)pe(yjx);where the index e varies over the di�erent experts. The value ge(x) is the output of the gating network for expert e.The value pe(yjx) is the probability distribution over the various classes output by expert e.Jordan and Jacobs have investigated networks where the individual experts and the gating network have verysimple forms. In a 2-class problem, each expert has the formpe(yjx) = �(wTe x);where wTe is the transpose of a vector of parameters, x is the vector of input feature values, and � is the usual logisticsigmoid function 1=(1 + exp(�)).The gating network was described earlier in Section 2. The gating values are computed according toze = vTe xge = ezePu ezuIn other words, ze is the dot product of a weight vector ve and the input features x. The output ge is the soft-max ofthe ze values. The ge values are all positive and sum to 1. This is known as the multinomial logit model in statistics.The problem of learning the parameters for a mixture-of-experts model is similar to the problem of unsupervisedlearning, except that here, the hidden variable is not the class yi of each training examples i, but rather the expertei that was responsible for generating that training example. If we knew which expert generated each trainingexample, then we could �t the parameters directly from the training data as with did for the naive Bayes algorithm.Jordan and Jacobs have applied both gradient descent and the EM algorithm to solve this learning problem. For theparticular choice of sigmoid and soft-max functions for the experts and gates, the EM algorithm has a particularlye�cient implementation as a sequence of weighted least squares problems.The simple one-level hierarchy of experts shown in Figure 15 can be extended to deeper hierarchies. Figure 17shows a 3-level hierarchy. All of the �tting algorithms apply to this more general case as well.35
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O1 O2 O3 OnFigure 18: The probabilistic network for a Hidden Markov Model5.4.2 The Hidden Markov ModelFigure 18 shows the probabilistic network of a hidden Markov model (HMM; Rabiner, 1989). An HMM generatesexamples that are strings of length n over some alphabet A of letters. Hence, each example x is a string of letters:o1o2 � � � on (where the o stands for \observable"). To generate a string, the HMM begins by generating an initialstate s1 according to probability distribution P (s1). From this state, it then generates the �rst letter of the stringaccording to the distribution P (o1js1). It then generates the next state s2 according to P (s2js1). Then it generatesthe second letter according to P (o2js2) and so on.In some applications, the transition probability distribution is the same for all pairs of adjacent state variables:P (stjst�1). Similarly, the output (or emission) probability distribution can be the same for all states: P (ojs). In thisvariation, the HMM is equivalent to a stochastic �nite-state automaton (FSA). At each time step, the FSA makes aprobabilistic state transition and then generates an output letter.Another common variation on HMM's is to include an absorbing state or halting state as one of the values of thestate variable. If the HMM makes a transition into this state, it terminates the string being generated. This permitsHMM's to model strings of variable length.Hidden Markov models have been widely applied in speech recognition, where the alphabet of letters consistsof \frames" of the speech signal (Rabiner, 1989). Each word in the language can be modeled as an HMM. Givena new spoken word, a speech recognition system computes the likelihood that each of the word HMM's generatedthat spoken word. The recognizer then predicts the most likely word. A similar analysis can be applied at the levelof whole sentences by concatenating word-level HMM's. Then the goal is to �nd the sentence most likely to havegenerated to speech signal.To learn an HMM, a set of training examples is provided, where each example is a string. The sequence of states36
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Figure 19: A simple dynamic probabilistic network with two independent state variables, robot location (Lt) andcamera direction (St).that generated the string is hidden. Once again, however, the EM algorithm can be applied. In the context ofHMM's, it is known as the Baum-Welch or Forward-Backward algorithm. In the E-step, the algorithm augmentseach training example with statistics describing the hypothesized string of states that generated the example. In theM-step, the parameters of the probability distributions are re-estimated from the augmented training data.Stolcke and Omohundro (1994) have developed algorithms for learning the structure and parameters of hiddenMarkov models from training examples. They applied their techniques to several problems in speech recognition andincorporated their algorithm into a speaker-independent speech recognition system.5.4.3 The Dynamic Probabilistic NetworkIn the hidden Markov model, the number of values for the state variable at each point in time can become verylarge. Consequently, the number of parameters in the state transition