Association Rule Mining

Instructor: Jesse Davis

Slides from: Chris Clifton, Pedro Domingos, Jeff Ullman

- No class next week
 - Office hours next Tuesday 5:30-7:30/8
- Homework 3 is graded
- Homework 4 is due next Tuesday by midnight

- Homework 3 review
- Association rule mining
- Take away messages from class

Accuracy 98-99% after several dozen iterations

Generally slower than NB but higher accuracy

Problem 1: 2 BIG (RELATED) MISTAKES

- Setting bias by hand (e.g., $w_0 x_0 = 0$)
 - Every input vector should have the same x0 (say, 1)
 - Weight w0 should be *learned* like any other weight
- Not normalizing feature values to range [0,1].
 - Notice that if w0*x0 is fixed at 0 then ∑w_ix_i > 0 iff n∑w_ix_i > 0, so normalization would indeed be unnecessary
 - If w0*x0 != 0 you must normalize to ensure that model generalizes!

Bagging vs. Boosting

- Both techniques will improve performance of decision stumps
- Boosting should help more because it is better at reducing the 'bias' portion of error in addition to variance portion of error
- Bagging is better for handling variance

Х

Bagging vs. Boosting - Errors

- Error 1: Bagging would help more
- Error 2: Boosting would help more
 - Explained why boosting is good
 - Didn't explain why bagging would be worse

	<u>Input</u>	<u>Output</u>
a)	0 0	0
b)	0 1	0
c)	1 0	1
d)	1 1	0

If sum inputs > 0, then output is 1, else 0

	<u>Input</u>	<u>Output</u>
a)	0 0	0
b)	0 1	1
c)	1 0	1
d)	1 1	0

If sum inputs > 0, then output is 1, else 0

Genetic Algorithm For Sudoku

Goal: Generate Grid

Constraints:

- 1) Can't change givens
- 2) 1-9 in each 3x3 subgrid
- 3) 1-9 in each row
- 4) 1-9 in each column

Solution components:

- 1) Initialiazation
- 2) Representation
- 3) Crossovers
- 4) Mutations
- 5) Fitness function

Sudoku: Initialization

Ensure that each 3x3 subgrid has 1—9 **appearing exactly once!**

Sudoku: Representation

Sudoku: Fitness Function

- Representation and operators enforce these constraints:
 - Givens are not moved around
 - Each sub-block has 1--9 appearing exactly once
- Ignore these constraints:
 - Each column has 1--9 appearing exactly once
 - Each row has 1--9 appearing exactly once
- Fitness function: Penalize these states
 - Fewer violated constraints, the fitter the solution
 - Could penalize based on "how far off" solution is, i.e., row of all 9's is worse than row with two 9's

- Homework 3 review
- Association rule mining
 - Introduction and definitions
 - Naïve algorithm
 - Apriori
 - PCY
 - Limiting disk I/O
 - Presenting results, other metrics
- Take away messages from class

Given: Set of transactions Find: Rules that predict the occurrence of an item based on other items in the transaction

TID	Items
1	Bread, Milk
2	Bread, Milk, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Association Rules

 $\begin{aligned} & \{\text{Diaper}\} \rightarrow \{\text{Beer}\}, \\ & \{\text{Milk, Bread}\} \rightarrow \{\text{Eggs,Coke}\} \\ & \{\text{Beer, Bread}\} \rightarrow \{\text{Milk}\} \end{aligned}$

Implication means co-occurrence, not causality!

