N

Association Rule Mining

Instructor: Jesse Davis

Slides from: Chris Clifton,
Pedro Domingos, Jeff Ullman

* Annoucements

= No class next week
= Office hours next Tuesday 5:30-7:30/8
= Homework 3 is graded
= Homework 4 is due next Tuesday by midnight

* Outline

= Homework 3 review
= Association rule mining
= [ake away messages from class

* Problem 1

= Accuracy 98-99% after several dozen iterations

= Generally slower than NB but higher accuracy

* Problem 1: 2 BIG (RELATED) MISTAKES

s Setting bias by hand (e.g., wyx, = 0)
= Every input vector should have the same x0
(say, 1)
= Weight w0 should be /earned like any other
weight

= Not normalizing feature values to range [0,1].
= Notice that if wO*x0 is fixed at 0 then
>w;x > 0 iff n2w,x; > 0, so normalization would
indeed be unnecessary

« If wO*X0 = 0 you must normalize to ensure that
model generalizes!

* Bagging vs. Boosting

= Both techniques will improve performance of
decision stumps

= Boosting should help more because it is better
at reducing the ‘bias’ portion of error in addition
to variance portion of error

= Bagging is better for handling variance

Bias

Variance

* Bagging vs. Boosting - Errors

= Error 1: Bagging would help more

= Error 2: Boosting would help more
= Explained why boosting is good
= Didn't explain why bagging would be worse

* GA Crossover

00110
11100

10111

00111

10110

10

*xw\!xz

X1
X2

O

N’
= = O O
— O =, O

Input Output

O OO

>

If sum inputs > 0, then outputis 1, else 0

11

* X1 XOR X2

Input Output

a) 00 0
b) 0 1 1
c) 10 1
) 11 0
1
x1 O .\

xz‘- :

If sum inputs > 0, then outputis 1, else 0

12

* Genetic Algorithm For Sudoku

Goal: Generate Grid

Constraints:

1) Can't change givens

2) 1-9 in eac
3) 1-9 in eac
4) 1-9 in eac

Solution com

n 3x3 subgrid
N row
N column

ponents:

1) Initialiazation
2) Representation
3) Crossovers

4) Mutations

5) Fitness function

13

* Sudoku: Initialization

Ensure that each 3x3
subgrid has 1—9
appearing exactly once!

14

* Sudoku: Representation

0_|1 |2 |9 1011181920
3 |4 |5 [12]13 14 |21 22 |23
6 |7 |8 [15/16 |17 24 2526

I I
| =------

- L
L L

A
-- | [78]79 |80

e e s e

15

* Sudoku: Crossovers
Crossover only at J
subblock boundaries

5]6[2[3]1]7]8fo]4 .. 2 [8 [1 3 [7 |9 [4 |6 [5

ﬂﬂﬂﬂﬂﬂﬂﬂ_l_ﬂﬂﬂﬂﬂﬂﬂﬂ

Slej23jt]7]slo]4llo 8 36 |7 142 1t IS
78214]3]5 906] 2 [8 [1]3 79 |46 5
16

* Sudoku: Mutations

ECAEA X G 28 X N N EN A C R N
(Eﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂ

Disallow if swap
involves a given

ERCaCHEN R A I 28 B N N EN A C R C

17

* Sudoku: Fitness Function

= Representation and operators enforce these
constraints:

= Givens are not moved around

= Each sub-block has 1--9 appearing exactly once
= Ignore these constraints:

= Each column has 1--9 appearing exactly once

= Each row has 1--9 appearing exactly once
= Fitness function: Penalize these states

= Fewer violated constraints, the fitter the solution

= Could penalize based on “how far off” solution is,
i.e., row of all 9’s is worse than row with two 9’s

18

* Outline

= Homework 3 review
= Association rule mining
= Introduction and definitions
= Naive algorithm
= Apriori
= PCY
= Limiting disk I/0O
= Presenting results, other metrics
= Take away messages from class

19

* Association Rule Mining

Given: Set of transactions
Find: Rules that predict the occurrence of an
item based on other items in the transaction

LCITEIER Association Rules
Bread, Milk {Diaper} — {Beer},
Bread, VI =l {Milk, Bread} — {Eggs,Coke}

3 |Milk, Diaper, Beer, Coke {Beer, Bread} — {Milk}

Bread, Milk, Diaper, Beer

Bread, Milk, Diaper, Coke Impllcatlor_l means Co-occurrence,
not causality!