probability distribution P (stjst�1) can becomeintractably large. One solution is to represent the causal structure within each state by a stochastic model. Forexample, consider a mobile robot with a steerable television camera. The images observed by the camera will bethe output alphabet of the HMM. The hidden state will consist of the location of the robot within a room and thedirection the camera is pointing. Suppose there are 100 possible locations and 15 possible camera directions. In anHMM, the hidden state will be a single variable with 1500 possible values.However, suppose that the robot has separate commands to change its location and to steer its camera. At eachtime step, it chooses to perform exactly one of these two actions. Then it makes sense to represent the hidden stateby two separate state variables: robot location and camera direction. Figure 19 shows the resulting stochastic model,which is variously called a dynamic probabilistic network (DPN, Kanazawa, Koller, & Russell, 1995), a dynamicbelief network (DBN, Dean & Kanazawa, 1989), and a factorial HMM (Ghahramani & Jordan, 1996).Unfortunately, inference and learning with DPN's is computationally challenging. The overall approach of apply-ing the EM algorithm or Gibbs sampling is still sound. However, the E-step of computing the augmented trainingexamples is itself di�cult. Ghahramani and Jordan (1996) and Kanazawa, Koller, and Russell (1995) describe al-gorithms that can perform approximate E-steps. A recent review of this very active research area can be found inSmyth, Heckerman and Jordan (1997).5.5 Application-Speci�c Stochastic ModelsA major motivation for the stochastic modeling approach to machine learning is to communicate background knowl-edge to the learning algorithm. While the general models discussed above achieve this goal to some extent, it ispossible to go much further in this direction, and many applications of machine learning are pursuing this approach.To give a avor of the kinds of models being developed, I describe one example out of the many recently publishedpapers.Revow, Williams, and Hinton (1996) have developed a stochastic model for hardwritten digit recognition, shownin Figure 20. To generate a digit according to this model, we �rst randomly choose one of the 10 digits. Thisdetermines the \home locations" of 8 points that control a uniform B spline (denoted h1; : : : ; h8 in the �gure). TheB spline speci�es the shape of the digit. The next step randomly perturbs those control points (using a Gaussiandistribution) to produce the control points that will be used to generate the handwritten digit (denoted k1; : : : ; k8in the �gure). 37
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NFigure 20: Probabilistic network for generating a digit and choosing N pixels to ink.Next we generate a 6-degree-of-freedom a�ne transformation that models translation, rotation, skewing, and soforth. From the randomly chosen a�ne transformation and the control points, we deterministically lay out a sequenceof beads along the spline curve. These beads will act as circular Gaussian ink generators that will ink the pixels inthe image. There is a parameter � that speci�es the standard deviation of the Gaussian ink generators. The beadsare placed a distance 2� apart along the spline; hence, the number of beads varies as a function of �. At this point,we have made all of the choices that are independent of the image pixels.Now, the model generates N inked pixels (indicated in the diagram by the box with an N in the lower left corner).To generate each pixel, it �rst generates a boolean variable that indicates whether the pixel will be a noise pixel ora pixel from the digit. If it is a noise pixel, the location is chosen uniformly at random and inked. If it is a digitpixel, one of the l beads is chosen at random (speci�ed by the variable bead index), and a pixel is inked according toa symmetric Gaussian probability distribution.The parameters of the model include the probability of noise pixels, the standard deviation � of the Gaussianink generators, the variance of the Gaussian used to perturb the control points, the parameters controlling the a�netransformation, and the home locations of the eight control points.There are two tasks that we wish to perform with this model: classi�cation and learning. Let us considerclassi�cation �rst. Given an image and 10 learned spline models, our goal is to �nd the spline model that is mostlikely to have generated the image. We do this by computing the probability that the spline model for each digitgenerated the image. This computation is di�cult, because we are given only the locations of the inked pixels andthe (hypothesized) class of the digit. In principle, we should consider all possible locations for the control points, allpossible values for �, and all possible choices for whether each inked pixel is a noise pixel or a digit pixel. Each suchcombination could have generated the observed image (with a certain probability). We should integrate over theseparameters to compute the probability that a given digit model generated the given image.In practice, Revow et