
1

Association Rule Mining

Instructor: Jesse Davis

Slides from: Chris Clifton,

Pedro Domingos, Jeff Ullman

Annoucements

 No class next week

 Office hours next Tuesday 5:30-7:30/8

 Homework 3 is graded

 Homework 4 is due next Tuesday by midnight

2

Outline

 Homework 3 review

 Association rule mining

 Take away messages from class

3

Problem 1

 Accuracy 98-99% after several dozen iterations

 Generally slower than NB but higher accuracy

Problem 1: 2 BIG (RELATED) MISTAKES

 Setting bias by hand (e.g., w0x0 = 0)

 Every input vector should have the same x0
(say, 1)

 Weight w0 should be learned like any other
weight

 Not normalizing feature values to range [0,1].

 Notice that if w0*x0 is fixed at 0 then
∑wi xi > 0 iff n∑wi xi > 0, so normalization would
indeed be unnecessary

 If w0*x0 != 0 you must normalize to ensure that
model generalizes!

Bagging vs. Boosting

 Both techniques will improve performance of
decision stumps

 Boosting should help more because it is better
at reducing the ‗bias‘ portion of error in addition
to variance portion of error

 Bagging is better for handling variance

6

7

8

Bagging vs. Boosting - Errors

 Error 1: Bagging would help more

 Error 2: Boosting would help more

 Explained why boosting is good

 Didn't explain why bagging would be worse

9

GA Crossover

10

00111

11100

00110

10111 10110

X1 ^ !X2

11

X1

X2

1

-1

If sum inputs > 0, then output is 1, else 0

Input

0 0
0 1
1 0
1 1

Output

0
0
1
0

a)
b)
c)
d)

X1 XOR X2

12

X1

X2

1

1

-1

-1

1

1

If sum inputs > 0, then output is 1, else 0

Input

0 0
0 1
1 0
1 1

Output

0
1
1
0

a)
b)
c)
d)

Genetic Algorithm For Sudoku

13

Goal: Generate Grid

Constraints:
1) Can‘t change givens
2) 1-9 in each 3x3 subgrid
3) 1-9 in each row
4) 1-9 in each column

Solution components:
1) Initialiazation
2) Representation
3) Crossovers
4) Mutations
5) Fitness function

Sudoku: Initialization

14

Ensure that each 3x3
subgrid has 1—9
appearing exactly once!

Sudoku: Representation

0 1 2 9 10 11 18 19 20

3 4 5 12 13 14 21 22 23

6 7 8 15 16 17 24 25 26

72 73 74

75 76 77

78 79 80

15

0 1 2 3 4 5 6 7 8 … 72 73 74 75 76 77 78 79 80

Sudoku: Crossovers

16

5 6 2 3 1 7 8 9 4 … 2 8 1 3 7 9 4 6 5

7 8 2 1 4 3 5 9 6 … 9 8 3 6 7 4 2 1 5

5 6 2 3 1 7 8 9 4 … 9 8 3 6 7 4 2 1 5

7 8 2 1 4 3 5 9 6 … 2 8 1 3 7 9 4 6 5

Crossover only at
subblock boundaries

Sudoku: Mutations

17

5 6 2 3 1 7 8 9 4 … 2 8 1 3 7 9 4 6 5

5 6 2 3 1 7 8 9 4 … 2 8 1 3 7 9 4 6 5

5 6 2 3 1 9 8 7 4 … 2 8 1 3 7 9 4 6 5

Disallow if swap
involves a given

Sudoku: Fitness Function

 Representation and operators enforce these
constraints:

 Givens are not moved around

 Each sub-block has 1--9 appearing exactly once

 Ignore these constraints:

 Each column has 1--9 appearing exactly once

 Each row has 1--9 appearing exactly once

 Fitness function: Penalize these states

 Fewer violated constraints, the fitter the solution

 Could penalize based on ―how far off‖ solution is,
i.e., row of all 9‘s is worse than row with two 9‘s

