Association Rule Mining

Instructor: Jesse Davis

Slides from: Chris Clifton, Pedro Domingos, Jeff Ullman

Annoucements

- No class next week
- Office hours next Tuesday 5:30-7:30/8
- Homework 3 is graded
- Homework 4 is due next Tuesday by midnight

Outline

- Homework 3 review
- Association rule mining
- Take away messages from class

Problem 1

- Accuracy 98-99\% after several dozen iterations
- Generally slower than NB but higher accuracy

Problem 1: 2 BIG (RELATED) MISTAKES

- Setting bias by hand (e.g., $\mathrm{w}_{0} \mathrm{x}_{0}=0$)
- Every input vector should have the same x0 (say, 1)
- Weight w0 should be learned like any other weight
- Not normalizing feature values to range [0,1].
- Notice that if w0*x0 is fixed at 0 then $\sum \mathrm{w}_{i} \mathrm{x}_{\mathrm{i}}>0$ iff $\mathrm{n} \sum \mathrm{w}_{j} \mathrm{x}_{\mathrm{i}}>0$, so normalization would indeed be unnecessary
- If w0*x0 != 0 you must normalize to ensure that model generalizes!

Bagging vs. Boosting

- Both techniques will improve performance of decision stumps
- Boosting should help more because it is better at reducing the 'bias' portion of error in addition to variance portion of error
- Bagging is better for handling variance

Bias

Variance

Bagging vs. Boosting - Errors

- Error 1: Bagging would help more
- Error 2: Boosting would help more
- Explained why boosting is good
- Didn't explain why bagging would be worse

GA Crossover

X1 ^! X2

Input Output
a) 000
b) 01

0
c) 10

1
d) 11

0

If sum inputs >0, then output is 1 , else 0

X1 XOR X2

Input Output
a) 000
b) 011
c) 10

1
d) 110

If sum inputs >0, then output is 1 , else 0

Genetic Algorithm For Sudoku

Goal: Generate Grid

Constraints:

1) Can't change givens
2) 1-9 in each 3×3 subgrid
3) $1-9$ in each row
4) 1-9 in each column

Solution components:

1) Initialiazation
2) Representation
3) Crossovers
4) Mutations
5) Fitness function

Sudoku: Initialization

Ensure that each 3×3
 subgrid has 1-9
 appearing exactly once!

Sudoku: Representation

Sudoku: Crossovers

Crossover only at

 subblock boundaries

Sudoku: Mutations

5	6	2	3	1	7	8	9	4	\ldots	2	8	1	3	7	9	4	6

Sudoku: Fitness Function

- Representation and operators enforce these constraints:
- Givens are not moved around
- Each sub-block has 1--9 appearing exactly once
- Ignore these constraints:
- Each column has 1--9 appearing exactly once
- Each row has 1--9 appearing exactly once
- Fitness function: Penalize these states
- Fewer violated constraints, the fitter the solution
- Could penalize based on "how far off" solution is, i.e., row of all 9's is worse than row with two 9's

Outline

- Homework 3 review
- Association rule mining
- Introduction and definitions
- Naïve algorithm
- Apriori
- PCY
- Limiting disk I/O
- Presenting results, other metrics
- Take away messages from class

Association Rule Mining

Given: Set of transactions
Find: Rules that predict the occurrence of an item based on other items in the transaction

TID	Items
1	Bread, Milk
2	Bread, Milk, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Association Rules

\{Diaper\} \rightarrow \{Beer\}, \{Milk, Bread $\} \rightarrow$ \{Eggs,Coke $\}$ \{Beer, Bread $\} \rightarrow\{$ Milk $\}$

Implication means co-occurrence, not causality!

Why Association Rule Mining

- Motivation: Finding regularities in data
- What products were often purchased together?
- What kinds of DNA are sensitive to this new drug?
- Foundation for many data mining tasks
- Association
- Correlation
- Causality
- Algorithms do not require labeled data or for a user to specify a predefined target concept

Market-Basket Model

- A large set of items, e.g., things sold in a supermarket
- A large set of baskets (transactions), each of which is a small set of the items, e.g., the things one customer buys on one day

TID	Items
1	Bread, Milk
2	Bread, Milk, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Market-Baskets - (2)

- Really a general many-many mapping (association) between two kinds of things
- We ask about connections among "items," not among "baskets"
- The technology focuses on common events, not rare events ("long tail")

Definition: Item Set

- Itemset: A collection of one or more items
- Example: \{Bread, Milk\}
- k-itemset: An itemset that contains kitems
- 3-itemset: \{Bread, Milk, Diaper\}

TID	Items
1	Bread, Milk
2	Bread, Milk, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Definition: Support and Frequent Itemsets