al. take a maximimum likelihood approach. They compute the values for the control points(k1; : : : ; k8), �, and the noise/digit choices that maximize the likelihood of generating the observed image. The EMalgorithm is applied to compute this. Figure 21 shows the �tting of the model for 3 and for 5 to a typical image.Notice that during the �tting, � is initialized to a very large value, so that the ink generators are likely to captureinked pixels. When EM begins to converge, � is decreased (according to a given schedule), and new beads arepositioned along the spline using the current value of �. Then, �tting is resumed. This is performed approximatelysix times per image.Now let's consider learning. The goal of learning is to learn for each digit the home locations of the control pointsand the variance for perturbing these control points. In addition, the parameters controlling the a�ne transformationmust be learned, but these are assumed to be the same for all classes. To solve this learning problem, Revow et38



Figure 21: Some stages of �tting models to an image of a 3 (from Revow, et al., 1996, reproduced with permission).The image is displayed in the top row. The next row shows the model for a 3 being �tted. The bottom row attemptsto �t the model of a 5. The light circles indicate the value of �. In the bottom two rows, the image has beenarti�cially thinned so that the circles are visible.al. again apply EM. In the E-step, the training examples are augmented with the maximimum likelihood locationsof the control points and the value of �, which are computed via a nested EM as described above. In the M-step, theaverage home location of each control point and the average � is computed. The model for each digit is trained by�tting only to training examples of that digit. The running time is dominated by the cost of the inner (classi�cation)EM algorithm.Revow et al_report results that are competitive with the best known methods on the task of recognizing digitsfrom US mail zip codes. To achieve this performance, they employ some post-processing steps that analyze how welleach digit model �ts the image. They also considered learning mixtures of digit models for cases where there aresigni�cantly di�erent ways of writing a digit (e.g., the digit 7 with and without a central horizontal bar).The advantage of the stochastic modeling approach is that learning is very fast both computationally, becauseEM is very quick, and statistically, because there are only 22 parameters in each digit model (2 coordinates for eachcontrol point and 6 a�ne transformation parameters). Another advantage is that the digit images do not need to bepreprocessed (e.g., to remove slants, scale to a standard size, and so forth). This preprocessing can be a signi�cantsource of errors as well as requiring extra implementation e�ort. A related advantage is that the stochastic modelscan �t a single digit in the context of several other digits|so that precise segmentation is not required prior toclassi�cation. The primary disadvantage is that classi�cation is slower, because of the need to perform a search to�t each digit model.5.6 Learning the Structure of Stochastic ModelsAll of the methods I have discussed so far learn the parameters of a stochastic model whose structure is given. Animportant research question is whether this structure can be learned from data as well. Recent research has mademajor progress in developing algorithms for this problem.One of the �rst algorithms was developed by Chow and Liu (1968) for learning a network structure in the formof a directed tree. This algorithm �rst constructs a complete undirected graph where the nodes are the variables andthe edges are labeled with the mutual information between the variables. The algorithm then �nds the maximumweighted spanning tree of this graph, chooses a root node arbitrarily, and orders the arcs to point away from theroot. A nice feature of this algorithm is that it is quite fast|it runs in polynomial time.39
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Figure 22: Probabilistic network constructed by the TAN algorithm for a diabetes diagnosis taskCooper and Herskovits (1992) developed an algorithm, called K2, for learning the structure of a stochastic modelwhere all variables are observed in the training data. They adopt a maximum a posteriori (MAP) approach withina Bayesian framework. The key contribution of their paper was to derive a formula for the posterior probability ofnetwork. This formula can be updated incrementally as changes are made to the network.Using their formula, they implemented a simple greedy search algorithm for �nding (approximately) the MAPnetwork structure. Their algorithm requires the user to provide an ordering of the variables, and it will consideradding arcs only from variables earlier in the ordering to variables later in the ordering. This signi�cantly constrainsthe search and also ensures that the learned network will remain acyclic. K2 begins with a network having no arcs|all variables are independent of one another. K2 evaluates the posterior probability of adding each possible singleedge and makes the