
1

Association Rule Mining

Instructor: Jesse Davis

Slides from: Chris Clifton,

Pedro Domingos, Jeff Ullman

Annoucements

 No class next week

 Office hours next Tuesday 5:30-7:30/8

 Homework 3 is graded

 Homework 4 is due next Tuesday by midnight

2

Outline

 Homework 3 review

 Association rule mining

 Take away messages from class

3

Problem 1

 Accuracy 98-99% after several dozen iterations

 Generally slower than NB but higher accuracy

Problem 1: 2 BIG (RELATED) MISTAKES

 Setting bias by hand (e.g., w0x0 = 0)

 Every input vector should have the same x0
(say, 1)

 Weight w0 should be learned like any other
weight

 Not normalizing feature values to range [0,1].

 Notice that if w0*x0 is fixed at 0 then
∑wi xi > 0 iff n∑wi xi > 0, so normalization would
indeed be unnecessary

 If w0*x0 != 0 you must normalize to ensure that
model generalizes!

Bagging vs. Boosting

 Both techniques will improve performance of
decision stumps

 Boosting should help more because it is better
at reducing the ‗bias‘ portion of error in addition
to variance portion of error

 Bagging is better for handling variance

6

7

8

Bagging vs. Boosting - Errors

 Error 1: Bagging would help more

 Error 2: Boosting would help more

 Explained why boosting is good

 Didn't explain why bagging would be worse

9

GA Crossover

10

00111

11100

00110

10111 10110

X1 ^ !X2

11

X1

X2

1

-1

If sum inputs > 0, then output is 1, else 0

Input

0 0
0 1
1 0
1 1

Output

0
0
1
0

a)
b)
c)
d)

X1 XOR X2

12

X1

X2

1

1

-1

-1

1

1

If sum inputs > 0, then output is 1, else 0

Input

0 0
0 1
1 0
1 1

Output

0
1
1
0

a)
b)
c)
d)

Genetic Algorithm For Sudoku

13

Goal: Generate Grid

Constraints:
1) Can‘t change givens
2) 1-9 in each 3x3 subgrid
3) 1-9 in each row
4) 1-9 in each column

Solution components:
1) Initialiazation
2) Representation
3) Crossovers
4) Mutations
5) Fitness function

Sudoku: Initialization

14

Ensure that each 3x3
subgrid has 1—9
appearing exactly once!

Sudoku: Representation

0 1 2 9 10 11 18 19 20

3 4 5 12 13 14 21 22 23

6 7 8 15 16 17 24 25 26

72 73 74

75 76 77

78 79 80

15

0 1 2 3 4 5 6 7 8 … 72 73 74 75 76 77 78 79 80

Sudoku: Crossovers

16

5 6 2 3 1 7 8 9 4 … 2 8 1 3 7 9 4 6 5

7 8 2 1 4 3 5 9 6 … 9 8 3 6 7 4 2 1 5

5 6 2 3 1 7 8 9 4 … 9 8 3 6 7 4 2 1 5

7 8 2 1 4 3 5 9 6 … 2 8 1 3 7 9 4 6 5

Crossover only at
subblock boundaries

Sudoku: Mutations

17

5 6 2 3 1 7 8 9 4 … 2 8 1 3 7 9 4 6 5

5 6 2 3 1 7 8 9 4 … 2 8 1 3 7 9 4 6 5

5 6 2 3 1 9 8 7 4 … 2 8 1 3 7 9 4 6 5

Disallow if swap
involves a given

Sudoku: Fitness Function

 Representation and operators enforce these
constraints:

 Givens are not moved around

 Each sub-block has 1--9 appearing exactly once

 Ignore these constraints:

 Each column has 1--9 appearing exactly once

 Each row has 1--9 appearing exactly once

 Fitness function: Penalize these states

 Fewer violated constraints, the fitter the solution

 Could penalize based on ―how far off‖ solution is,
i.e., row of all 9‘s is worse than row with two 9‘s