20

* Why Association Rule Mining

= Motivation: Finding regularities in data

= What products were often purchased together?

= What kinds of DNA are sensitive to this new drug?
= Foundation for many data mining tasks

= Association

= Correlation

« Causality

= Algorithms do not require labeled data or for a
user to specify a predefined target concept

21

* Market-Basket Model

= A large set of /tems, e.q., things sold in a
supermarket

= A large set of baskets (transactions), each of
which is a small set of the items, e.q., the
things one customer buys on one day

TID Ttems 00000000

Bread, Milk, Diaper, Beer
Bread, Milk, Diaper, Coke

22

* Market-Baskets — (2)

= Really a general many-many mapping
(association) between two kinds of things

= We ask about connections among “items,” not
among "baskets”

= The technology focuses on common events, not
rare events (“long tail")

23

* Definition: Item Set

= Itemset: A collection of one or more items
« Example: {Bread, Milk}
= k-itemset: An itemset that contains k items
= 3-itemset: {Bread, Milk, Diaper}
TID |ttems 0000000000

Bread, Milk
Bread, Milk, Diaper, Beer, Eggs

Milk, Diaper, Beer, Coke
Bread, Milk, Diaper, Beer

Bread, Milk, Diaper, Coke

24

Definition: Support and Frequent
Itemsets

Simplest question: find sets of items that
appear “frequently” in the baskets

Support count for itemset / = the number of
baskets containing all items in 7

Support Fraction of transactions that contain
an itemset

Given a support threshold s, sets of items
that appear in at least s baskets are called
frequent itemsets

25

* Example Support

Bread, Milk
Bread, Milk, Diaper, Beer, Eggs

Freq

Milk, Diaper, Beer, Coke
Bread, Milk, Diaper, Beer
Bread, Milk, Diaper, Coke

Support({Br,M}) = 4/5 = 0.8
Support({Br,D}) = 3/5 = 0.6

* Example: Frequent Itemsets

s [tems={milk, coke, pepsi, beer, juice}.
= Support = 3 baskets.

B, ={m, ¢, b} B, ={m, p, j}
B; ={m, b} B, ={c, j}

Bs = {m, p, b} Bg = {m, ¢, b, j}
B, ={c, b, j} Bg = {b, c}

s Frequent itemsets: {m}, {c}, {b}, {j},

27

* Example: Frequent Itemsets

s [tems={milk, coke, pepsi, beer, juice}.

= Support = 3 baskets.

B, ={m, p, j}
B, = {c, j}

28

* Example: Frequent Itemsets

s [tems={milk, coke, pepsi, beer, juice}.
= Support = 3 baskets.

B, ={m, ¢, b} B, ={m, p, j}
B; ={m, b} B, ={c, j}

Bs = {m, p, b} Bg = {m, ¢, b, j}
B, ={c, b, j} Bg = {b, c}

s Frequent itemsets: {m}, {c}, {b}, {j},
{m,b}

29

* Example: Frequent Itemsets

s [tems={milk, coke, pepsi, beer, juice}.

= Support = 3 baskets.
B; = {m,.c, b} B, ={m, p, J}
B; = {m/ b} B, ={¢, J}

BS = {m P, b} B6 = {ml C, bl .]}
B, = {c/b, j} Bg =D, c}
= Frequent i ;Lzm —m}, {c}, {b}, {0},

{m,b} {b,C}

30

* Example: Frequent Itemsets

s [tems={milk, coke, pepsi, beer, juice}.
= Support = 3 baskets.

B, ={m, ¢, b} B, ={m, p, j}
B; ={m, b} B, ={c, j}

Bs = {m, p, b} Bg = {m, ¢, b, j}
B, ={c, b, j} Bg = {b, c}

s Frequent itemsets: {m}, {c}, {b}, {j},
{m,b}; {b,c}

31

* Example: Frequent Itemsets

s [tems={milk, coke, pepsi, beer, juice}.
= Support = 3 baskets.