Why Association Rule Mining

Motivation: Finding regularities in data

- What products were often purchased together?
- What kinds of DNA are sensitive to this new drug?
- Foundation for many data mining tasks
 - Association
 - Correlation
 - Causality
- Algorithms do not require labeled data or for a user to specify a predefined target concept

- A large set of *items*, e.g., things sold in a supermarket
- A large set of *baskets (transactions)*, each of which is a small set of the items, e.g., the things one customer buys on one day

TID	Items
1	Bread, Milk
2	Bread, Milk, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Market-Baskets – (2)

- Really a general many-many mapping (association) between two kinds of things
- We ask about connections among "items," not among "baskets"
- The technology focuses on common events, not rare events ("long tail")

Definition: Item Set

- Itemset: A collection of one or more items
 Example: {Bread, Milk}
- **k-itemset:** An itemset that contains k items
 - 3-itemset: {Bread, Milk, Diaper}

TID	Items	
1	Bread, Milk	
2	Bread, Milk, Diaper, Beer, Eggs	
3	Milk, Diaper, Beer, Coke	
4	Bread, Milk, Diaper, Beer	
5	Bread, Milk, Diaper, Coke	

Definition: Support and Frequent Itemsets

- Simplest question: find sets of items that appear "frequently" in the baskets
- Support count for itemset I = the number of baskets containing all items in I
- Support Fraction of transactions that contain an itemset
- Given a *support threshold s*, sets of items that appear in at least *s* baskets are called *frequent itemsets*

Example Support

Items

Bread, Milk

Bread, Milk, Diaper, Beer, Eggs

Milk, Diaper, Beer, Coke

Bread, Milk, Diaper, Beer

Bread, Milk, Diaper, Coke

Itemset	Freq
{Br,M}	4
{Br,D}	3

Support($\{Br,M\}$) = 4/5 = 0.8 Support($\{Br,D\}$) = 3/5 = 0.6

- Items={milk, coke, pepsi, beer, juice}.
- Support = 3 baskets.
 - $B_1 = \{m, c, b\}$ $B_2 = \{m, p, j\}$ $B_3 = \{m, b\}$ $B_4 = \{c, j\}$ $B_5 = \{m, p, b\}$ $B_6 = \{m, c, b, j\}$ $B_7 = \{c, b, j\}$ $B_8 = \{b, c\}$
- Frequent itemsets: {m}, {c}, {b}, {j},

- Items={milk, coke, pepsi, beer, juice}.
- Support = 3 baskets.

 $\begin{array}{ll} B_1 = \{m, c, b\} & B_2 = \{m, p, j\} \\ B_3 = \{m, b\} & B_4 = \{c, j\} \\ B_5 = \{m, p, b\} & B_6 = \{m, c, b, j\} \\ B_7 = \{c, b, j\} & B_8 = \{b, c\} \end{array} \\ \\ \bullet \mbox{ Frequent itemsets: } \{m\}, \{c\}, \{b\}, \{j\}, \\ \{m, b\} \end{array}$

- Items={milk, coke, pepsi, beer, juice}.
- Support = 3 baskets.
 - $B_1 = \{m, c, b\}$ $B_2 = \{m, p, j\}$ $B_3 = \{m, b\}$ $B_4 = \{c, j\}$ $B_5 = \{m, p, b\}$ $B_6 = \{m, c, b, j\}$ $B_7 = \{c, b, j\}$ $B_8 = \{b, c\}$
- Frequent itemsets: {m}, {c}, {b}, {j}, {m,b}

- Items={milk, coke, pepsi, beer, juice}.
- Support = 3 baskets.

- Items={milk, coke, pepsi, beer, juice}.
- Support = 3 baskets.
 - $B_1 = \{m, c, b\}$ $B_2 = \{m, p, j\}$ $B_3 = \{m, b\}$ $B_4 = \{c, j\}$ $B_5 = \{m, p, b\}$ $B_6 = \{m, c, b, j\}$ $B_7 = \{c, b, j\}$ $B_8 = \{b, c\}$
- Frequent itemsets: {m}, {c}, {b}, {j}, {m,b}, {b,c}