- Simplest question: find sets of items that appear "frequently" in the baskets
- Support count for itemset $I=$ the number of baskets containing all items in I
- Support Fraction of transactions that contain an itemset
- Given a support threshold s, sets of items that appear in at least s baskets are called frequent itemsets

Example Support

Items

Bread, Milk
Bread, Milk, Diaper, Beer, Eggs
Milk, Diaper, Beer, Coke
Bread, Milk, Diaper, Beer
Bread, Milk, Diaper, Coke

Support(\{Br,M\}) $=4 / 5=0.8$
Support(\{Br,D\}) $=3 / 5=0.6$

Itemset	Freq
$\{\mathrm{Br}, \mathrm{M}\}$	4
$\{\mathrm{Br}, \mathrm{D}\}$	3

Example: Frequent Itemsets

- Items=\{milk, coke, pepsi, beer, juice\}.
- Support = 3 baskets.

$$
\begin{array}{ll}
B_{1}=\{m, c, b\} & B_{2}=\{m, p, j\} \\
B_{3}=\{m, b\} & B_{4}=\{c, j\} \\
B_{5}=\{m, p, b\} & B_{6}=\{m, c, b, j\} \\
B_{7}=\{c, b, j\} & B_{8}=\{b, c\}
\end{array}
$$

- Frequent itemsets: $\{m\},\{c\},\{b\},\{j\}$,

Example: Frequent Itemsets

- Items=\{milk, coke, pepsi, beer, juice\}.
- Support = 3 baskets.

$$
\begin{array}{ll}
B_{1}=\{m, c, b\} & B_{2}=\{m, p, j\} \\
B_{3}=\{m, b\} & B_{4}=\{c, j\} \\
B_{5}=\{m, p, b\} & B_{6}=\{m, c, b, \\
B=\{c, b, j\} & B_{8}=\{b, c\}
\end{array}
$$

- Frequent itemsets: $\{\mathrm{m}\},\{\mathrm{c}\},\{\mathrm{b}\},\{j\}$, \{m,b\}

Example: Frequent Itemsets

- Items=\{milk, coke, pepsi, beer, juice\}.
- Support = 3 baskets.

$$
\begin{array}{ll}
B_{1}=\{m, c, b\} & B_{2}=\{m, p, j\} \\
B_{3}=\{m, b\} & B_{4}=\{c, j\} \\
B_{5}=\{m, p, b\} & B_{6}=\{m, c, b, j\} \\
B_{7}=\{c, b, j\} & B_{8}=\{b, c\}
\end{array}
$$

- Frequent itemsets: $\{m\},\{c\},\{b\},\{j\}$, \{m,b\}

Example: Frequent Itemsets

- Items=\{milk, coke, pepsi, beer, juice\}.
- Support = 3 baskets.

$$
\begin{array}{ll}
B_{1}=\{m, c, b\} & B_{2}=\{m, p, j\} \\
B_{3}=\{m, b\} & B_{4}=\{c, j\} \\
B_{5}=\{m, p, b\} & B_{6}=\{m, c, b, j\} \\
B_{7}=\{c, \mid b, j\} & B_{8}=\{b, c\}
\end{array}
$$

- Frequent itemsets: $\{m\},\{c\},\{b\},\{j\}$, $\{m, b\},\{b, c\}$

Example: Frequent Itemsets

- Items=\{milk, coke, pepsi, beer, juice\}.
- Support = 3 baskets.

$$
\begin{array}{ll}
B_{1}=\{m, c, b\} & B_{2}=\{m, p, j\} \\
B_{3}=\{m, b\} & B_{4}=\{c, j\} \\
B_{5}=\{m, p, b\} & B_{6}=\{m, c, b, j\} \\
B_{7}=\{c, b, j\} & B_{8}=\{b, c\}
\end{array}
$$

- Frequent itemsets: $\{m\},\{c\},\{b\},\{j\}$, $\{m, b\},\{b, c\}$

Example: Frequent Itemsets

- Items=\{milk, coke, pepsi, beer, juice\}.
- Support = 3 baskets.

$$
\begin{array}{ll}
B_{1}=\{m, c, b\} & B_{2}=\{m, p, j\} \\
B_{3}=\{m, b\} & B_{4}=\{c, j\} \\
B_{5}=\{m, p, b\} & B_{6}=\{m, c, b, j\} \\
B_{7}=\{c, b, j\} & B_{8}=\{b, c\}
\end{array}
$$

- Frequent itemsets: $\{r n\},\{c\},\{b\},\{j\}$, $\{m, b\},\{b, c\},\{c\}$,

Definition: Association Rules

- If-then rules about the contents of baskets
- Given:
- Set of items. $\mathrm{I}=\left\{\mathrm{i}_{1}, \mathrm{i}_{2}, \ldots, \mathrm{i}_{\mathrm{m}}\right\}$
- Set of transactions: $\mathrm{D}=\left\{\mathrm{d}_{1}, \mathrm{~d}_{2}, \ldots, \mathrm{~d}_{\mathrm{n}}\right\}$
- An association rule: $\mathrm{A} \Rightarrow \mathrm{B}$, where
- $\mathrm{A} \subset \mathrm{I}$
- $B \subset I$
- $\mathrm{A} \cap \mathrm{B}=\varnothing$
- $\left\{i_{1}, i_{2}, \ldots, i_{k}\right\} \rightarrow j$ means: "if a basket contains all of i_{1}, \ldots, i_{k} then it is likely to contain j."