B, ={m, ¢, b} B, ={m, p, j}
B; = {m, b} B, =.{¢, 1}

Bs = {m, p, b} Bg'={m, ¢, b, 1}
B, ={c, b, } Bg ={b, C}

s Frequent itemsets: {m},{c}, {b}, {j},
{m,b}, {b,c},

32

* Definition: Association Rules

s If-then rules about the contents of baskets

= Given:
« Set of items: I = {iy, i5, ..., i}
« Set of fransactions: D = {d,, d,, ..., d.}
s An association rule. A = B, where
s Acl
s Bcl
s AnB=J
s {/, h,...,[.; — J means: “if a basket contains all
of 4,...,i, then itis to contain j.”

33

Definition: Confidence

s Confidence of this association rule is the
conditional probability of jgiven /,...,/.
= This gives a measure of how accurate the rule is.
=« confidence(A = B) = P(B|A) = sup({A,B}) /sup(A)

TID|tems
Bread, Milk
Bread, Milk, Diaper, Beer, Eggs

Milk, Diaper, Beer, Coke

Bread, Milk, Diaper, Beer

Bread, Milk, Diaper, Coke

Customer

buys both Customer
buys diaper

Customer
buys beer

34

* Example: Confidence

+B; ={m, ¢, b}

— B3 ={m, b}

- Bs ={m, p, b} +86
=1{¢ b, J}

= An association rule: {m, b} — c.

= Confidence = 2/4 = 50%.

={m, p, j}
=1{C, j}

im, ¢, b,]}
= {b, ¢}

35

* Applications — (1)

= [tems = products; baskets = sets of products
someone bought in one trip to the store.

s Example application: given that many people
buy beer and diapers together:

= Run a sale on diapers; raise price of beer.
= Only useful if many buy diapers & beer.

36

* Applications — (2)

s Baskets = sentences; items = documents
containing those sentences.

= Items that appear together too often could
represent plagiarism.

= Notice items do not have to be “in” baskets.

37

* Applications — (3)

= Baskets = Web pages; items = words.

= Unusual words appearing together in a large
number of documents, e.g., "Brad” and
“Angelina,” may indicate an interesting
relationship.

38

* Outline

= Homework 3 review
= Association rule mining
= Introduction and definitions
= Naive algorithm
= Apriori
= PCY
= Limiting disk I/0O
= Presenting results, other metrics
= Take away messages from class

39

* Scale of the Problem

= WalMart sells 100,000 items and can store
billions of baskets

= The Web has billions of words and many
billions of pages

» We have access to lots and lots of data...

40

* Association Rule Mining Goal

= Question: “find all association rules with
support > sand confidence > c¢.”

« Note: “support” of an association rule is the
support of the set of items on the left

= Hard part: finding the frequent itemsets
« Note: if {/, £,...,/,; — J has high support
and confidence, then both {/, 4,...,/,} and
{h, b,....1.,J + will be “frequent”

41

* Creating Associating Rules

= Given: Support s, confidence c
= Step 1: Find all itemsets with support s

= Step 2: For each frequent itemset L

= For each non-empty subset s of L
« Output the rule s — {lI-s} if its condifence > c

42

* Example: Association Rule

Min. support 50%

Transaction-id ltems bought i fid ;
10 A B.C Min. confidence 50%
20 A C Frequent pattern Support
30 A, D (A} 75%
40 B,E,F {B} 50%
{C} 50%
)
For rule A= C A C) 20%

support = support({A}{C}) = 50%

confidence = support({A»{C})/support({A4})
= 66.6%

43

Example: Itemset to Association Rule

+

Bread, Milk
Bread, Milk, Diaper, Beer, Eggs

Br,M}
Br,D}

Milk, Diaper, Beer, Coke
Bread, Milk, Diaper, Beer
Bread, Milk, Diaper, Coke

M,Be
M,D}
Br,M,D}
{M,D,Be}
{Br} - {M},s=0.8,c=1.0
{M} - {Br}, s=1.0,c=0.8

{BrhM} — {D}, s =0.8, c =0.75
{Be} - {M,D},s=0.6,c=1.0

44

* Computation Model

= [ypically, data is kept in flat files rather than in
a database system

= Stored on disk
» Stored basket-by-basket

=« Expand baskets into pairs, triples, etc. as
you read baskets
= Use k£ nested loops to generate all sets of size k.