- Items={milk, coke, pepsi, beer, juice}.
- Support = 3 baskets.
 - $B_1 = \{m, c, b\}$ $B_2 = \{m, p, j\}$ $B_3 = \{m, b\}$ $B_4 = \{c, j\}$ $B_5 = \{m, p, b\}$ $B_6 = \{m, c, b, j\}$ $B_7 = \{c, b, j\}$ $B_8 = \{b, c\}$
- Frequent itemsets: {m}, {c}, {b}, {j}, {m,b}, {b,c}, {c,j}

Definition: Association Rules

- If-then rules about the contents of basketsGiven:
 - Set of *items*: $I = \{i_1, i_2, ..., i_m\}$
 - Set of *transactions*: $D = \{d_1, d_2, ..., d_n\}$
- An *association rule*: $A \Rightarrow B$, where
 - $A \subset I$
 - $B \subset I$
 - $A \cap B = \emptyset$

• $\{i_1, i_2, ..., i_k\} \rightarrow j$ means: "if a basket contains all of $i_1, ..., i_k$ then it is *likely* to contain *j*."

Definition: Confidence

• *Confidence* of this association rule is the conditional probability of *j* given $i_1, ..., i_k$.

- This gives a measure of how accurate the rule is.
- confidence(A \Rightarrow B) = P(B|A) = sup({A,B}) /sup(A)

Example: Confidence

$$+ B_1 = \{m, c, b\}$$

$$-B_3 = \{m, b\}$$

 $B_{2} = \{m, p, j\}$ $B_{4} = \{c, j\}$ $+ B_{6} = \{m, c, b, j\}$ $B_{8} = \{b, c\}$

- An association rule: $\{m, b\} \rightarrow c$.
 - Confidence = 2/4 = 50%.

Applications -(1)

- Items = products; baskets = sets of products someone bought in one trip to the store.
- Example application: given that many people buy beer and diapers together:
 - Run a sale on diapers; raise price of beer.
- Only useful if many buy diapers & beer.
Applications -(2)

- Baskets = sentences; items = documents containing those sentences.
- Items that appear together too often could represent plagiarism.
- Notice items do not have to be "in" baskets.

Applications -(3)

- Baskets = Web pages; items = words.
- Unusual words appearing together in a large number of documents, e.g., "Brad" and "Angelina," may indicate an interesting relationship.

- Homework 3 review
- Association rule mining
 - Introduction and definitions
 - Naïve algorithm
 - Apriori
 - PCY
 - Limiting disk I/O
 - Presenting results, other metrics
- Take away messages from class

- WalMart sells 100,000 items and can store billions of baskets
- The Web has billions of words and many billions of pages
- We have access to lots and lots of data...

Association Rule Mining Goal

- Question: "find all association rules with support ≥ s and confidence ≥ c."
 - Note: "support" of an association rule is the support of the set of items on the left
- Hard part: finding the frequent itemsets
 Note: if {*i*₁, *i*₂,...,*i*_k} → *j* has high support and confidence, then both {*i*₁, *i*₂,...,*i*_k} and {*i*₁, *i*₂,...,*i*_k} will be "frequent"

Creating Associating Rules

- Given: Support s, confidence c
- Step 1: Find all itemsets with support s
- Step 2: For each frequent itemset L
 For each non-empty subset s of L
 Output the rule s → {l-s} if its condifence ≥ c

Example: Association Rule

Transaction-id	Items bought
10	A, B, C
20	A, C
30	A, D
40	B, E, F

Min. support 50% Min. confidence 50%

Frequent pattern	Support
{A}	75%
{B}	50%
{C}	50%
{A, C}	50%

For rule $A \Rightarrow C$:

support = support($\{A\} \cup \{C\}$) = 50% confidence = support($\{A\} \cup \{C\}$)/support($\{A\}$) = 66.6%

Example: Itemset to Association Rule

Items

Bread, Milk

Bread, Milk, Diaper, Beer, Eggs

Milk, Diaper, Beer, Coke

Bread, Milk, Diaper, Beer

Bread, Milk, Diaper, Coke

 $\begin{array}{l} \{Br\} \rightarrow \{M\}, \ s = 0.8, \ c = 1.0 \\ \{M\} \rightarrow \{Br\}, \ s = 1.0, \ c = 0.8 \end{array}$