Definition: Confidence

- Confidence of this association rule is the conditional probability of j given i_{1}, \ldots, i_{k}.
- This gives a measure of how accurate the rule is.
- confidence $(A \Rightarrow B)=P(B \mid A)=\sup (\{A, B\}) / \sup (A)$

TID	Items
1	Bread, Milk
2	Bread, Milk, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Example: Confidence

$$
\begin{aligned}
+B_{1} & =\{m, c, b\} & B_{2} & =\{m, p, j\} \\
-B_{3} & =\{m, b\} & B_{4} & =\{c, j\} \\
-B_{5} & =\{m, p, b\} & +B_{6} & =\{m, c, b, j\} \\
B_{7} & =\{c, b, j\} & B_{8} & =\{b, c\}
\end{aligned}
$$

- An association rule: $\{\mathrm{m}, \mathrm{b}\} \rightarrow \mathrm{c}$.
- Confidence $=2 / 4=50 \%$.

Applications - (1)

- Items = products; baskets = sets of products someone bought in one trip to the store.
- Example application: given that many people buy beer and diapers together:
- Run a sale on diapers; raise price of beer.
- Only useful if many buy diapers \& beer.

Applications - (2)

- Baskets = sentences; items = documents containing those sentences.
- Items that appear together too often could represent plagiarism.
- Notice items do not have to be "in" baskets.

Applications - (3)

- Baskets = Web pages; items = words.
- Unusual words appearing together in a large number of documents, e.g., "Brad" and "Angelina," may indicate an interesting relationship.

Outline

- Homework 3 review
- Association rule mining
- Introduction and definitions
- Naïve algorithm
- Apriori
- PCY
- Limiting disk I/O
- Presenting results, other metrics
- Take away messages from class

Scale of the Problem

- WalMart sells 100,000 items and can store billions of baskets
- The Web has billions of words and many billions of pages
- We have access to lots and lots of data...

Association Rule Mining Goal

- Question: "find all association rules with support $\geq s$ and confidence $\geq c$."
- Note: "support" of an association rule is the support of the set of items on the left
- Hard part: finding the frequent itemsets
- Note: if $\left\{i_{1}, i_{2}, \ldots, i_{k}\right\} \rightarrow j$ has high support and confidence, then both $\left\{i_{1}, i_{2}, \ldots, i_{k}\right\}$ and $\left\{i_{1}, i_{2}, \ldots, i_{k}, j\right\}$ will be "frequent"

Creating Associating Rules

- Given: Support s, confidence c
- Step 1: Find all itemsets with support s
- Step 2: For each frequent itemset L
- For each non-empty subset s of L
- Output the rule $s \rightarrow\{1-s\}$ if its condifence $\geq c$

Example: Association Rule

Transaction-id	Items bought
10	A, B, C
20	A, C
30	A, D
40	B, E, F

For rule $A \Rightarrow C$:

Min. support 50\%
Min. confidence 50\%

Frequent pattern	Support
$\{\mathrm{A}\}$	75%
$\{\mathrm{~B}\}$	50%
$\{\mathrm{C}\}$	50%
$\{\mathrm{~A}, \mathrm{C}\}$	50%

support $=\operatorname{support}(\{A\} \cup\{C\})=50 \%$ confidence $=\operatorname{support}(\{A\} \cup\{C\}) /$ support $(\{A\})$
$=66.6 \%$

Example: Itemset to Association Rule

Items	Itemset	Freq
Bread, Milk	\{ Br, M \}	4
Bread, Milk, Diaper, Beer, Eggs	\{Br,D $\}$	3
Milk, Diaper, Beer, Coke	\{M,Be\}	3
Bread, Milk, Diaper, Beer	\{M, D \}	3
Bread, Milk, Diaper, Coke	\{Br,M,D\}	3
	\{M, D, Be \}	3
$\{\mathrm{Br}\} \rightarrow\{\mathrm{M}\}, \mathrm{s}=0.8, \mathrm{c}=1.0$		
$\{\mathrm{M}\} \rightarrow\{\mathrm{Br}\}, \mathrm{s}=1.0, c=0.8$		
$\{\mathrm{Br}, \mathrm{M}\} \rightarrow\{\mathrm{D}\}, \mathrm{s}=0.8, \mathrm{c}=0.75$		
$\{\mathrm{Be}\} \rightarrow\{\mathrm{M}, \mathrm{D}\}, \mathrm{s}=0.6, \mathrm{c}=1$		

Computation Model

- Typically, data is kept in flat files rather than in a database system
- Stored on disk
- Stored basket-by-basket
- Expand baskets into pairs, triples, etc. as you read baskets
- Use k nested loops to generate all sets of size k.