18

Outline

 Homework 3 review

 Association rule mining

 Introduction and definitions

 Naïve algorithm

 Apriori

 PCY

 Limiting disk I/O

 Presenting results, other metrics

 Take away messages from class
19

Association Rule Mining

Given: Set of transactions
Find: Rules that predict the occurrence of an

item based on other items in the transaction

20

TID Items

1 Bread, Milk

2 Bread, Milk, Diaper, Beer, Eggs

3 Milk, Diaper, Beer, Coke

4 Bread, Milk, Diaper, Beer

5 Bread, Milk, Diaper, Coke

Association Rules

{Diaper}  {Beer},
{Milk, Bread}  {Eggs,Coke}
{Beer, Bread}  {Milk}

Implication means co-occurrence,
not causality!

Why Association Rule Mining

 Motivation: Finding regularities in data
 What products were often purchased together?
 What kinds of DNA are sensitive to this new drug?

 Foundation for many data mining tasks
 Association

 Correlation

 Causality

 Algorithms do not require labeled data or for a
user to specify a predefined target concept

21

Market-Basket Model

 A large set of items, e.g., things sold in a
supermarket

 A large set of baskets (transactions), each of
which is a small set of the items, e.g., the
things one customer buys on one day

22

TID Items

1 Bread, Milk

2 Bread, Milk, Diaper, Beer, Eggs

3 Milk, Diaper, Beer, Coke

4 Bread, Milk, Diaper, Beer

5 Bread, Milk, Diaper, Coke

23

Market-Baskets – (2)

 Really a general many-many mapping
(association) between two kinds of things

 We ask about connections among ―items,‖ not
among ―baskets‖

 The technology focuses on common events, not
rare events (―long tail‖)

Definition: Item Set

 Itemset: A collection of one or more items

 Example: {Bread, Milk}

 k-itemset: An itemset that contains k items

 3-itemset: {Bread, Milk, Diaper}

24

TID Items

1 Bread, Milk

2 Bread, Milk, Diaper, Beer, Eggs

3 Milk, Diaper, Beer, Coke

4 Bread, Milk, Diaper, Beer

5 Bread, Milk, Diaper, Coke

25

Definition: Support and Frequent
Itemsets

 Simplest question: find sets of items that
appear ―frequently‖ in the baskets

 Support count for itemset I = the number of
baskets containing all items in I

 Support Fraction of transactions that contain
an itemset

 Given a support threshold s, sets of items
that appear in at least s baskets are called
frequent itemsets

Example Support

Items

Bread, Milk

Bread, Milk, Diaper, Beer, Eggs

Milk, Diaper, Beer, Coke

Bread, Milk, Diaper, Beer

Bread, Milk, Diaper, Coke

26

Itemset Freq

{Br,M} 4

{Br,D} 3

Support({Br,M}) = 4/5 = 0.8

Support({Br,D}) = 3/5 = 0.6

Example: Frequent Itemsets

 Items={milk, coke, pepsi, beer, juice}.

 Support = 3 baskets.

B1 = {m, c, b} B2 = {m, p, j}

B3 = {m, b} B4 = {c, j}

B5 = {m, p, b} B6 = {m, c, b, j}

B7 = {c, b, j} B8 = {b, c}

 Frequent itemsets: {m}, {c}, {b}, {j},

27

Example: Frequent Itemsets

 Items={milk, coke, pepsi, beer, juice}.

 Support = 3 baskets.

B1 = {m, c, b} B2 = {m, p, j}

B3 = {m, b} B4 = {c, j}

B5 = {m, p, b} B6 = {m, c, b, j}

B7 = {c, b, j} B8 = {b, c}

 Frequent itemsets: {m}, {c}, {b}, {j},

28

{m,b}

Example: Frequent Itemsets

 Items={milk, coke, pepsi, beer, juice}.

 Support = 3 baskets.

B1 = {m, c, b} B2 = {m, p, j}

B3 = {m, b} B4 = {c, j}

B5 = {m, p, b} B6 = {m, c, b, j}

B7 = {c, b, j} B8 = {b, c}

 Frequent itemsets: {m}, {c}, {b}, {j},

29

{m,b}

Example: Frequent Itemsets

 Items={milk, coke, pepsi, beer, juice}.