45

* Computation Model — (2)

= The true cost of mining disk-resident data is
usually the number of disk [/O’s

= In practice, association-rule algorithms read the
data in passes — all baskets read in turn

= Thus, we measure the cost by the number of
passes an algorithm takes

46

* Main-Memory Bottleneck

= For many frequent-itemset algorithms, main
memory is the critical resource

= As we read baskets, we need to count
something, e.g., occurrences of pairs

= The number of different things we can count
is limited by main memory

= Swapping counts in/out is a disaster (why?)

47

* Finding Frequent Pairs

= The hardest problem often turns out to be
finding the
« Often frequent pairs are common, frequent triples
are rare

= Probability of being frequent drops exponentially
with size

= number of sets grows more slowly with size

= We'll concentrate on pairs, then extend to
larger sets

48

* Naive Algorithm

= Read file once, counting in main memory the
occurrences of each pair

=« From each basket of n items, generate its
n(n-1)/2 pairs by two nested loops

= Fails if (#items)? exceeds main memory

= . #items can be 100K (Wal-Mart)
or 10B (Web pages)

49

* : Counting Pairs

= Suppose 10 items
= Suppose counts are 4-byte integers

= Number of pairs of items: 10°(10>-1)/2 = 5*10°
(approximately)

= Therefore, 2*1010 (20 gigabytes) of main
memory needed

50

* Details of Main-Memory Counting

= [WO approaches:
1. Count all pairs, using a triangular matrix.

2. Keep a table of triples [/ j, c] = “the count
of the pair of items {/, j} is ¢.”

= 1. requires only 4 bytes/pair

= 2. requires 12 bytes, but only for those pairs
with count > 0

51

* Approaches Pictorially

4 per pair

Method (1)

12 per
occurring pair

O = O

Method (2)

52

* Approach 1

= Assign each item a number

m Count{/ j}ronlyif/<j

= Keep pairs in the order
 {1,2}

o {1,”}
u {213}

O {n'l,n}
= Pair {/ j} at the position: (/=1)(n—//2) + J—

53

* Approach 2

= [otal bytes used is about 12p, where p is the
number of pairs that actually occur

= Beats triangular matrix if at most 1/3 of
possible pairs actually occur

= Require extra space for retrieval structure

54

* Outline

= Homework 3 review
= Association rule mining
= Introduction and definitions
= Naive algorithm
= Apriori
= PCY
= Limiting disk I/0O
= Presenting results, other metrics
= Take away messages from class

55

* Apriori Algorithm

= Generate and test approach for discovering
frequent itemsets

= [terative approach

» Find all frequent itemsets of size k before
finding frequent itemsets of size k+1

= One pass through the data for each frequent
itemset size

56

* Apriori’s Key Idea

s Aproiri Principle (monotonicity). if an itemset
appears at least stimes, so do all its subsets

» Contrapositive for pairs: if item /7 does not
appear in s baskets, then no pair including /7
can appear in s baskets

= Apriori principle holds due to the following
property of the support measure:

VX,Y (X cY)=5s(X)=>s(Y)

57

* A-Priori Algorithm: Frequent Pairs

= Pass 1: Read baskets and count in main
memory the occurrences of each item
= Requires memory proportional to #items
« Frequent items:. those that appear s times

= Pass 2: Read baskets again and count in
main memory only those pairs both of which
were found in Pass 1 to be frequent

= Requires memory proportional to square of
freqguent items, plus a list of the frequent items

s Frequent itemsets: those that appear s times

58

The Apriori Algorithm

= Join Step: C, is generated by joining L, with itself

= Prune Step: Any (k-1)-itemset that is not frequent cannot be a
subset of a frequent k-itemset

s Pseudo-code:

C,: Candidate itemset of size k
L, : frequent itemset of size k

L, = {frequent items}
for (k=1; L, '=J; k++) do begin
C..; = candidates generated from L,
for each transaction ¢in database do