Computation Model - (2)

- The true cost of mining disk-resident data is usually the number of disk I/O's
- In practice, association-rule algorithms read the data in passes - all baskets read in turn
- Thus, we measure the cost by the number of passes an algorithm takes

Main-Memory Bottleneck

- For many frequent-itemset algorithms, main memory is the critical resource
- As we read baskets, we need to count something, e.g., occurrences of pairs
- The number of different things we can count is limited by main memory
- Swapping counts in/out is a disaster (why?)

Finding Frequent Pairs

- The hardest problem often turns out to be finding the frequent pairs
- Often frequent pairs are common, frequent triples are rare
- Probability of being frequent drops exponentially with size
- number of sets grows more slowly with size
- We'll concentrate on pairs, then extend to larger sets

Naïve Algorithm

- Read file once, counting in main memory the occurrences of each pair
- From each basket of n items, generate its $n(n-1) / 2$ pairs by two nested loops
- Fails if (\#items) ${ }^{2}$ exceeds main memory
- Remember: \#items can be 100K (Wal-Mart) or 10B (Web pages)

Example: Counting Pairs

- Suppose 10^{5} items
- Suppose counts are 4-byte integers
- Number of pairs of items: $10^{5}\left(10^{5}-1\right) / 2=5^{*} 10^{9}$ (approximately)
- Therefore, $2 * 10^{10}$ (20 gigabytes) of main memory needed

Details of Main-Memory Counting

- Two approaches:

1. Count all pairs, using a triangular matrix.
2. Keep a table of triples $[i, j, c]=$ "the count of the pair of items $\{i, j\}$ is $c . "$

- 1. requires only 4 bytes/pair
- 2. requires 12 bytes, but only for those pairs with count > 0

Approaches Pictorially

Method (1)

Method (2)

Approach 1

- Assign each item a number
- Count $\{i, j\}$ only if $i<j$
- Keep pairs in the order
- \{1,2\}
- $\{1, n\}$
- $\{2,3\}$
- $\{n-1, n\}$
- Pair $\{i, j\}$ at the position: $(i-1)(n-i / 2)+j-i$

Approach 2

- Total bytes used is about $12 p$, where p is the number of pairs that actually occur
- Beats triangular matrix if at most $1 / 3$ of possible pairs actually occur
- Require extra space for retrieval structure

Outline

- Homework 3 review
- Association rule mining
- Introduction and definitions
- Naïve algorithm
- Apriori
- PCY
- Limiting disk I/O
- Presenting results, other metrics
- Take away messages from class

Apriori Algorithm

- Generate and test approach for discovering frequent itemsets
- Iterative approach
- Find all frequent itemsets of size k before finding frequent itemsets of size $k+1$
- One pass through the data for each frequent itemset size

Apriori's Key Idea

- Aproiri Principle (monotonicity): if an itemset appears at least s times, so do all its subsets
- Contrapositive for pairs: if item i does not appear in s baskets, then no pair including i can appear in s baskets
- Apriori principle holds due to the following property of the support measure:
$\forall X, Y:(X \subseteq Y) \Rightarrow s(X) \geq s(Y)$

A-Priori Algorithm: Frequent Pairs

- Pass 1: Read baskets and count in main memory the occurrences of each item
- Requires memory proportional to \#items
- Frequent items. those that appear s times
- Pass 2: Read baskets again and count in main memory only those pairs both of which were found in Pass 1 to be frequent
- Requires memory proportional to square of frequent items, plus a list of the frequent items
- Frequent itemsets. those that appear s times

The Apriori Algorithm

- Join Step: C_{k} is generated by joining L_{k-1} with itself
- Prune Step: Any (k-1)-itemset that is not frequent cannot be a subset of a frequent k-itemset
- Pseudo-code:
C_{k} : Candidate itemset of size k
L_{k} : frequent itemset of size k
$L_{1}=\{$ frequent items $\}$
for ($k=1 ; L_{k}!=\varnothing ; k++$) do begin
$C_{k+1}=$ candidates generated from L_{k}
for each transaction t in database do
increment the count of all candidates in C_{k+1}
that are contained in t
$L_{k+1}=$ candidates in C_{k+1} with min_support end
return $\cup_{k} L_{k}$ i

Apriori: Pass 1

Given: Min support is 2

Database D		C_{1}		
TID	Items		Itemset	Sup
1	1,3,4	Scan D	\{1\}	2
2	2,3,5		\{2\}	3
3	1,2,3,5		\{3\}	3
4	2,5		\{4\}	1
			\{5\}	3