highest-ranking addition. This greedy algorithm is continued until no single change improvesthe posterior probability.Heckerman, Geiger, and Chickering (1995) describe a modi�cation to the K2 method for computing posteriorprobabilities and a local search algorithm that uses this improvement. Their method requires a prior probabilitydistribution in the form of a prior network and two parameters: (a) an equivalent sample size (which controls howmuch new data is required to override the prior) and (b) a penalty for each arc that is di�erent from the priornetwork. Their local search algorithm considers all one-step changes to the network (arc addition, deletion, andreversal), and retains the change that most increases the posterior probability of the network. They obtain resultscomparable to K2. Interesting, they found that the most important role for the prior network was to provide a goodstarting point for local search (rather than to bias the objective function for guiding the search).Friedman and Goldszmidt (1996) developed a network learning algorithm, called Tree Augmented Naive Bayes(TAN), speci�cally for supervised learning. The TAM algorithm starts with a naive Bayes network of the kind shownin Figure 13 and considers adding arcs to improve the posterior probability of the network. They apply a modi�cationof the Chow and Liu algorithm to learn a tree structure of arcs connecting the xj variables to one another. Figure 22shows a network learned by TAN for a diabetes diagnosis problem. Compared to Figure 12, the directions of thearcs are wrong. Nonetheless, the network gives quite accurate classi�cations. Figure 23 compares the performanceof TAN to C4.5 on 22 benchmark problems. The plot shows that TAN outperforms C4.5 on most of the domains.There are many other important papers on the topic of structure learning for probabilistic networks. Fourimportant references are Verma and Pearl (1990), Spirtes and Meek (1995), Spiegelhalter, Dawid, Lauritzen, andCowell (1993), Spirtes, Glymour and Scheines (1993) and the references therein.5.7 Summary: Stochastic ModelsThis completes my review of methods for learning with stochastic models. There are several good survey articles ofthis topic (Buntine, 1994, 1996; Heckerman, 1996).The area of stochastic modeling is very active right now. Journals and conferences that were once devotedexclusively to neural network applications are now presenting many papers on stochastic modeling. The researchcommunity is still gathering experience and developing improved algorithms for �tting and reasoning with stochasticmodels. Many of the stochastic models we would like to work with are intractable. The challenge is to �nd general-purpose, tractable approximation algorithms for reasoning with these very elegant and expressive stochastic models.
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Accuracy of C4.5Figure 23: Comparison of TAN and C4.5 on 22 benchmark tasks. Points above the diagonal line correspond to caseswhere TAN gave more accurate results than C4.5.6 Concluding RemarksAny survey must choose particular areas and omit others. Let me briey mention some other active areas. A centraltopic in machine learning is the control of over�tting. There have been many developments in this area as researchersexplored various penalty functions and resampling techniques (including cross-validation) for preventing over�tting.An understanding of the over�tting process has been obtained through the statistical concepts of bias and variance,and several authors have developed bias/variance decompositions for classi�cation problems.Another active topic has been the study of algorithms for learning relations expressed as Horn clause programs.This area is also known as Inductive Logic Programming, and many algorithms and theoretical results have beendeveloped in this area.Finally, many papers have addressed practical problems that arise in applications such as visualization of learnedknowledge, methods for extracting understandable rules from neural networks, algorithms for identifying noise andoutliers in data, and algorithms for learning easy-to-understand classi�ers.There have been many exciting developments in the past �ve years, and the relevant literature in machine learninghas been growing rapidly. As more areas within arti�cial intelligence and computer science apply machine learningmethods to attack their problems, I expect that the ow of interesting problems and practical solutions will continue.It is a very exciting time to be working in machine learning.ReferencesAbu-Mostafa, Y. (1990). Learning from hints in neural networks. Journal of Complexity, 6, 192{198.Ali, K. M., & Pazzani, M. J. (1996). Error reduction through learning multiple descriptions. Machine Learning,24 (3), 173{202.Barto, A. G., Bradtke, S. J., & Singh, S. P. (1995). Learning to act using real-time dynamic programming. Arti�cialIntelligence, 72, 81{138.Barto, A. G., & Sutton, R. (1997). Introduction to Reinforcement Learning. MIT Press, Cambridge, MA.Bellman, R. E. (1957). Dynamic Programming. Princeton University Press.41
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