18

Outline

 Homework 3 review

 Association rule mining

 Introduction and definitions

 Naïve algorithm

 Apriori

 PCY

 Limiting disk I/O

 Presenting results, other metrics

 Take away messages from class
19

Association Rule Mining

Given: Set of transactions
Find: Rules that predict the occurrence of an

item based on other items in the transaction

20

TID Items

1 Bread, Milk

2 Bread, Milk, Diaper, Beer, Eggs

3 Milk, Diaper, Beer, Coke

4 Bread, Milk, Diaper, Beer

5 Bread, Milk, Diaper, Coke

Association Rules

{Diaper} {Beer},
{Milk, Bread} {Eggs,Coke}
{Beer, Bread} {Milk}

Implication means co-occurrence,
not causality!

Why Association Rule Mining

 Motivation: Finding regularities in data
 What products were often purchased together?
 What kinds of DNA are sensitive to this new drug?

 Foundation for many data mining tasks
 Association

 Correlation

 Causality

 Algorithms do not require labeled data or for a
user to specify a predefined target concept

21

Market-Basket Model

 A large set of items, e.g., things sold in a
supermarket

 A large set of baskets (transactions), each of
which is a small set of the items, e.g., the
things one customer buys on one day

22

TID Items

1 Bread, Milk

2 Bread, Milk, Diaper, Beer, Eggs

3 Milk, Diaper, Beer, Coke

4 Bread, Milk, Diaper, Beer

5 Bread, Milk, Diaper, Coke

23

Market-Baskets – (2)

 Really a general many-many mapping
(association) between two kinds of things

 We ask about connections among ―items,‖ not
among ―baskets‖

 The technology focuses on common events, not
rare events (―long tail‖)

Definition: Item Set

 Itemset: A collection of one or more items

 Example: {Bread, Milk}

 k-itemset: An itemset that contains k items

 3-itemset: {Bread, Milk, Diaper}

24

TID Items

1 Bread, Milk

2 Bread, Milk, Diaper, Beer, Eggs

3 Milk, Diaper, Beer, Coke

4 Bread, Milk, Diaper, Beer

5 Bread, Milk, Diaper, Coke

25

Definition: Support and Frequent
Itemsets

 Simplest question: find sets of items that
appear ―frequently‖ in the baskets

 Support count for itemset I = the number of
baskets containing all items in I

 Support Fraction of transactions that contain
an itemset

 Given a support threshold s, sets of items
that appear in at least s baskets are called
frequent itemsets

Example Support

Items

Bread, Milk

Bread, Milk, Diaper, Beer, Eggs

Milk, Diaper, Beer, Coke

Bread, Milk, Diaper, Beer

Bread, Milk, Diaper, Coke

26

Itemset Freq

{Br,M} 4

{Br,D} 3

Support({Br,M}) = 4/5 = 0.8

Support({Br,D}) = 3/5 = 0.6

Example: Frequent Itemsets

 Items={milk, coke, pepsi, beer, juice}.

 Support = 3 baskets.

B1 = {m, c, b} B2 = {m, p, j}

B3 = {m, b} B4 = {c, j}

B5 = {m, p, b} B6 = {m, c, b, j}

B7 = {c, b, j} B8 = {b, c}

 Frequent itemsets: {m}, {c}, {b}, {j},

27

Example: Frequent Itemsets

 Items={milk, coke, pepsi, beer, juice}.

 Support = 3 baskets.

B1 = {m, c, b} B2 = {m, p, j}

B3 = {m, b} B4 = {c, j}

B5 = {m, p, b} B6 = {m, c, b, j}

B7 = {c, b, j} B8 = {b, c}

 Frequent itemsets: {m}, {c}, {b}, {j},

28

{m,b}

Example: Frequent Itemsets

 Items={milk, coke, pepsi, beer, juice}.

 Support = 3 baskets.

B1 = {m, c, b} B2 = {m, p, j}

B3 = {m, b} B4 = {c, j}

B5 = {m, p, b} B6 = {m, c, b, j}

B7 = {c, b, j} B8 = {b, c}

 Frequent itemsets: {m}, {c}, {b}, {j},

29

{m,b}

Example: Frequent Itemsets

 Items={milk, coke, pepsi, beer, juice}.