Apriori: Pass 1

Given: Min support is 2

Apriori: Pass 2

Given: Min support is 2

Database D		L_{1}		C_{2}	Scan D	L_{2}	
TID	Items	Itemset	Sup	Itemset		Itemset	Sup
1	1,3,4	\{1\}	2	\{1,2\}		\{1,2\}	1
2	2,3,5	\{2\}	3	$\{1,3\}$		\{1,3\}	2
3	1,2,3,5	\{3\}	3	\{1,5\}		\{1,5\}	1
4	2,5	\{5\}	3	\{2,3\}		$\{2,3\}$	2
				\{2,5\}		\{2,5\}	3
				\{3,5\}		\{3,5\}	2

Apriori: Pass 2

Given: Min support is 2

Database D	
TID	Items
1	$1,3,4$
2	$2,3,5$
3	$1,2,3,5$
4	2,5

L_{l}	
Itemset	Sup
$\{1\}$	2
$\{2\}$	3
$\{3\}$	3
$\{5\}$	3

| C_{2} | | L_{2} |
| :--- | :--- | :--- | :--- |
| Itemset | | |

Apriori: Pass 2

Given: Min support is 2

Database D		L_{1}		C_{2}	Scan D	L_{2}	
TID	Items	Itemset	Sup	Itemset		Itemset	Sup
1	1,3,4	\{1\}	2	\{1,2\}		\{1,3\}	2
2	2,3,5	\{2\}	3	\{1,3\}		\{2,3\}	2
3	1,2,3,5	\{3\}	3	\{1,5\}		\{2,5\}	3
4	2,5	\{5\}	3	\{2,3\}		\{3,5\}	2
				$\{2,5\}$			
				$\{3,5\}$			

Apriori: Pass 3

Given: Min support is 2

Database D	
TID	Items
1	$1,3,4$
2	$2,3,5$
3	$1,2,3,5$
4	2,5

L_{2}	
Itemset	Sup
$\{1,3\}$	2
$\{2,3\}$	2
$\{2,5\}$	3
$\{3,5\}$	2

C_{3}	L_{3}		
Itemset	Scan D	Itemset	Sup
\{2,3,5\}		\{2,3,5\}	2

Apriori: Join Step

- Suppose the items in L_{k-1} are listed in an order
- Join each element in L_{k-1} with itself
- If $I 1, I 2 \in L_{k-1}$, the are joinable if:
- The first k-2 items in I1 and I2 are the same
- I1[1] = I2[1] AND
$I 1[2]=I 2[2]$ AND
... AND

$$
I 1[k-2]=12[k-2]
$$

Apriori: Prune Step

- For each candidate itemsets C_{k}
- Look at each subset of size k-1 [i.e., drop one item from the candidate]
- If ANY one of these subsets isn't frequent, discard this candidate
- Application of the Apriori principle

Example: Candidate Generation

- $L_{3}=\{a b c, a b d, a c d, a c e, b c d\}$
- Self-joining: $L_{3}{ }^{*} L_{3}$
- abcd from $a b c$ and $a b d$
- acde from acd and ace
- Note: other joins (i.e., abc and acd, abc and ace, etc. are illegal)
- Pruning:
- acde is removed because ade is not in L_{3}
- $C_{4}=\{a b c d\}$

Outline

- Homework 3 review
- Association rule mining
- Introduction and definitions
- Naïve algorithm
- Apriori
- PCY
- Limiting disk I/O
- Presenting results, other metrics
- Take away messages from class

Aside: Hash-Based Filtering

- Simple problem: I have a set S of one billion strings of length 10.
- I want to scan a larger file F of strings and output those that are in S.
- I have 1 GB of main memory.
- So I can't afford to store S in memory.

Solution - (1)

- Create a bit array of 8 billion bits, initially all 0's.
- Choose a hash function h with range $\left[0,8^{*} 10^{9}\right]$, and hash each member of S to one of the bits, which is then set to 1 .
- Filter the file F by hashing each string and outputting only those that hash to a 1 .

Solution - (2)

Drop; surely
not in S.