 Support = 3 baskets.

B1 = {m, c, b} B2 = {m, p, j}

B3 = {m, b} B4 = {c, j}

B5 = {m, p, b} B6 = {m, c, b, j}

B7 = {c, b, j} B8 = {b, c}

 Frequent itemsets: {m}, {c}, {b}, {j},

30

, {b,c}{m,b}

Example: Frequent Itemsets

 Items={milk, coke, pepsi, beer, juice}.

 Support = 3 baskets.

B1 = {m, c, b} B2 = {m, p, j}

B3 = {m, b} B4 = {c, j}

B5 = {m, p, b} B6 = {m, c, b, j}

B7 = {c, b, j} B8 = {b, c}

 Frequent itemsets: {m}, {c}, {b}, {j},

31

{m,b}, {b,c}

Example: Frequent Itemsets

 Items={milk, coke, pepsi, beer, juice}.

 Support = 3 baskets.

B1 = {m, c, b} B2 = {m, p, j}

B3 = {m, b} B4 = {c, j}

B5 = {m, p, b} B6 = {m, c, b, j}

B7 = {c, b, j} B8 = {b, c}

 Frequent itemsets: {m}, {c}, {b}, {j},

32

, {b,c} , {c,j}{m,b}

33

Definition: Association Rules

 If-then rules about the contents of baskets

 Given:

 Set of items: I = {i1, i2, …, im}

 Set of transactions: D = {d1, d2, …, dn}

 An association rule: A  B, where

 A  I

 B  I

 A  B = 

 {i1, i2,…,ik} → j means: ―if a basket contains all

of i1,…,ik then it is likely to contain j.‖

Definition: Confidence

 Confidence of this association rule is the
conditional probability of j given i1,…,ik.
 This gives a measure of how accurate the rule is.

 confidence(A  B) = P(B|A) = sup({A,B}) /sup(A)

34

Customer

buys diaper

Customer

buys both

Customer

buys beer

TID Items

1 Bread, Milk

2 Bread, Milk, Diaper, Beer, Eggs

3 Milk, Diaper, Beer, Coke

4 Bread, Milk, Diaper, Beer

5 Bread, Milk, Diaper, Coke

Example: Confidence

35

B1 = {m, c, b} B2 = {m, p, j}

B3 = {m, b} B4 = {c, j}

B5 = {m, p, b} B6 = {m, c, b, j}

B7 = {c, b, j} B8 = {b, c}

 An association rule: {m, b} → c.

 Confidence = 2/4 = 50%.

_

_

+

+

36

Applications – (1)

 Items = products; baskets = sets of products
someone bought in one trip to the store.

 Example application: given that many people
buy beer and diapers together:

 Run a sale on diapers; raise price of beer.

 Only useful if many buy diapers & beer.

37

Applications – (2)

 Baskets = sentences; items = documents
containing those sentences.

 Items that appear together too often could
represent plagiarism.

 Notice items do not have to be ―in‖ baskets.

38

Applications – (3)

 Baskets = Web pages; items = words.

 Unusual words appearing together in a large
number of documents, e.g., ―Brad‖ and
―Angelina,‖ may indicate an interesting
relationship.

Outline

 Homework 3 review

 Association rule mining

 Introduction and definitions

 Naïve algorithm

 Apriori

 PCY

 Limiting disk I/O

 Presenting results, other metrics

 Take away messages from class
39

40

Scale of the Problem

 WalMart sells 100,000 items and can store
billions of baskets

 The Web has billions of words and many
billions of pages

 We have access to lots and lots of data…

Association Rule Mining Goal

 Question: ―find all association rules with
support ≥ s and confidence ≥ c .‖

 Note: ―support‖ of an association rule is the
support of the set of items on the left