increment the count of all candidates in ¢,
that are contained in ¢

L,., = candidates in C,, with min_support
end

return v, L,

59

* Apriori: Pass 1

Given: Min support is 2

Database D C,
TID |Items Itemset |Sup

ENMEETNN s .. D
-- --

60

* Apriori: Pass 1

Given: Min support is 2
Database D C, L,

7D | 1tems [N vtemset |sup [N vromset |sup
T 130 [o [N

- [3

61

* Apriori: Pass 2

Given: Min support is 2
Database D L,

TID |Items [Ttemset
1 (134 M
,

} 14

* Apriori: Pass 2

Given: Min support is 2 Prune
Database D L,

TID |Items [Ttemset
{
,

3 [1235

* Apriori: Pass 2

Given: Min support is 2
Database D L,

TID |Items [Ttemset
1 (134 M
,

} 14

6

>

* Apriori: Pass 3

Given: Min support is 2
Database D L,

RO [N _m A D—-
1.3,4 {1,3} {2,3,5} - {2,3,5}
s Wes

65

* Apriori: Join Step

= Suppose the items in L, , are listed in an order
= Join each element in L, , with itself
n If 11,12 € L,_,, the are joinable if:

= The first k-2 items in I1 and |2 are the same

« 11[1] = I2[1] AND
11[2] = 12[2] AND
.. AND

11[k-2] = 12[k-2]

66

* Apriori: Prune Step

s For each candidate itemsets C,

= Look at each subset of size k-1 [i.e., drop
one item from the candidate]

= If ANY one of these subsets isn't frequent,
discard this candidate

= Application of the Apriori principle

67

* Example: Candidate Generation

L,={abc, abd, acd, ace, bcdy
Self-joining: L;*L,

« gbcd from abc and abd
» gcde from acd and ace

= Note: other joins (i.e., abc and acd, abc and ace,
etc. are illegal)

Pruning:
= acdeis removed because adeis not in L,
C~{abca}

68

* Outline

= Homework 3 review
= Association rule mining
= Introduction and definitions
= Naive algorithm
= Apriori
= PCY
= Limiting disk I/0O
= Presenting results, other metrics
= Take away messages from class

69

* . Hash-Based Filtering

= Simple problem: I have a set S of one billion
strings of length 10.

= [want to scan a larger file F of strings and
output those that are in S.

= [have 1GB of main memory.
= So I can't afford to store S in memory.

70

* Solution — (1)

= Create a of 8 billion bits, initially all 0’s.

= Choose a hash function A2 with range [0, 8*107],
and hash each member of S to one of the bits,
which is then set to 1.

= Filter the file £ by hashing each string and
outputting only those that hash to a 1.

71

* Solution — (2)

To output;
File /-'\ Filter may be in 5.
N(
0010001011000

Drop; surely
not in S.

72

* PCY Algorithm

= During Pass 1 of A-priori, most memory is idle.
= Idea: Use tmemory for a hash table

» Hash pairs of items that appear in a
transaction — we need to generate these

» Just the count, not the pairs themselves

» Interested in the presence of a pair AND
whether it is present at least s (support)
times

73

* PCY Algorithm: Pass 1

FOR (each basket) {
FOR (each i1tem in the basket)
add 1 to i1tem’s count;
FOR (each pair of 1tems) {
hash the palr to a bucket;

add 1 to the count for that
bucket

74

* Observation About Buckets

= A bucket that a frequent pair hashes to meets
minimum support threshold

»« Cannot eliminate any member of this bucket

= Even without any frequent pair, a bucket can
be frequent

=« Cannot eliminate any member of this bucket

s Best case: Count for a bucket is less than
minimum support

= Eliminate all pairs hashed to this bucket even
if the pair consists of two frequent items

* PCY: Pass 1

Given: Min support is 2
Database D

TID | Items ually
1 (134 [CEREES

(2,3}, 12,5}, 43,5}
1,23, {1,3}, {1,5}, {2,3},

Bucket 112> 894 5

C,
! Itemset | Sup _
3,5 [0

76

* PCY: Between Passes

Given: Min support is 2

Database D C,

TID |Items (S Ttemset |Sup

N

Bucket 112> 894 5

77

* Between Passes

= Replace the buckets by a bit-vector:
= 1 means the bucket is frequent
= 0 means it is not frequent

= 4-byte integers are replaced by bits, so the bit-
vector requires 1/32 of memory

= Also, decide which items are frequent and list
them for the second pass

78

Jl Picture of PCY

Item counts

Frequent items

Hash
table

Bitmap

Pass 1

Counts of
candidate
pairs

Pass 2

79

* PCY Algorithm: Pass 2

= Count all pairs {/ j } that meet the conditions
for being a candidate pair:

1. Both 7 and j are frequent items.

>. The pair {/, j }, hashes to a bucket number
whose bit in the bit vector is 1.