 Support = 3 baskets.

B1 = {m, c, b} B2 = {m, p, j}

B3 = {m, b} B4 = {c, j}

B5 = {m, p, b} B6 = {m, c, b, j}

B7 = {c, b, j} B8 = {b, c}

 Frequent itemsets: {m}, {c}, {b}, {j},

30

, {b,c}{m,b}

Example: Frequent Itemsets

 Items={milk, coke, pepsi, beer, juice}.

 Support = 3 baskets.

B1 = {m, c, b} B2 = {m, p, j}

B3 = {m, b} B4 = {c, j}

B5 = {m, p, b} B6 = {m, c, b, j}

B7 = {c, b, j} B8 = {b, c}

 Frequent itemsets: {m}, {c}, {b}, {j},

31

{m,b}, {b,c}

Example: Frequent Itemsets

 Items={milk, coke, pepsi, beer, juice}.

 Support = 3 baskets.

B1 = {m, c, b} B2 = {m, p, j}

B3 = {m, b} B4 = {c, j}

B5 = {m, p, b} B6 = {m, c, b, j}

B7 = {c, b, j} B8 = {b, c}

 Frequent itemsets: {m}, {c}, {b}, {j},

32

, {b,c} , {c,j}{m,b}

33

Definition: Association Rules

 If-then rules about the contents of baskets

 Given:

 Set of items: I = {i1, i2, …, im}

 Set of transactions: D = {d1, d2, …, dn}

 An association rule: A B, where

 A I

 B I

 A B =

 {i1, i2,…,ik} → j means: ―if a basket contains all

of i1,…,ik then it is likely to contain j.‖

Definition: Confidence

 Confidence of this association rule is the
conditional probability of j given i1,…,ik.
 This gives a measure of how accurate the rule is.

 confidence(A B) = P(B|A) = sup({A,B}) /sup(A)

34

Customer

buys diaper

Customer

buys both

Customer

buys beer

TID Items

1 Bread, Milk

2 Bread, Milk, Diaper, Beer, Eggs

3 Milk, Diaper, Beer, Coke

4 Bread, Milk, Diaper, Beer

5 Bread, Milk, Diaper, Coke

Example: Confidence

35

B1 = {m, c, b} B2 = {m, p, j}

B3 = {m, b} B4 = {c, j}

B5 = {m, p, b} B6 = {m, c, b, j}

B7 = {c, b, j} B8 = {b, c}

 An association rule: {m, b} → c.

 Confidence = 2/4 = 50%.

_

_

+

+

36

Applications – (1)

 Items = products; baskets = sets of products
someone bought in one trip to the store.

 Example application: given that many people
buy beer and diapers together:

 Run a sale on diapers; raise price of beer.

 Only useful if many buy diapers & beer.

37

Applications – (2)

 Baskets = sentences; items = documents
containing those sentences.

 Items that appear together too often could
represent plagiarism.

 Notice items do not have to be ―in‖ baskets.

38

Applications – (3)

 Baskets = Web pages; items = words.

 Unusual words appearing together in a large
number of documents, e.g., ―Brad‖ and
―Angelina,‖ may indicate an interesting
relationship.

Outline

 Homework 3 review

 Association rule mining

 Introduction and definitions

 Naïve algorithm

 Apriori

 PCY

 Limiting disk I/O

 Presenting results, other metrics

 Take away messages from class
39

40

Scale of the Problem

 WalMart sells 100,000 items and can store
billions of baskets

 The Web has billions of words and many
billions of pages

 We have access to lots and lots of data…

Association Rule Mining Goal

 Question: ―find all association rules with
support ≥ s and confidence ≥ c .‖

 Note: ―support‖ of an association rule is the
support of the set of items on the left