Itemset	Freq
{Br,M}	4
{Br,D}	3
{M,Be}	3
{M,D}	3
{Br,M,D}	3
{M,D,Be}	3

•••

{Br,M} \rightarrow {D}, s = 0.8, c = 0.75 {Be} \rightarrow {M,D}, s = 0.6, c = 1.0

Computation Model

- Typically, data is kept in flat files rather than in a database system
 - Stored on disk
 - Stored basket-by-basket
 - Expand baskets into pairs, triples, etc. as you read baskets
 - Use *k* nested loops to generate all sets of size *k*.

Computation Model – (2)

- The true cost of mining disk-resident data is usually the number of disk I/O's
- In practice, association-rule algorithms read the data in *passes* – all baskets read in turn
- Thus, we measure the cost by the number of passes an algorithm takes

Main-Memory Bottleneck

- For many frequent-itemset algorithms, main memory is the critical resource
 - As we read baskets, we need to count something, e.g., occurrences of pairs
 - The number of different things we can count is limited by main memory
 - Swapping counts in/out is a disaster (why?)

Finding Frequent Pairs

- The hardest problem often turns out to be finding the frequent pairs
 - Often frequent pairs are common, frequent triples are rare
 - Probability of being frequent drops exponentially with size
 - number of sets grows more slowly with size
- We'll concentrate on pairs, then extend to larger sets

- Read file once, counting in main memory the occurrences of each pair
 - From each basket of *n* items, generate its *n*(*n*-1)/2 pairs by two nested loops
- Fails if (#items)² exceeds main memory
 - Remember: #items can be 100K (Wal-Mart) or 10B (Web pages)

Example: Counting Pairs

- Suppose 10⁵ items
- Suppose counts are 4-byte integers
- Number of pairs of items: 10⁵(10⁵-1)/2 = 5*10⁹ (approximately)
- Therefore, 2*10¹⁰ (20 gigabytes) of main memory needed

Details of Main-Memory Counting

- Two approaches:
 - 1. Count all pairs, using a triangular matrix.
 - 2. Keep a table of triples [*i*, *j*, *c*] = "the count of the pair of items {*i*, *j*} is *c*."
- 1. requires only 4 bytes/pair
- 2. requires 12 bytes, but only for those pairs with count > 0

Approaches Pictorially

Method (1)

Method (2)

Approach 1

- Assign each item a number
- Count {*i*, *j* } only if *i* < *j*
- Keep pairs in the order
 - **1,2**
 - …
 - {1,n}
 - {2,3}
 - …
 - {n-1,n}
- Pair $\{i, j\}$ at the position: (i-1)(n-i/2) + j i

- Total bytes used is about 12p, where p is the number of pairs that actually occur
- Beats triangular matrix if at most 1/3 of possible pairs actually occur
- Require extra space for retrieval structure

- Homework 3 review
- Association rule mining
 - Introduction and definitions
 - Naïve algorithm
 - Apriori
 - PCY
 - Limiting disk I/O
 - Presenting results, other metrics
- Take away messages from class

- Generate and test approach for discovering frequent itemsets
- Iterative approach
 - Find all frequent itemsets of size k before finding frequent itemsets of size k+1
 - One pass through the data for each frequent itemset size

Apriori's Key Idea

- Aproiri Principle (monotonicity): if an itemset appears at least s times, so do all its subsets
 - Contrapositive for pairs: if item *i* does not appear in *s* baskets, then no pair including *i* can appear in *s* baskets
- Apriori principle holds due to the following property of the support measure:

$$\forall X, Y : (X \subseteq Y) \Longrightarrow s(X) \ge s(Y)$$

A-Priori Algorithm: Frequent Pairs

- Pass 1: Read baskets and count in main memory the occurrences of each item
 - Requires memory proportional to #items
 - Frequent items: those that appear s times
- Pass 2: Read baskets again and count in main memory only those pairs both of which were found in Pass 1 to be frequent
 - Requires memory proportional to square of frequent items, plus a list of the frequent items
 - Frequent itemsets: those that appear s times