= Notice all these conditions are necessary for
the pair to have a chance of being frequent.

80

* Outline

= Homework 3 review
= Association rule mining
= Introduction and definitions
= Naive algorithm
= Apriori
= PCY
= Limiting disk I/0O
= Presenting results, other metrics
= Take away messages from class

81

All (Or Most) Frequent Itemsets
In < 2 Passes

= A-Priori, PCY, etc., take k& passes to find
frequent itemsets of size k

= Other techniques use 2 or fewer passes for all
Sizes:

= Simple algorithm
= SON (Savasere, Omiecinski, and Navathe)
= [olvonen

82

* Simple Algorithm

= Take a random sample of the market baskets
that fits in main memory

= Run a-priori or one of its improvements in main

memory, so you don’t pay for disk I/O each
time you increase the size of itemsets

= Be sure you leave enough space for counts

Copy of | Space
sample | for
baskets | counts

* Algorithm Details

= Scale back support threshold a suitable number

= E.qg., if sample is 1/100 of the baskets, use
s /100 as your support threshold instead of s

= Optional: Verify that your guesses are truly
frequent in the entire data set by a second pass

= Miss sets frequent in whole but not in sample

= Smaller threshold, e.g., s/125, helps limit
misses, but requires more space

84

* Toivonen’s Algorithm

= Use simple algorithm, but lower the threshold s
for the sample

- . if the sample is 1% of the baskets,
use s /125 vs. s/100.

= Goal: Avoid missing truly frequent itemsets

= Add to the itemsets that are frequent in the
sample the negative border of these itemsets.

= An itemset is in the negative border if it is not
deemed frequent in the sample, but its
immediate subsets are

85

* Example: Negative Border

= ABCD is in the negative border if and only if:
1. It is not frequent in the sample, but
2. All of ABC, BCD, ACD, and ABD are.

= A isin the negative border if and only if it is
not frequent in the sample.

+ Because the empty set is always frequent.

+ Unless there are fewer baskets than the support
threshold (silly case).

86

* Picture of Negative Border

Negative Border

tripletons w\

doubletons

singletons

87

* Toivonen’s Algorithm Continued

= In a second pass, count all candidate frequent
itemsets from the first pass, and also count
their negative border

= If no itemset from the negative border turns
out to be frequent, then the candidates found
to be frequent in the whole data are
the frequent itemsets

88

* Toivonen’s Algorithm Continued

= What if we find that something in the negative
border is actually frequent?

= We must start over again!

= Try to choose the support threshold so the
probability of failure is low, while the number of
itemsets checked on the second pass fits in
main-memory.

89

If Something in the Negative Border
IS Frequent . . .

We broke through the

negative border. How

far does the problem go?

Negative Border

tripletons
doubletons

singletons

90

4

= If there is an itemset that is frequent in the
whole, but not frequent in the sample, then
there is a member of the negative border for
the sample that is frequent in the whole.

o1

* Proof

Suppose not; i.e.;

1. Thereis an itemset S frequent in the whole but not
frequent in the sample, and

2. Nothing in negative border is frequent in the whole

Let 7 be a subset of S that is not
frequent in the sample

I is frequent in the whole (5 is frequent +
monotonicity)

7" is in the negative border (else not “smallest”)

92

* Outline

= Homework 3 review
= Association rule mining
= Introduction and definitions
= Naive algorithm
= Apriori
= PCY
= Limiting disk I/0O
= Presenting results, other metrics
= Take away messages from class

93

* Compacting the Output

1. Maximal Frequent itemsets : no immediate
superset is frequent

2. Closed itemsets : no immediate superset has
the same count (> 0).

» Stores not only frequent information, but
exact counts

94

* Example: Maximal/Closed

Count

4

N W N B~ W U

Frequent, but

Maximal (s=3) Closed superset BC

No /NO/ also frequent
NoO Yes !:requent, and

its only superset,
" /NO/ ABC, not freq
Yes Yes\ Superset BC
No No has same count

Yes

Yes ~._Its only super-
No Yes

set, ABC, has
smaller count

95

* Interestingness Measurements

= TWO popular objective measurements:
m SUpport
s confidence

= Subjective measures: A rule (pattern) is
interesting if it is:
« Unexpected (surprising to the user)