 Hard part: finding the frequent itemsets

 Note: if {i1, i2,…,ik} → j has high support

and confidence, then both {i1, i2,…,ik} and
{i1, i2,…,ik ,j } will be ―frequent‖

41

Creating Associating Rules

 Given: Support s, confidence c

 Step 1: Find all itemsets with support s

 Step 2: For each frequent itemset L

 For each non-empty subset s of L

 Output the rule s → {l-s} if its condifence ≥ c

42

43

Example: Association Rule

For rule A C:

support = support({A}{C}) = 50%

confidence = support({A}{C})/support({A})
= 66.6%

Min. support 50%

Min. confidence 50%
Transaction-id Items bought

10 A, B, C

20 A, C

30 A, D

40 B, E, F

Frequent pattern Support

{A} 75%

{B} 50%

{C} 50%

{A, C} 50%

Example: Itemset to Association Rule

Items

Bread, Milk

Bread, Milk, Diaper, Beer, Eggs

Milk, Diaper, Beer, Coke

Bread, Milk, Diaper, Beer

Bread, Milk, Diaper, Coke

44

Itemset Freq

{Br,M} 4

{Br,D} 3

{M,Be} 3

{M,D} 3

{Br,M,D} 3

{M,D,Be} 3

{Br} → {M}, s = 0.8, c = 1.0
{M} → {Br}, s = 1.0, c = 0.8

…
{Br,M} → {D}, s = 0.8, c = 0.75
{Be} → {M,D}, s = 0.6, c = 1.0

45

Computation Model

 Typically, data is kept in flat files rather than in
a database system

 Stored on disk

 Stored basket-by-basket

 Expand baskets into pairs, triples, etc. as
you read baskets

 Use k nested loops to generate all sets of size k.

46

Computation Model – (2)

 The true cost of mining disk-resident data is
usually the number of disk I/O‘s

 In practice, association-rule algorithms read the
data in passes – all baskets read in turn

 Thus, we measure the cost by the number of
passes an algorithm takes

47

Main-Memory Bottleneck

 For many frequent-itemset algorithms, main
memory is the critical resource

 As we read baskets, we need to count
something, e.g., occurrences of pairs

 The number of different things we can count
is limited by main memory

 Swapping counts in/out is a disaster (why?)

48

Finding Frequent Pairs

 The hardest problem often turns out to be
finding the frequent pairs

 Often frequent pairs are common, frequent triples
are rare

 Probability of being frequent drops exponentially
with size

 number of sets grows more slowly with size

 We‘ll concentrate on pairs, then extend to
larger sets

49

Naïve Algorithm

 Read file once, counting in main memory the
occurrences of each pair

 From each basket of n items, generate its
n (n -1)/2 pairs by two nested loops

 Fails if (#items)2 exceeds main memory

 Remember: #items can be 100K (Wal-Mart)
or 10B (Web pages)

50

Example: Counting Pairs

 Suppose 105 items

 Suppose counts are 4-byte integers

 Number of pairs of items: 105(105-1)/2 = 5*109

(approximately)

 Therefore, 2*1010 (20 gigabytes) of main
memory needed

Details of Main-Memory Counting

 Two approaches:

1. Count all pairs, using a triangular matrix.

2. Keep a table of triples [i, j, c] = ―the count
of the pair of items {i, j } is c.‖

 1. requires only 4 bytes/pair

 2. requires 12 bytes, but only for those pairs
with count > 0

51

52

4 per pair

Method (1) Method (2)

12 per
occurring pair

Approaches Pictorially

Approach 1

 Assign each item a number

 Count {i, j } only if i < j

 Keep pairs in the order

 {1,2}

 …

 {1,n }

 {2,3}

 …

 {n -1,n }

 Pair {i, j } at the position: (i –1)(n –i /2) + j – i
53

Approach 2

 Total bytes used is about 12p, where p is the
number of pairs that actually occur

 Beats triangular matrix if at most 1/3 of
possible pairs actually occur

 Require extra space for retrieval structure

54

Outline

 Homework 3 review

 Association rule mining

 Introduction and definitions

 Naïve algorithm

 Apriori

 PCY

 Limiting disk I/O

 Presenting results, other metrics

 Take away messages from class
55

Apriori Algorithm

 Generate and test approach for discovering
frequent itemsets

 Iterative approach

 Find all frequent itemsets of size k before
finding frequent itemsets of size k+1