The Apriori Algorithm

- Join Step: C_k is generated by joining L_{k-1} with itself
- Prune Step: Any (k-1)-itemset that is not frequent cannot be a subset of a frequent k-itemset
- Pseudo-code:
 - C_k : Candidate itemset of size k
 - L_k : frequent itemset of size k

 $L_{1} = \{ \text{frequent items} \}$ for $(k = 1; L_{k} \mid = \emptyset; k++)$ do begin $C_{k+1} = \text{candidates generated from } L_{k}$ for each transaction t in database do increment the count of all candidates in C_{k+1} that are contained in t $L_{k+1} = \text{candidates in } C_{k+1} \text{ with min_support}$ end return $\cup_{k} L_{k}$;

Given: Min support is 2 C_1 Database D Itemset Sup Items TID 2 {1} 1,3,4 1 Scan D 2 {2} 3 2,3,5 3 1,2,3,5 {3} 3 4 {4} 1 2,5 {5} 3

Given: Min support is 2 C_1 Database D L_1 Itemset Sup Itemset Sup TID Items {1} 2 1 1,3,4 $\{1\}$ 2 Scan D Prune {2} 3 2 2,3,5 {2} 3 3 1,2,3,5 {3} 3 {3} 3 4 {5} 2,5 {4} 1 3 {5} 3

Given: Min support is 2

T

Database D				
TID	Items			
1	1,3,4			
2	2,3,5			
3	1,2,3,5			
4	2,5			

L_1	
Itemset	Sup
{1}	2
{2}	3
{3}	3
{5}	3

Given: Min support is 2

T

Database D				
TID	Items			
1	1,3,4			
2	2,3,5			
3	1,2,3,5			
4	2,5			

L_1	
Itemset	Sup
{1}	2
{2}	3
{3}	3
{5}	3

Given: Min support is 2

Database D		L_2		C_3		L_3	
TID	Items	Itemset	Sup	Itemset	Scan D	Itemset	Sup
1	1,3,4	{1,3}	2	{2,3,5}		{2,3,5}	2
2	2,3,5	{2,3}	2				
3	1,2,3,5	{2,5}	3				
4	2,5	{3,5}	2				

- Suppose the items in L_{k-1} are listed in an order
- Join each element in L_{k-1} with itself
- If $|1, |2 \in L_{k-1}$, the are joinable if:
 - The first k-2 items in l1 and l2 are the same
 - I1[1] = I2[1] AND I1[2] = I2[2] AND ... AND

11[k-2] = 12[k-2]

Apriori: Prune Step

- For each candidate itemsets C_k
 - Look at each subset of size k-1 [i.e., drop one item from the candidate]
 - If ANY one of these subsets isn't frequent, discard this candidate
 - Application of the Apriori principle

Example: Candidate Generation

- L₃={abc, abd, acd, ace, bcd}
- Self-joining: L₃*L₃
 - abcd from abc and abd
 - acde from acd and ace
 - Note: other joins (i.e., abc and acd, abc and ace, etc. are illegal)
- Pruning:
 - acde is removed because ade is not in L₃
- *C*₄={*abcd*}

- Homework 3 review
- Association rule mining
 - Introduction and definitions
 - Naïve algorithm
 - Apriori
 - PCY
 - Limiting disk I/O
 - Presenting results, other metrics
- Take away messages from class

Aside: Hash-Based Filtering

- Simple problem: I have a set S of one billion strings of length 10.
- I want to scan a larger file F of strings and output those that are in S.
- I have 1GB of main memory.
 - So I can't afford to store S in memory.