PCY Algorithm

- During Pass 1 of A-priori, most memory is idle.
- Idea: Use tmemory for a hash table
- Hash pairs of items that appear in a transaction - we need to generate these
- Just the count, not the pairs themselves
- Interested in the presence of a pair AND whether it is present at least s (support) times

PCY Algorithm: Pass 1

FOR (each basket) \{
FOR (each item in the basket) add 1 to item's count; FOR (each pair of items) \{ hash the pair to a bucket; add 1 to the count for that bucket
\}
\}

Observation About Buckets

- A bucket that a frequent pair hashes to meets minimum support threshold
- Cannot eliminate any member of this bucket
- Even without any frequent pair, a bucket can be frequent
- Cannot eliminate any member of this bucket
- Best case: Count for a bucket is less than minimum support
- Eliminate all pairs hashed to this bucket even if the pair consists of two frequent items

PCY: Pass 1

Given: Min support is 2

Database D		Scan D	C_{1}	
TID	Items		Itemset	Sup
1	1,3,4	$\{1,3\},\{1,4\},\{3,4\}$	\{1\}	2
2	2,3,5	$\{2,3\},\{2,5\},\{3,5\}$	\{2\}	3
3	1,2,3,5	$\{1,2\},\{1,3\},\{1,5\},\{2,3\},\{2,5\},\{3,5\}$	\{3\}	3
4	2,5	\{2,5\}	\{4\}	1
			\{5\}	3

Bucket	$\mathbf{1}$	$\mathbf{2}$	3	$\mathbf{4}$	$\mathbf{5}$
Count	3	2	4	1	3

PCY: Between Passes

Given: Min support is 2

Database D	
TiD	Items
1	$1,3,4$
2	$2,3,5$
3	$1,2,3,5$
4	2,5

C_{1}	
Itemset	Sup
$\{1\}$	2
$\{2\}$	3
$\{3\}$	3
$\{5\}$	3

C

C_{2}
Itemset
$\{1,3\}$
$\{1,5\}$
$\{2,3\}$
$\{2,5\}$
$\{3,5\}$

Bucket	$\mathbf{1}$	$\mathbf{2}$	3	$\mathbf{4}$	5
Count	3	2	4	1	3

Between Passes

- Replace the buckets by a bit-vector:
- 1 means the bucket is frequent
- 0 means it is not frequent
- 4-byte integers are replaced by bits, so the bitvector requires $1 / 32$ of memory
- Also, decide which items are frequent and list them for the second pass

Picture of PCY

Pass 1
Pass 2

PCY Algorithm: Pass 2

- Count all pairs $\{i, j\}$ that meet the conditions for being a candidate pair:

1. Both i and j are frequent items.
2. The pair $\{i, j\}$, hashes to a bucket number whose bit in the bit vector is 1 .
Notice all these conditions are necessary for the pair to have a chance of being frequent.

Outline

- Homework 3 review
- Association rule mining
- Introduction and definitions
- Naïve algorithm
- Apriori
- PCY
- Limiting disk I/O
- Presenting results, other metrics
- Take away messages from class

All (Or Most) Frequent Itemsets in ≤ 2 Passes

- A-Priori, PCY, etc., take k passes to find frequent itemsets of size k
- Other techniques use 2 or fewer passes for all sizes:
- Simple algorithm
- SON (Savasere, Omiecinski, and Navathe)
- Toivonen

Simple Algorithm

- Take a random sample of the market baskets that fits in main memory
- Run a-priori or one of its improvements in main memory, so you don't pay for disk I/O each time you increase the size of itemsets
- Be sure you leave enough space for counts

Copy of Space sample for baskets counts

Algorithm Details

- Scale back support threshold a suitable number
- E.g., if sample is $1 / 100$ of the baskets, use $s / 100$ as your support threshold instead of s
- Optional: Verify that your guesses are truly frequent in the entire data set by a second pass
- Miss sets frequent in whole but not in sample - Smaller threshold, e.g., s/125, helps limit misses, but requires more space

Toivonen's Algorithm

- Use simple algorithm, but lower the threshold s for the sample
- Example: if the sample is 1% of the baskets, use $s / 125$ vs. $s / 100$.
- Goal: Avoid missing truly frequent itemsets
- Add to the itemsets that are frequent in the sample the negative border of these itemsets.
- An itemset is in the negative border if it is not deemed frequent in the sample, but all its immediate subsets are

Example: Negative Border

- $A B C D$ is in the negative border if and only if:

1. It is not frequent in the sample, but
2. All of $A B C, B C D, A C D$, and $A B D$ are.
A is in the negative border if and only if it is not frequent in the sample.

- Because the empty set is always frequent.
- Unless there are fewer baskets than the support threshold (silly case).

Picture of Negative Border

Negative Border
tripletons
doubletons

singletons

Toivonen's Algorithm Continued

- In a second pass, count all candidate frequent itemsets from the first pass, and also count their negative border
- If no itemset from the negative border turns out to be frequent, then the candidates found to be frequent in the whole data are exactly the frequent itemsets

Toivonen's Algorithm Continued

- What if we find that something in the negative border is actually frequent?
- We must start over again!
- Try to choose the support threshold so the probability of failure is low, while the number of itemsets checked on the second pass fits in main-memory.

If Something in the Negative Border is Frequent . . .