 One pass through the data for each frequent
itemset size

56

Apriori‘s Key Idea

 Aproiri Principle (monotonicity): if an itemset
appears at least s times, so do all its subsets

 Contrapositive for pairs: if item i does not
appear in s baskets, then no pair including i
can appear in s baskets

 Apriori principle holds due to the following
property of the support measure:

57

)()()(:, YsXsYXYX

58

A-Priori Algorithm: Frequent Pairs

 Pass 1: Read baskets and count in main
memory the occurrences of each item

 Requires memory proportional to #items

 Frequent items: those that appear s times

 Pass 2: Read baskets again and count in
main memory only those pairs both of which
were found in Pass 1 to be frequent

 Requires memory proportional to square of
frequent items, plus a list of the frequent items

 Frequent itemsets: those that appear s times

The Apriori Algorithm

 Join Step: Ck is generated by joining Lk-1with itself

 Prune Step: Any (k-1)-itemset that is not frequent cannot be a
subset of a frequent k-itemset

 Pseudo-code:
Ck : Candidate itemset of size k
Lk : frequent itemset of size k

L1 = {frequent items}
for (k = 1; Lk !=; k++) do begin

Ck+1 = candidates generated from Lk
for each transaction t in database do

increment the count of all candidates in Ck+1
that are contained in t

Lk+1 = candidates in Ck+1 with min_support
end

return k Lk;
59

Apriori: Pass 1

Given: Min support is 2

60

Database D

Scan D

C1

TID Items

1 1,3,4

2 2,3,5

3 1,2,3,5

4 2,5

Itemset Sup

{1} 2

{2} 3

{3} 3

{4} 1

{5} 3

Apriori: Pass 1

Given: Min support is 2

61

Database D

Scan D

C1 L1

TID Items

1 1,3,4

2 2,3,5

3 1,2,3,5

4 2,5

Itemset Sup

{1} 2

{2} 3

{3} 3

{4} 1

{5} 3

Itemset Sup

{1} 2

{2} 3

{3} 3

{5} 3

Prune

Apriori: Pass 2

Given: Min support is 2

62

Database D L1 C2

TID Items

1 1,3,4

2 2,3,5

3 1,2,3,5

4 2,5

Itemset Sup

{1} 2

{2} 3

{3} 3

{5} 3

Itemset

{1,2}

{1,3}

{1,5}

{2,3}

{2,5}

{3,5}

Itemset Sup

{1,2} 1

{1,3} 2

{1,5} 1

{2,3} 2

{2,5} 3

{3,5} 2

L2

Scan D

Apriori: Pass 2

Given: Min support is 2

63

Database D L1 C2

TID Items

1 1,3,4

2 2,3,5

3 1,2,3,5

4 2,5

Itemset Sup

{1} 2

{2} 3

{3} 3

{5} 3

Itemset

{1,2}

{1,3}

{1,5}

{2,3}

{2,5}

{3,5}

Itemset Sup

{1,2} 1

{1,3} 2

{1,5} 1

{2,3} 2

{2,5} 3

{3,5} 2

L2

Scan D

Prune

Apriori: Pass 2

Given: Min support is 2

64

Database D L1 C2

TID Items

1 1,3,4

2 2,3,5

3 1,2,3,5

4 2,5

Itemset Sup

{1} 2

{2} 3

{3} 3

{5} 3

Itemset

{1,2}

{1,3}

{1,5}

{2,3}

{2,5}

{3,5}

Itemset Sup

{1,3} 2

{2,3} 2

{2,5} 3

{3,5} 2

L2

Scan D

Apriori: Pass 3

Given: Min support is 2

65

Database D L2 C3

TID Items

1 1,3,4

2 2,3,5

3 1,2,3,5

4 2,5

Itemset Sup

{1,3} 2

{2,3} 2

{2,5} 3

{3,5} 2

Itemset

{2,3,5}

Itemset Sup

{2,3,5} 2

L3

Scan D

Apriori: Join Step

 Suppose the items in Lk-1 are listed in an order

 Join each element in Lk-1 with itself

 If l1, l2 ∈ Lk-1, the are joinable if:

 The first k-2 items in l1 and l2 are the same

 l1[1] = l2[1] AND
l1[2] = l2[2] AND
… AND
l1[k-2] = l2[k-2]

66

Apriori: Prune Step

 For each candidate itemsets Ck

 Look at each subset of size k-1 [i.e., drop
one item from the candidate]

 If ANY one of these subsets isn‘t frequent,
discard this candidate

 Application of the Apriori principle

67

Example: Candidate Generation

 L3={abc, abd, acd, ace, bcd}

 Self-joining: L3*L3

 abcd from abc and abd

 acde from acd and ace

 Note: other joins (i.e., abc and acd, abc and ace,
etc. are illegal)

 Pruning:

 acde is removed because ade is not in L3

 C4={abcd}

68

Outline

 Homework 3 review

 Association rule mining

 Introduction and definitions

 Naïve algorithm

 Apriori

 PCY

 Limiting disk I/O

 Presenting results, other metrics

 Take away messages from class
69

70

Aside: Hash-Based Filtering

 Simple problem: I have a set S of one billion
strings of length 10.

 I want to scan a larger file F of strings and
output those that are in S.

 I have 1GB of main memory.

 So I can‘t afford to store S in memory.

71

Solution – (1)

 Create a bit array of 8 billion bits, initially all 0‘s.

 Choose a hash function h with range [0, 8*109],
and hash each member of S to one of the bits,
which is then set to 1.

 Filter the file F by hashing each string and
outputting only those that hash to a 1.

72

Solution – (2)

File F

0010001011000

To output;
may be in S.

h

Drop; surely
not in S.

PCY Algorithm

 During Pass 1 of A-priori, most memory is idle.

 Idea: Use tmemory for a hash table

 Hash pairs of items that appear in a
transaction – we need to generate these

 Just the count, not the pairs themselves

 Interested in the presence of a pair AND
whether it is present at least s (support)
times

73

74

PCY Algorithm: Pass 1

FOR (each basket) {

FOR (each item in the basket)

add 1 to item’s count;

FOR (each pair of items) {

hash the pair to a bucket;

add 1 to the count for that

bucket

}

}

Observation About Buckets

 A bucket that a frequent pair hashes to meets
minimum support threshold

 Cannot eliminate any member of this bucket

 Even without any frequent pair, a bucket can
be frequent

 Cannot eliminate any member of this bucket

 Best case: Count for a bucket is less than
minimum support

 Eliminate all pairs hashed to this bucket even
if the pair consists of two frequent items

75

PCY: Pass 1

Given: Min support is 2

76

Database D
Scan D

C1

TID Items

1 1,3,4

2 2,3,5

3 1,2,3,5

4 2,5

Itemset Sup

{1} 2

{2} 3

{3} 3

{4} 1

{5} 3

Bucket 1 2 3 4 5

Count 3 2 4 1 3

{1,3}, {1,4}, {3,4}

{2,3}, {2,5}, {3,5}

{1,2}, {1,3}, {1,5}, {2,3}, {2,5}, {3,5}

{2,5}

PCY: Between Passes

Given: Min support is 2

77

Database D C1

TID Items

1 1,3,4

2 2,3,5

3 1,2,3,5

4 2,5

Itemset Sup

{1} 2

{2} 3

{3} 3

{5} 3

Bucket 1 2 3 4 5

Count 3 2 4 1 3

C2

Itemset

{1,2}

{1,3}

{1,5}

{2,3}

{2,5}

{3,5}

Itemset

{1,3}

{1,5}

{2,3}

{2,5}

{3,5}

C2

Between Passes

 Replace the buckets by a bit-vector:

 1 means the bucket is frequent

 0 means it is not frequent

 4-byte integers are replaced by bits, so the bit-
vector requires 1/32 of memory

 Also, decide which items are frequent and list
them for the second pass

78

79

Picture of PCY

Hash
table

Item counts

Bitmap

Pass 1 Pass 2

Frequent items

Counts of
candidate

pairs

80

PCY Algorithm: Pass 2

 Count all pairs {i, j } that meet the conditions
for being a candidate pair:

1. Both i and j are frequent items.

2. The pair {i, j }, hashes to a bucket number
whose bit in the bit vector is 1.

 Notice all these conditions are necessary for
the pair to have a chance of being frequent.