Solution -(1)

- Create a bit array of 8 billion bits, initially all 0's.
- Choose a hash function h with range [0, 8*10⁹], and hash each member of S to one of the bits, which is then set to 1.
- Filter the file F by hashing each string and outputting only those that hash to a 1.

- During Pass 1 of A-priori, most memory is idle.
- Idea: Use tmemory for a hash table
 - Hash pairs of items that appear in a transaction – we need to generate these
 - Just the count, not the pairs themselves
 - Interested in the presence of a pair AND whether it is present at least s (support) times

FOR (each basket) {
FOR (each item in the basket)
 add 1 to item's count;
FOR (each pair of items) {
 hash the pair to a bucket;
 add 1 to the count for that
 bucket

Observation About Buckets

- A bucket that a frequent pair hashes to meets minimum support threshold
 - Cannot eliminate any member of this bucket
- Even without any frequent pair, a bucket can be frequent
 - Cannot eliminate any member of this bucket
- Best case: Count for a bucket is less than minimum support
 - Eliminate all pairs hashed to this bucket even if the pair consists of two frequent items

Bucket	1	2	3	4	5
Count	3	2	4	1	3

Given: Min support is 2 Database D C_1

TID	Items					
1	1,3,4					
2	2,3,5					
3	1,2,3,5					
4	2,5					

1	
Itemset	Sup
{1}	2
{2}	3
{3}	3
{5}	3

Bucket	1	2	3	4	5
Count	3	2	4	1	3

Replace the buckets by a bit-vector:

- 1 means the bucket is frequent
- 0 means it is not frequent
- 4-byte integers are replaced by bits, so the bitvector requires 1/32 of memory
- Also, decide which items are frequent and list them for the second pass

Pass 1

PCY Algorithm: Pass 2

- Count all pairs {*i*, *j* } that meet the conditions for being a candidate pair:
 - 1. Both i and j are frequent items.
 - 2. The pair $\{i, j\}$, hashes to a bucket number whose bit in the bit vector is 1.
- Notice all these conditions are necessary for the pair to have a chance of being frequent.

- Homework 3 review
- Association rule mining
 - Introduction and definitions
 - Naïve algorithm
 - Apriori
 - PCY
 - Limiting disk I/O
 - Presenting results, other metrics
- Take away messages from class

All (Or Most) Frequent Itemsets in < 2 Passes

- A-Priori, PCY, etc., take k passes to find frequent itemsets of size k
- Other techniques use 2 or fewer passes for all sizes:
 - Simple algorithm
 - SON (Savasere, Omiecinski, and Navathe)
 - Toivonen

- Take a random sample of the market baskets that fits in main memory
- Run a-priori or one of its improvements in main memory, so you don't pay for disk I/O each time you increase the size of itemsets
 - Be sure you leave enough space for counts

- Scale back support threshold a suitable number
 - E.g., if sample is 1/100 of the baskets, use
 s/100 as your support threshold instead of s
- Optional: Verify that your guesses are truly frequent in the entire data set by a second pass
- Miss sets frequent in whole but not in sample
 - Smaller threshold, e.g., s/125, helps limit misses, but requires more space

Toivonen's Algorithm

- Use simple algorithm, but lower the threshold s for the sample
 - Example: if the sample is 1% of the baskets, use s/125 vs. s/100.
 - Goal: Avoid missing truly frequent itemsets
- Add to the itemsets that are frequent in the sample the *negative border* of these itemsets.
- An itemset is in the negative border if it is not deemed frequent in the sample, but all its immediate subsets are

Example: Negative Border

- ABCD is in the negative border if and only if:
 - 1. It is not frequent in the sample, but
 - 2. All of *ABC*, *BCD*, *ACD*, and *ABD* are.
 - A is in the negative border if and only if it is not frequent in the sample.
 - Because the empty set is always frequent.
 - Unless there are fewer baskets than the support threshold (silly case).