We broke through the negative border. How far does the problem go?
tripletons
doubletons

singletons

Theorem:

- If there is an itemset that is frequent in the whole, but not frequent in the sample, then there is a member of the negative border for the sample that is frequent in the whole.

Proof

- Suppose not; i.e.;

1. There is an itemset S frequent in the whole but not frequent in the sample, and
2. Nothing in negative border is frequent in the whole

- Let T be a smallest subset of S that is not frequent in the sample
- T is frequent in the whole (S is frequent + monotonicity)
- T is in the negative border (else not "smallest")

Outline

- Homework 3 review
- Association rule mining
- Introduction and definitions
- Naïve algorithm
- Apriori
- PCY
- Limiting disk I/O
- Presenting results, other metrics
- Take away messages from class

Compacting the Output

1. Maximal Frequent itemsets : no immediate superset is frequent
2. Closed itemsets : no im
the same count (>0).

- Stores not only frequent information, but exact counts

Example: Maximal/Closed

Frequent, but
Count Maximal ($\mathrm{s}=3$) Closed
A 4
B 5
C 3
AB 4
AC 2
BC 3
ABC 2

Interestingness Measurements

- Two popular objective measurements:
- support
- confidence
- Subjective measures: A rule (pattern) is interesting if it is:
- Unexpected (surprising to the user)
- Actionable (the user can do something with it)

Criticism of Support and Confidence

- Example: 5000 students
- 3000 play basketball
- 3750 eat cereal
- 2000 both play basket ball and eat cereal
- play basketball \Rightarrow eat cereal [40\%, 66.7\%]
- misleading as the overall percentage of students eating cereal is 75% which is higher than 66.7%
- play basketball \Rightarrow not eat cereal [20\%, 33.3\%]
- More accurate, but lower support and confidence

	basketball	not basketball	sum(row)
cereal	2000	1750	3750
not cereal	1000	250	1250
sum(col.)	3000	2000	5000

Statistical Measures

- $P(S \wedge B)=P(S) \times P(B)=>$ Statistical independence
- $P(S \wedge B)>P(S) \times P(B)=>$ Positively correlated
- $P(S \wedge B)<P(S) \times P(B)=>$ Negatively correlated
- $\operatorname{Lift}(A=>B)=\frac{P(B \mid A)}{P(B)}$

Example: Lift

$\left.\begin{array}{|c|c|c|c|}\hline & \text { Coffee } & & \text { Coffee }\end{array}\right)$

Association Rule: Tea \rightarrow Coffee

Confidence $=P($ Coffee \mid Tea $)=0.75$
but $P($ Coffee $)=0.9$
\Rightarrow Lift $=0.75 / 0.9=0.8333(<1$, therefore is negatively associated $)$

Presentation of Association Rules (Table Form)