Outline

 Homework 3 review

 Association rule mining

 Introduction and definitions

 Naïve algorithm

 Apriori

 PCY

 Limiting disk I/O

 Presenting results, other metrics

 Take away messages from class
81

All (Or Most) Frequent Itemsets
in < 2 Passes

 A-Priori, PCY, etc., take k passes to find
frequent itemsets of size k

 Other techniques use 2 or fewer passes for all
sizes:

 Simple algorithm

 SON (Savasere, Omiecinski, and Navathe)

 Toivonen

82

83

Simple Algorithm

 Take a random sample of the market baskets
that fits in main memory

 Run a-priori or one of its improvements in main
memory, so you don‘t pay for disk I/O each
time you increase the size of itemsets

 Be sure you leave enough space for counts

Copy of
sample
baskets

Space
for

counts

Algorithm Details

 Scale back support threshold a suitable number

 E.g., if sample is 1/100 of the baskets, use
s /100 as your support threshold instead of s

 Optional: Verify that your guesses are truly
frequent in the entire data set by a second pass

 Miss sets frequent in whole but not in sample

 Smaller threshold, e.g., s /125, helps limit
misses, but requires more space

84

85

Toivonen‘s Algorithm

 Use simple algorithm, but lower the threshold s
for the sample

 Example: if the sample is 1% of the baskets,
use s /125 vs. s /100.

 Goal: Avoid missing truly frequent itemsets

 Add to the itemsets that are frequent in the
sample the negative border of these itemsets.

 An itemset is in the negative border if it is not
deemed frequent in the sample, but all its
immediate subsets are

Example: Negative Border

 ABCD is in the negative border if and only if:

1. It is not frequent in the sample, but

2. All of ABC, BCD, ACD, and ABD are.

 A is in the negative border if and only if it is
not frequent in the sample.

 Because the empty set is always frequent.

 Unless there are fewer baskets than the support
threshold (silly case).

86

87

Picture of Negative Border

…

tripletons

doubletons

singletons

Negative Border

Frequent Itemsets
from Sample

88

Toivonen‘s Algorithm Continued

 In a second pass, count all candidate frequent
itemsets from the first pass, and also count
their negative border

 If no itemset from the negative border turns
out to be frequent, then the candidates found
to be frequent in the whole data are exactly
the frequent itemsets

Toivonen‘s Algorithm Continued

 What if we find that something in the negative
border is actually frequent?

 We must start over again!

 Try to choose the support threshold so the
probability of failure is low, while the number of
itemsets checked on the second pass fits in
main-memory.

89

90

If Something in the Negative Border
is Frequent . . .

…

tripletons

doubletons

singletons

Negative Border

Frequent Itemsets
from Sample

We broke through the
negative border. How
far does the problem go?

91

Theorem:

 If there is an itemset that is frequent in the
whole, but not frequent in the sample, then
there is a member of the negative border for
the sample that is frequent in the whole.

Proof

 Suppose not; i.e.;

1. There is an itemset S frequent in the whole but not
frequent in the sample, and

2. Nothing in negative border is frequent in the whole

 Let T be a smallest subset of S that is not
frequent in the sample

 T is frequent in the whole (S is frequent +
monotonicity)

 T is in the negative border (else not ―smallest‖)