Toivonen's Algorithm Continued

- In a second pass, count all candidate frequent itemsets from the first pass, and also count their negative border
- If no itemset from the negative border turns out to be frequent, then the candidates found to be frequent in the whole data are *exactly* the frequent itemsets

Toivonen's Algorithm Continued

- What if we find that something in the negative border is actually frequent?
- We must start over again!
- Try to choose the support threshold so the probability of failure is low, while the number of itemsets checked on the second pass fits in main-memory.

If Something in the Negative Border is Frequent . . .

singletons

 If there is an itemset that is frequent in the whole, but not frequent in the sample, then there is a member of the negative border for the sample that is frequent in the whole.

Suppose not; i.e.;

- 1. There is an itemset *S* frequent in the whole but not frequent in the sample, and
- 2. Nothing in negative border is frequent in the whole
- Let T be a smallest subset of S that is not frequent in the sample
- T is frequent in the whole (S is frequent + monotonicity)
- T is in the negative border (else not "smallest")

- Homework 3 review
- Association rule mining
 - Introduction and definitions
 - Naïve algorithm
 - Apriori
 - PCY
 - Limiting disk I/O
 - Presenting results, other metrics
- Take away messages from class

Compacting the Output

- *1. Maximal Frequent itemsets* : no immediate superset is frequent
- Closed itemsets : no immediate superset has the same count (> 0).
 - Stores not only frequent information, but exact counts

Example: Maximal/Closed

Interestingness Measurements

- Two popular objective measurements:
 - support
 - confidence
- Subjective measures: A rule (pattern) is interesting if it is:
 - Unexpected (surprising to the user)
 - Actionable (the user can do something with it)

Criticism of Support and Confidence

- Example: 5000 students
 - 3000 play basketball
 - 3750 eat cereal
 - 2000 both play basket ball and eat cereal
- play basketball \Rightarrow eat cereal [40%, 66.7%]
 - misleading as the overall percentage of students eating cereal is 75% which is higher than 66.7%
- play basketball \Rightarrow not eat cereal [20%, 33.3%]
 - More accurate, but lower support and confidence

	basketball	not basketball	sum(row)
cereal	2000	1750	3750
not cereal	1000	250	1250
sum(col.)	3000	2000	5000

- P(S^B) = P(S) × P(B) => Statistical independence
- $P(S \land B) > P(S) \times P(B) =>$ Positively correlated
- $P(S \land B) < P(S) \times P(B) =>$ Negatively correlated

• Lift(A => B) =
$$\frac{P(B | A)}{P(B)}$$

Example: Lift

	Coffee	Coffee	
Tea	15	5	20
Tea	75	5	80
	90	10	100

Association Rule: Tea \rightarrow Coffee

Confidence= P(Coffee|Tea) = 0.75

but P(Coffee) = 0.9

 \Rightarrow Lift = 0.75/0.9= 0.8333 (< 1, therefore is negatively associated)

Presentation of Association Rules (Table Form)