	Body	Implies	Head	Supp (\%)	Conf (\%)	F	G	H	I	-
1	$\operatorname{cost}(x)=0.00 \sim 1000.00 '$	==>	revenue $(x)=0.00 \sim 500.00 '$	28.45	40.4					
2	$\operatorname{cost}(x)=0.00 \sim 1000.00^{\prime}$	$=$ =>	revenue $(x)=500.00 \sim 1000.00 '$	20.46	29.05					
3	$\operatorname{cost}(x)=0.00 \sim 1000.00^{\prime}$	$=\gg$	order_qty $(x)=0.00 \sim 100.00 '$	59.17	84.04					
4	$\operatorname{cost}(x)=0.00 \sim 1000.00^{\prime}$	==>	revenue $(x)=$ '1000.00~1500.00'	10.45	14.84					
5	$\operatorname{cost}(x)=0.00 \sim 1000.00^{\prime}$	$=$ =>	region $(x)=$ 'United States'	22.56	32.04					
6	$\operatorname{cost}(x)=1000.00 \sim 2000.00 '$	$=$ =>	order_qty $(x)=0.00 \sim 100.00^{\prime}$	12.91	69.34					
7	order gtvo $(x)=0.00 \sim 100.00^{\prime}$	$=$ =>	revenue (x) = 0.00 0 500.00'	28.45	34.54					
8	order gty $(x)=0.00 \sim 100.00^{\prime}$	=->	$\operatorname{cost}(x)=1000.00 \sim 2000.00 '$	12.91	15.67					
9	order_qty $(x)=0.00 \sim 100.00^{\prime}$	==>	region $(x)=$ 'United States'	25.9	31.45					
10	order_qty $(x)=0.00 \sim 100.00^{\prime}$	$=$ =	$\operatorname{cost}(\mathrm{x})=0.00 \sim 1000.00^{\prime}$	59.17	71.86					
11	order_gty $(x)=0.00 \sim 100.001$	==>	product_line $(x)=$ Tents'	13.52	16.42					
12	order_gty $(x)=0.00 \sim 100.00^{\prime}$	$=>$	revenue $(\underline{x})=500.00 \sim 1000.00 '$	19.67	23.88					
13	product_line $(x)=$ Tents'	$=\gg$	order_qty $(x)=0.00 \sim 100.00 '$	13.52	98.72					
14	region $(x)=$ 'United States'	==>	order_gty $(x)=0.00 \sim 100.00 '$	25.9	81.94					
15	region $(x)=$ 'United States'	$=$ =>	$\operatorname{cost}(\mathrm{x})=0.00 \sim 1000.00^{\prime}$	22.56	71.39					
16	revenue $(x)=0.00 \sim 500.00 '$	$=$ =>	$\operatorname{cost}(x)=0.00 \sim 1000.00^{\prime}$	28.45	100					
17	revenue $(x)=0.00 \sim 500.00 '$	$=$ =>	order_qty $(x)=0.00 \sim 100.00^{\prime}$	28.45	100					
18	revenue $(x)=$ '1000.00~1500.00'	$=$ =>	$\operatorname{cost}(x)=0.00 \sim 1000.00 '$	10.45	96.75					
19	revenue $(x)=500.00 \sim 1000.00 '$	==>	$\operatorname{cost}(x)=0.00 \sim 1000.00^{\prime}$	20.46	100					
20	revenue $(x)=500.00 \sim 1000.00 '$	$=$ =	order_qty $(x)=0.00 \sim 100.00 '$	19.67	96.14					
21										
22										
23	$\operatorname{cost}(x)=0.00 \sim 1000.00^{\prime}$	==>	$\begin{aligned} & \text { revenue }(x)=0.00 \sim 500.00^{\prime} \text { AND } \\ & \text { order_qty }(x)=0.00 \sim 100.00^{\prime} \end{aligned}$	28.45	40.4					
24	$\operatorname{cost}(x)=0.00 \sim 1000.00^{\prime}$	==>	$\begin{aligned} & \text { revenue }(x)=0.00 \sim 500.00^{\prime} \text { AND } \\ & \text { order_qty }(x)=0.00 \sim 100.00^{\prime} \end{aligned}$	28.45	40.4					
25	$\operatorname{cost}(x)=0.00 \sim 1000.00 '$	==>	$\begin{aligned} & \text { revenue }(x)=500.00 \sim 1000.00 \text { ' AND } \\ & \text { order_qty }(x)=0.00 \sim 100.00^{\prime} \end{aligned}$	19.67	27.93					
26	$\operatorname{cost}(x)=0.00 \sim 1000.00 '$	==>	$\begin{aligned} & \text { revenue }(x)=500.00 \sim 1000.00^{\prime} \text { AND } \\ & \text { order_qty }(x)=0.00 \sim 100.00^{\prime} \end{aligned}$	19.67	27.93					
27	$\begin{aligned} & \operatorname{cost}(x)=0.00 \sim 1000.00 ' \text { AND } \\ & \text { order_qty }(x)=0.00 \sim 100.00 ' \end{aligned}$	==>	revenue $(x)=500.00 \sim 1000.00 '$	19.67	33.23					
-1	Sheet 1			1						1

Visualization of Association Rule Using Rule Graph

Outline

- Homework 3 review
- Association rule mining
- Take away messages from class

Take Away: Feature Construction

Real World

Feature Space

Feature construction is crucial!!!

Worth spending time on

Concepts/
Classes/
Decisions

Take Away: Empirical Evaluation

collection of classified examples

Use

 statistical techniques such as 10fold cross validation to get meaningful resultstraining examples |testing examples

LEARNER
expected accuracy
on future examples

Take Away: Empirical Evaluation

- Often, an ML system has to choose when to stop learning, select among alternative answers, etc.
- One wants the model that produces the highest accuracy on future examples ("overfitting avoidance")
- It is a "cheat" to look at the test set while still learning
- Better method
- Set aside part of the training set
- Measure performance on this "tuning" data to estimate future performance for a given set of parameters
- Use best parameter settings, train with all training data (except test set) to estimate future performance on new examples

Take Away: Empirical Evaluation

- Accuracy only can be misleading
- Look at alternative measures
- True positive rate/recall
- False positive rate
- Precision
- Area under the curve

Take Away: Be Wary of Assumptions

LTCM
DJ
30 T-Bill
Simplification:
Assumed investments were independent
Reality:
All similar type of bet

Take Away: Simple Methods

- Simple approaches often work reasonable well in practice
- 1-nn
- Naïve Bayes
- Perceptron
- Often worth trying tfirst

Take Away: Ensembles

1) Many classifiers often better than single classifier
2) Bagging/boosting are simple and very effective
3) Worth trying!

Summary

- Association rules: Efficient way to mine interesting information very large databases
- Get probabilities
- Don't require user guidance for interesting patterns
- Apriori algorithm and it's extensions allow the user to gather a good deal of information without too many passes through data

Questions?