92

Outline

 Homework 3 review

 Association rule mining

 Introduction and definitions

 Naïve algorithm

 Apriori

 PCY

 Limiting disk I/O

 Presenting results, other metrics

 Take away messages from class
93

94

Compacting the Output

1. Maximal Frequent itemsets : no immediate
superset is frequent

2. Closed itemsets : no immediate superset has
the same count (> 0).

 Stores not only frequent information, but
exact counts

95

Count Maximal (s=3) Closed

A 4 No No

B 5 No Yes

C 3 No No

AB 4 Yes Yes

AC 2 No No

BC 3 Yes Yes

ABC 2 No Yes

Frequent, but
superset BC
also frequent

Frequent, and
its only superset,
ABC, not freq

Superset BC
has same count

Its only super-
set, ABC, has
smaller count

Example: Maximal/Closed

Interestingness Measurements

 Two popular objective measurements:

 support

 confidence

 Subjective measures: A rule (pattern) is
interesting if it is:

 Unexpected (surprising to the user)

 Actionable (the user can do something with
it)

96

Criticism of Support and Confidence

 Example: 5000 students
 3000 play basketball
 3750 eat cereal
 2000 both play basket ball and eat cereal

 play basketball eat cereal [40%, 66.7%]

 misleading as the overall percentage of students
eating cereal is 75% which is higher than 66.7%

 play basketball not eat cereal [20%, 33.3%]

 More accurate, but lower support and confidence

97

basketball not basketball sum(row)

cereal 2000 1750 3750

not cereal 1000 250 1250

sum(col.) 3000 2000 5000

Statistical Measures

 P(SB) = P(S) P(B) => Statistical
independence

 P(SB) > P(S) P(B) => Positively correlated

 P(SB) < P(S) P(B) => Negatively correlated

 Lift(A => B) =

98

P(B | A)

P(B)

Example: Lift

99

Coffee Coffee

Tea 15 5 20

Tea 75 5 80

90 10 100

Association Rule: Tea Coffee

Confidence= P(Coffee|Tea) = 0.75

but P(Coffee) = 0.9

 Lift = 0.75/0.9= 0.8333 (< 1, therefore is negatively associated)

May 24, 2010 Data Mining: Concepts and Techniques 100

Presentation of Association Rules
(Table Form)

May 24, 2010 Data Mining: Concepts and Techniques 101

Visualization of Association Rule Using Rule Graph

Outline

 Homework 3 review

 Association rule mining

 Take away messages from class

102

Take Away: Feature Construction

103

Concepts/
Classes/
Decisions

Feature construction is
crucial!!!

Worth spending time on

Real World

Feature Space

testing examples

Take Away: Empirical Evaluation

104

generate
solutions

select
best

LEARNER

training examples

train‘ set tune set

classifier

expected accuracy
on future examples

collection of classified examples

Use
statistical
techniques
such as 10-
fold cross
validation
to get
meaningful
results

Take Away: Empirical Evaluation

 Often, an ML system has to choose when to stop learning, select
among alternative answers, etc.

 One wants the model that produces the highest accuracy on
future examples (―overfitting avoidance‖)

 It is a “cheat” to look at the test set while still learning

 Better method
 Set aside part of the training set

 Measure performance on this ―tuning‖ data to estimate future
performance for a given set of parameters

 Use best parameter settings, train with all training data
(except test set) to estimate future performance on new
examples

105

Take Away: Empirical Evaluation

 Accuracy only can be misleading

 Look at alternative measures

 True positive rate/recall

 False positive rate

 Precision

 Area under the curve

106

Take Away: Be Wary of Assumptions

107

$5000

$4000

$3000

$2000

$1000

$0

3
/9

4

7
/9

8

LTCM
DJ
30 T-Bill

Simplification:
Assumed investments
were independent

Reality:
All similar type of bet

Take Away: Simple Methods

 Simple approaches often work reasonable well
in practice

 1-nn

 Naïve Bayes

 Perceptron

 Often worth trying tfirst

108

Take Away: Ensembles

109

Data

Sample1

Sample2

Samplen

Learner1

Learner2

Learnern

H1

H2

Hn

H*Agg.

1) Many classifiers often better than single classifier
2) Bagging/boosting are simple and very effective
3) Worth trying!

Summary

 Association rules: Efficient way to mine

interesting information very large databases

 Get probabilities

 Don‘t require user guidance for interesting

patterns

 Apriori algorithm and it‘s extensions allow the

user to gather a good deal of information

without too many passes through data

110

Questions?

111