 Hard part: finding the frequent itemsets

 Note: if {i1, i2,…,ik} → j has high support

and confidence, then both {i1, i2,…,ik} and
{i1, i2,…,ik ,j } will be ―frequent‖

41

Creating Associating Rules

 Given: Support s, confidence c

 Step 1: Find all itemsets with support s

 Step 2: For each frequent itemset L

 For each non-empty subset s of L

 Output the rule s → {l-s} if its condifence ≥ c

42

43

Example: Association Rule

For rule A  C:

support = support({A}{C}) = 50%

confidence = support({A}{C})/support({A})
= 66.6%

Min. support 50%

Min. confidence 50%
Transaction-id Items bought

10 A, B, C

20 A, C

30 A, D

40 B, E, F

Frequent pattern Support

{A} 75%

{B} 50%

{C} 50%

{A, C} 50%

Example: Itemset to Association Rule

Items

Bread, Milk

Bread, Milk, Diaper, Beer, Eggs

Milk, Diaper, Beer, Coke

Bread, Milk, Diaper, Beer

Bread, Milk, Diaper, Coke

44

Itemset Freq

{Br,M} 4

{Br,D} 3

{M,Be} 3

{M,D} 3

{Br,M,D} 3

{M,D,Be} 3

{Br} → {M}, s = 0.8, c = 1.0
{M} → {Br}, s = 1.0, c = 0.8

…
{Br,M} → {D}, s = 0.8, c = 0.75
{Be} → {M,D}, s = 0.6, c = 1.0

45

Computation Model

 Typically, data is kept in flat files rather than in
a database system

 Stored on disk

 Stored basket-by-basket

 Expand baskets into pairs, triples, etc. as
you read baskets

 Use k nested loops to generate all sets of size k.

46

Computation Model – (2)

 The true cost of mining disk-resident data is
usually the number of disk I/O‘s

 In practice, association-rule algorithms read the
data in passes – all baskets read in turn

 Thus, we measure the cost by the number of
passes an algorithm takes

47

Main-Memory Bottleneck

 For many frequent-itemset algorithms, main
memory is the critical resource

 As we read baskets, we need to count
something, e.g., occurrences of pairs

 The number of different things we can count
is limited by main memory

 Swapping counts in/out is a disaster (why?)

48

Finding Frequent Pairs

 The hardest problem often turns out to be
finding the frequent pairs

 Often frequent pairs are common, frequent triples
are rare

 Probability of being frequent drops exponentially
with size

 number of sets grows more slowly with size

 We‘ll concentrate on pairs, then extend to
larger sets

49

Naïve Algorithm

 Read file once, counting in main memory the
occurrences of each pair

 From each basket of n items, generate its
n (n -1)/2 pairs by two nested loops

 Fails if (#items)2 exceeds main memory

 Remember: #items can be 100K (Wal-Mart)
or 10B (Web pages)

50

Example: Counting Pairs

 Suppose 105 items

 Suppose counts are 4-byte integers

 Number of pairs of items: 105(105-1)/2 = 5*109

(approximately)

 Therefore, 2*1010 (20 gigabytes) of main
memory needed

Details of Main-Memory Counting

 Two approaches:

1. Count all pairs, using a triangular matrix.

2. Keep a table of triples [i, j, c] = ―the count
of the pair of items {i, j } is c.‖

 1. requires only 4 bytes/pair

 2. requires 12 bytes, but only for those pairs
with count > 0

51

52

4 per pair

Method (1) Method (2)

12 per
occurring pair

Approaches Pictorially

Approach 1

 Assign each item a number

 Count {i, j } only if i < j

 Keep pairs in the order

 {1,2}

 …

 {1,n }

 {2,3}

 …

 {n -1,n }

 Pair {i, j } at the position: (i –1)(n –i /2) + j – i
53

Approach 2

 Total bytes used is about 12p, where p is the
number of pairs that actually occur

 Beats triangular matrix if at most 1/3 of
possible pairs actually occur

 Require extra space for retrieval structure

54

Outline

 Homework 3 review

 Association rule mining

 Introduction and definitions

 Naïve algorithm

 Apriori

 PCY

 Limiting disk I/O

 Presenting results, other metrics

 Take away messages from class
55

Apriori Algorithm

 Generate and test approach for discovering
frequent itemsets

 Iterative approach

 Find all frequent itemsets of size k before
finding frequent itemsets of size k+1