		Body	Implies	Head	Supp (%)	Conf (%)	F	G	H	
	1	cost(x) = '0.00~1000.00'	==>	revenue(x) = '0.00~500.00'	28.45	40.4				
	2	cost(x) = '0.00~1000.00'	==>	revenue(x) = '500.00~1000.00'	20.46	29.05				
	3	cost(x) = '0.00~1000.00'	==>	order_qty(x) = '0.00~100.00'	59.17	84.04				
	4	cost(x) = '0.00~1000.00'	==>	revenue(x) = '1000.00~1500.00'	10.45	14.84				
	5	cost(x) = '0.00~1000.00'	==>	region(x) = 'United States'	22.56	32.04				
	6	cost(x) = '1000.00~2000.00'	==>	order_qty(x) = '0.00~100.00'	12.91	69.34				
	7	order_gty(x) = '0.00~100.00'	==>	revenue(x) = '0.00~500.00'	28.45	34.54				
	8	order_gty(x) = '0.00~100.00'	==>	cost(x) = '1000.00~2000.00'	12.91	15.67				
	9	order_qty(x) = '0.00~100.00'	==>	region(x) = 'United States'	25.9	31.45				
	10	order_qty(x) = '0.00~100.00'	==>	cost(x) = '0.00~1000.00'	59.17	71.86				
	11	order_qty(x) = '0.00~100.00'	==>	product_line(x) = 'Tents'	13.52	16.42				
	12	order_qty(x) = '0.00~100.00'	==>	revenue(x) = '500.00~1000.00'	19.67	23.88				
	13	product_line(x) = 'Tents'	==>	order_qty(x) = '0.00~100.00'	13.52	98.72				
	14	region(x) = 'United States'	==>	order_qty(x) = '0.00~100.00'	25.9	81.94				
	15	region(x) = 'United States'	==>	cost(x) = '0.00~1000.00'	22.56	71.39				
	16	revenue(x) = '0.00~500.00'	==>	cost(x) = '0.00~1000.00'	28.45	100				
	17	revenue(x) = '0.00~500.00'	==>	order_qty(x) = '0.00~100.00'	28.45	100				
	18	revenue(x) = '1000.00~1500.00'	==>	cost(x) = '0.00~1000.00'	10.45	96.75				
	19	revenue(x) = '500.00~1000.00'	==>	cost(x) = '0.00~1000.00'	20.46	100				
	20	revenue(x) = '500.00~1000.00'	==>	order_qty(x) = '0.00~100.00'	19.67	96.14				
J.	21									
1	22									
	23	cost(x) = '0.00~1000.00'	==>	revenue(x) = '0.00~500.00' AND order_qty(x) = '0.00~100.00'	28.45	40.4				
	24	cost(x) = '0.00~1000.00'	==>	revenue(x) = '0.00~500.00' AND order_qty(x) = '0.00~100.00'	28.45	40.4				
	25	cost(x) = '0.00~1000.00'	==>	revenue(x) = '500.00~1000.00' AND order_qty(x) = '0.00~100.00'	19.67	27.93				
	26	cost(x) = '0.00~1000.00'	==>	revenue(x) = '500.00~1000.00' AND order_qty(x) = '0.00~100.00'	19.67	27.93				
	27	cost(x) = '0.00~1000.00' AND order_qty(x) = '0.00~100.00'	==>	revenue(x) = '500.00~1000.00'	19.67	33.23				
- 11		Sheet1 /								1

May 24, 2010

Data Mining: Concepts and Techniques

Visualization of Association Rule Using Rule Graph

- Homework 3 review
- Association rule mining
- Take away messages from class

Take Away: Empirical Evaluation

Take Away: Empirical Evaluation

- Often, an ML system has to choose when to stop learning, select among alternative answers, etc.
- One wants the model that produces the highest accuracy on future examples ("overfitting avoidance")
- It is a "cheat" to look at the test set while still learning
- Better method
 - Set aside part of the training set
 - Measure performance on this "tuning" data to estimate future performance for a given set of parameters
 - Use best parameter settings, train with all training data (except test set) to estimate future performance on new examples

Take Away: Empirical Evaluation

- Accuracy only can be misleading
- Look at alternative measures
 - True positive rate/recall
 - False positive rate
 - Precision
 - Area under the curve

Take Away: Be Wary of Assumptions

LTCM DJ 30 T-Bill

Simplification: Assumed investments were independent Reality: All similar type of bet

Take Away: Simple Methods

- Simple approaches often work reasonable well in practice
 - 1-nn
 - Naïve Bayes
 - Perceptron
- Often worth trying tfirst

Many classifiers often better than single classifier
Bagging/boosting are simple and very effective
Worth trying!

- Association rules: Efficient way to mine interesting information very large databases
 - Get probabilities
 - Don't require user guidance for interesting patterns
- Apriori algorithm and it's extensions allow the user to gather a good deal of information without too many passes through data