 One pass through the data for each frequent
itemset size

56

Apriori‘s Key Idea

 Aproiri Principle (monotonicity): if an itemset
appears at least s times, so do all its subsets

 Contrapositive for pairs: if item i does not
appear in s baskets, then no pair including i
can appear in s baskets

 Apriori principle holds due to the following
property of the support measure:

57

)()()(:, YsXsYXYX 

58

A-Priori Algorithm: Frequent Pairs

 Pass 1: Read baskets and count in main
memory the occurrences of each item

 Requires memory proportional to #items

 Frequent items: those that appear s times

 Pass 2: Read baskets again and count in
main memory only those pairs both of which
were found in Pass 1 to be frequent

 Requires memory proportional to square of
frequent items, plus a list of the frequent items

 Frequent itemsets: those that appear s times

The Apriori Algorithm

 Join Step: Ck is generated by joining Lk-1with itself

 Prune Step: Any (k-1)-itemset that is not frequent cannot be a
subset of a frequent k-itemset

 Pseudo-code:
Ck : Candidate itemset of size k
Lk : frequent itemset of size k

L1 = {frequent items}
for (k = 1; Lk !=; k++) do begin

Ck+1 = candidates generated from Lk
for each transaction t in database do

increment the count of all candidates in Ck+1
that are contained in t

Lk+1 = candidates in Ck+1 with min_support
end

return k Lk;
59

Apriori: Pass 1

Given: Min support is 2

60

Database D

Scan D

C1

TID Items

1 1,3,4

2 2,3,5

3 1,2,3,5

4 2,5

Itemset Sup

{1} 2

{2} 3

{3} 3

{4} 1

{5} 3

Apriori: Pass 1

Given: Min support is 2

61

Database D

Scan D

C1 L1

TID Items

1 1,3,4

2 2,3,5

3 1,2,3,5

4 2,5

Itemset Sup

{1} 2

{2} 3

{3} 3

{4} 1

{5} 3

Itemset Sup

{1} 2

{2} 3

{3} 3

{5} 3

Prune

Apriori: Pass 2

Given: Min support is 2

62

Database D L1 C2

TID Items

1 1,3,4

2 2,3,5

3 1,2,3,5

4 2,5

Itemset Sup

{1} 2

{2} 3

{3} 3

{5} 3

Itemset

{1,2}

{1,3}

{1,5}

{2,3}

{2,5}

{3,5}

Itemset Sup

{1,2} 1

{1,3} 2

{1,5} 1

{2,3} 2

{2,5} 3

{3,5} 2

L2

Scan D

Apriori: Pass 2

Given: Min support is 2

63

Database D L1 C2

TID Items

1 1,3,4

2 2,3,5

3 1,2,3,5

4 2,5

Itemset Sup

{1} 2

{2} 3

{3} 3

{5} 3

Itemset

{1,2}

{1,3}

{1,5}

{2,3}

{2,5}

{3,5}

Itemset Sup

{1,2} 1

{1,3} 2

{1,5} 1

{2,3} 2

{2,5} 3

{3,5} 2

L2

Scan D

Prune

Apriori: Pass 2

Given: Min support is 2

64

Database D L1 C2

TID Items

1 1,3,4

2 2,3,5

3 1,2,3,5

4 2,5

Itemset Sup

{1} 2

{2} 3

{3} 3

{5} 3

Itemset

{1,2}

{1,3}

{1,5}

{2,3}

{2,5}

{3,5}

Itemset Sup

{1,3} 2

{2,3} 2

{2,5} 3

{3,5} 2

L2

Scan D

Apriori: Pass 3

Given: Min support is 2

65

Database D L2 C3

TID Items

1 1,3,4

2 2,3,5

3 1,2,3,5

4 2,5

Itemset Sup

{1,3} 2

{2,3} 2

{2,5} 3

{3,5} 2

Itemset

{2,3,5}

Itemset Sup

{2,3,5} 2

L3

Scan D

Apriori: Join Step

 Suppose the items in Lk-1 are listed in an order

 Join each element in Lk-1 with itself

 If l1, l2 ∈ Lk-1, the are joinable if:

 The first k-2 items in l1 and l2 are the same

 l1[1] = l2[1] AND
l1[2] = l2[2] AND
… AND
l1[k-2] = l2[k-2]

66

Apriori: Prune Step

 For each candidate itemsets Ck

 Look at each subset of size k-1 [i.e., drop
one item from the candidate]

 If ANY one of these subsets isn‘t frequent,
discard this candidate

 Application of the Apriori principle

67

Example: Candidate Generation

 L3={abc, abd, acd, ace, bcd}

 Self-joining: L3*L3

 abcd from abc and abd

 acde from acd and ace

 Note: other joins (i.e., abc and acd, abc and ace,
etc. are illegal)

 Pruning:

 acde is removed because ade is not in L3

 C4={abcd}

68

Outline

 Homework 3 review

 Association rule mining

 Introduction and definitions

 Naïve algorithm

 Apriori

 PCY

 Limiting disk I/O

 Presenting results, other metrics

 Take away messages from class
69

70

Aside: Hash-Based Filtering

 Simple problem: I have a set S of one billion
strings of length 10.

 I want to scan a larger file F of strings and
output those that are in S.

 I have 1GB of main memory.

 So I can‘t afford to store S in memory.

71

Solution – (1)

 Create a bit array of 8 billion bits, initially all 0‘s.

 Choose a hash function h with range [0, 8*109],
and hash each member of S to one of the bits,
which is then set to 1.

 Filter the file F by hashing each string and
outputting only those that hash to a 1.

72

Solution – (2)

File F

0010001011000

To output;
may be in S.

h

Drop; surely
not in S.

PCY Algorithm

 During Pass 1 of A-priori, most memory is idle.

 Idea: Use tmemory for a hash table

 Hash pairs of items that appear in a
transaction – we need to generate these

 Just the count, not the pairs themselves

 Interested in the presence of a pair AND
whether it is present at least s (support)
times

73

74

PCY Algorithm: Pass 1

FOR (each basket) {

FOR (each item in the basket)

add 1 to item’s count;

FOR (each pair of items) {

hash the pair to a bucket;

add 1 to the count for that

bucket

}

}

Observation About Buckets

 A bucket that a frequent pair hashes to meets
minimum support threshold

 Cannot eliminate any member of this bucket

 Even without any frequent pair, a bucket can
be frequent

 Cannot eliminate any member of this bucket

 Best case: Count for a bucket is less than
minimum support

 Eliminate all pairs hashed to this bucket even
if the pair consists of two frequent items

75

PCY: Pass 1

Given: Min support is 2

76

Database D
Scan D

C1

TID Items

1 1,3,4

2 2,3,5

3 1,2,3,5

4 2,5

Itemset Sup

{1} 2

{2} 3

{3} 3

{4} 1

{5} 3

Bucket 1 2 3 4 5

Count 3 2 4 1 3

{1,3}, {1,4}, {3,4}

{2,3}, {2,5}, {3,5}

{1,2}, {1,3}, {1,5}, {2,3}, {2,5}, {3,5}

{2,5}

PCY: Between Passes

Given: Min support is 2

77

Database D C1

TID Items

1 1,3,4

2 2,3,5

3 1,2,3,5

4 2,5

Itemset Sup

{1} 2

{2} 3

{3} 3

{5} 3

Bucket 1 2 3 4 5

Count 3 2 4 1 3

C2

Itemset

{1,2}

{1,3}

{1,5}

{2,3}

{2,5}

{3,5}

Itemset

{1,3}

{1,5}

{2,3}

{2,5}

{3,5}

C2

Between Passes

 Replace the buckets by a bit-vector:

 1 means the bucket is frequent

 0 means it is not frequent

 4-byte integers are replaced by bits, so the bit-
vector requires 1/32 of memory

 Also, decide which items are frequent and list
them for the second pass

78

79

Picture of PCY

Hash
table

Item counts

Bitmap

Pass 1 Pass 2

Frequent items

Counts of
candidate

pairs

80

PCY Algorithm: Pass 2

 Count all pairs {i, j } that meet the conditions
for being a candidate pair:

1. Both i and j are frequent items.

2. The pair {i, j }, hashes to a bucket number
whose bit in the bit vector is 1.

 Notice all these conditions are necessary for
the pair to have a chance of being frequent.

Outline

 Homework 3 review

 Association rule mining

 Introduction and definitions

 Naïve algorithm

 Apriori

 PCY

 Limiting disk I/O

 Presenting results, other metrics

 Take away messages from class
81

All (Or Most) Frequent Itemsets
in < 2 Passes

 A-Priori, PCY, etc., take k passes to find
frequent itemsets of size k

 Other techniques use 2 or fewer passes for all
sizes:

 Simple algorithm

 SON (Savasere, Omiecinski, and Navathe)

 Toivonen

82

83

Simple Algorithm

 Take a random sample of the market baskets
that fits in main memory

 Run a-priori or one of its improvements in main
memory, so you don‘t pay for disk I/O each
time you increase the size of itemsets

 Be sure you leave enough space for counts

Copy of
sample
baskets

Space
for

counts

Algorithm Details

 Scale back support threshold a suitable number

 E.g., if sample is 1/100 of the baskets, use
s /100 as your support threshold instead of s

 Optional: Verify that your guesses are truly
frequent in the entire data set by a second pass

 Miss sets frequent in whole but not in sample

 Smaller threshold, e.g., s /125, helps limit
misses, but requires more space

84

85

Toivonen‘s Algorithm

 Use simple algorithm, but lower the threshold s
for the sample

 Example: if the sample is 1% of the baskets,
use s /125 vs. s /100.

 Goal: Avoid missing truly frequent itemsets

 Add to the itemsets that are frequent in the
sample the negative border of these itemsets.

 An itemset is in the negative border if it is not
deemed frequent in the sample, but all its
immediate subsets are

Example: Negative Border

 ABCD is in the negative border if and only if:

1. It is not frequent in the sample, but

2. All of ABC, BCD, ACD, and ABD are.

 A is in the negative border if and only if it is
not frequent in the sample.

 Because the empty set is always frequent.

 Unless there are fewer baskets than the support
threshold (silly case).

86

87

Picture of Negative Border

…

tripletons

doubletons

singletons

Negative Border

Frequent Itemsets
from Sample

88

Toivonen‘s Algorithm Continued

 In a second pass, count all candidate frequent
itemsets from the first pass, and also count
their negative border

 If no itemset from the negative border turns
out to be frequent, then the candidates found
to be frequent in the whole data are exactly
the frequent itemsets

Toivonen‘s Algorithm Continued

 What if we find that something in the negative
border is actually frequent?

 We must start over again!

 Try to choose the support threshold so the
probability of failure is low, while the number of
itemsets checked on the second pass fits in
main-memory.

89

90

If Something in the Negative Border
is Frequent . . .

…

tripletons

doubletons

singletons

Negative Border

Frequent Itemsets
from Sample

We broke through the
negative border. How
far does the problem go?

91

Theorem:

 If there is an itemset that is frequent in the
whole, but not frequent in the sample, then
there is a member of the negative border for
the sample that is frequent in the whole.

Proof

 Suppose not; i.e.;

1. There is an itemset S frequent in the whole but not
frequent in the sample, and

2. Nothing in negative border is frequent in the whole

 Let T be a smallest subset of S that is not
frequent in the sample

 T is frequent in the whole (S is frequent +
monotonicity)

 T is in the negative border (else not ―smallest‖)

92

Outline

 Homework 3 review

 Association rule mining

 Introduction and definitions

 Naïve algorithm

 Apriori

 PCY

 Limiting disk I/O

 Presenting results, other metrics

 Take away messages from class
93

94

Compacting the Output

1. Maximal Frequent itemsets : no immediate
superset is frequent

2. Closed itemsets : no immediate superset has
the same count (> 0).

 Stores not only frequent information, but
exact counts

95

Count Maximal (s=3) Closed

A 4 No No

B 5 No Yes

C 3 No No

AB 4 Yes Yes

AC 2 No No

BC 3 Yes Yes

ABC 2 No Yes

Frequent, but
superset BC
also frequent

Frequent, and
its only superset,
ABC, not freq

Superset BC
has same count

Its only super-
set, ABC, has
smaller count

Example: Maximal/Closed

Interestingness Measurements

 Two popular objective measurements:

 support

 confidence

 Subjective measures: A rule (pattern) is
interesting if it is:

 Unexpected (surprising to the user)

 Actionable (the user can do something with
it)

96

Criticism of Support and Confidence

 Example: 5000 students
 3000 play basketball
 3750 eat cereal
 2000 both play basket ball and eat cereal

 play basketball  eat cereal [40%, 66.7%]

 misleading as the overall percentage of students
eating cereal is 75% which is higher than 66.7%

 play basketball  not eat cereal [20%, 33.3%]

 More accurate, but lower support and confidence

97

basketball not basketball sum(row)

cereal 2000 1750 3750

not cereal 1000 250 1250

sum(col.) 3000 2000 5000

Statistical Measures

 P(SB) = P(S)  P(B) => Statistical
independence

 P(SB) > P(S)  P(B) => Positively correlated

 P(SB) < P(S)  P(B) => Negatively correlated

 Lift(A => B) =

98

P(B | A)

P(B)

Example: Lift

99

Coffee Coffee

Tea 15 5 20

Tea 75 5 80

90 10 100

Association Rule: Tea  Coffee

Confidence= P(Coffee|Tea) = 0.75

but P(Coffee) = 0.9

 Lift = 0.75/0.9= 0.8333 (< 1, therefore is negatively associated)

May 24, 2010 Data Mining: Concepts and Techniques 100

Presentation of Association Rules
(Table Form)

May 24, 2010 Data Mining: Concepts and Techniques 101

Visualization of Association Rule Using Rule Graph

Outline

 Homework 3 review

 Association rule mining

 Take away messages from class

102

Take Away: Feature Construction

103

Concepts/
Classes/
Decisions

Feature construction is
crucial!!!

Worth spending time on

Real World

Feature Space

testing examples

Take Away: Empirical Evaluation

104

generate
solutions

select
best

LEARNER

training examples

train‘ set tune set

classifier

expected accuracy
on future examples

collection of classified examples

Use
statistical
techniques
such as 10-
fold cross
validation
to get
meaningful
results

Take Away: Empirical Evaluation

 Often, an ML system has to choose when to stop learning, select
among alternative answers, etc.

 One wants the model that produces the highest accuracy on
future examples (―overfitting avoidance‖)

 It is a “cheat” to look at the test set while still learning

 Better method
 Set aside part of the training set

 Measure performance on this ―tuning‖ data to estimate future
performance for a given set of parameters

 Use best parameter settings, train with all training data
(except test set) to estimate future performance on new
examples

105

Take Away: Empirical Evaluation

 Accuracy only can be misleading

 Look at alternative measures

 True positive rate/recall

 False positive rate

 Precision

 Area under the curve

106

Take Away: Be Wary of Assumptions

107

$5000

$4000

$3000

$2000

$1000

$0

3
/9

4

7
/9

8

LTCM
DJ
30 T-Bill

Simplification:
Assumed investments
were independent

Reality:
All similar type of bet

Take Away: Simple Methods

 Simple approaches often work reasonable well
in practice

 1-nn

 Naïve Bayes

 Perceptron

 Often worth trying tfirst

108

Take Away: Ensembles

109

Data

Sample1

Sample2

Samplen

Learner1

Learner2

Learnern

H1

H2

Hn

H*Agg.

1) Many classifiers often better than single classifier
2) Bagging/boosting are simple and very effective
3) Worth trying!

Summary

 Association rules: Efficient way to mine

interesting information very large databases

 Get probabilities

 Don‘t require user guidance for interesting

patterns

 Apriori algorithm and it‘s extensions allow the

user to gather a good deal of information

without too many passes through data

110

Questions?

111