» Actionable (the user can do something with
it)

96

* Criticism of Support and Confidence

= Example: 5000 students
= 3000 play basketball
= 3750 eat cereal

= 2000 both play basket ball and eat cereal
s play basketball = eat cereal [40%, 66.7%]
=« Misleading as the overall percentage of students
eating cereal is 75% which is higher than 66.7%
s play basketball = not eat cereal [20%, 33.3%]
=« More accurate, but lower support and confidence

basketball |not basketball[sum(row)

cereal 2000 1750 3750
not cereal 1000 250 1250

sum(col.) 3000 2000 5000

* Statistical Measures

= P(SAB) = P(S) x P(B) => Statistical
independence
s P(SAB) > P(S) x P(B) => Positively correlated

s P(SAB) < P(S) x P(B) => Negatively correlated

P(B | A)

Example: Lift

Coffee | Coffee
Tea 15) 20
Tea 75 5 80
90 10 100

Association Rule: Tea — Coffee

Confidence= P(Coffee|Tea) = 0.75
but P(Coffee) = 0.9
= Lift = 0.75/0.9= 0.8333 (< 1, therefore is negatively associated)

Presentation of Association Rules

(Table Form)

Body | Implies | Head | Supp (%) | Conf{%) | F | e

' 1 |cost(x) = 0.00~1000.00 ==x revenuelx) = 1.00~500.00' 2545 40.4 [

2 |cost(x) = 0.00~1000.00° ==» revenuelx) = '500.00~1000.00' 2045 29.05

3 |cost(x) = 0.00~1000.00° ==x order_gty(x) = 0.00~100.00 59.17 54.04

4 |cost(x) = D.00~1000.00° ==x revenuelx) = "1000.00~1500.00 10.45 14.84

5 |cost(x) = 0.00~1000.00° ==> region(x) = United States' 2256 32.04

6 |cost(x) = '1000.00~2000.00° ==: order_gty(x) = 0.00~100.00 12.91 £9.34

7 |order giyf(x) = 0.00~100.00' ==x revenuelx) = 1.00~500.00' 25.45 34.54

8 |order gtylx) = 0.00~100.00" | ==» cost{x)="000.00~2000.00 12.91 15.67

9 |order_gty(x)= 0.00~100.00° ==> [region(x) = United States’ 259 31.45

10 |order_gty(x) = 0.00~100.00" ==x |cost{x) = 0.00~1000.00° 5017 71.66

11 |order_gty(x) = 0.00~100.00° ==> product_line(x) = Tents' 13.52 16.42

12 |order_gty(x) = 0.00~100.00° ==: | revenuelx) = '500.00~1000.00' 1967 23.88

13 |product line(x) = Tents' ==» order_gty(x) = 0.00~100.00' 13.52 8B.72

14 [region(x) = United States' ==» order_gty(x) = 10.00~100.00' 259 81.94

15 [region(x) = United States’ ==x cost(x)= 0.00~1000.00° 2250 71.39

16 |revenuelx) = 0.00~500.00' ==» |cost{x) = 0.00~1000.00° 28.45 100

17 |revenue(x) = 0.00~500.00° ==> order_gty(x) = 0.00~100.00' 25845 100

18 |revenuelx) = 1000.00~1500.00 ==» cost(x) = 0.00~1000.00° 10.45 96.75

19 |revenue(x) = 500.00~1000.00° ==» |cost{x) = 0.00~1000.00° 2045 100

20 |revenue(x) = 500.00~1000.00° ==> order_gty(x) = 0.00~100.00' 19.67 5614

21

22

23 |cost() = 0.00~1000.00" == rﬁ‘:jg‘r”_eq‘f‘j,:;;, DD A 28.45 40.4

24 |cost(x) = 0.00~1000.00 == rg:deg;-l_eq(t}?(;j DO At ®45 404

25 |cost(x) = 0.00~1000.00" ==> rg:degf_eq':t?(;j Engzggjgg%gp AND 1967 27.93

26 |cost(x) = 0.00~1000.00 ==> rg:degf_eq':t?(;j o AD 1967 27.93

27 Cuorzte(&}y?ﬁ}?ig?ggﬂ%ﬂﬁp ==> revenue(x) = 500.00~1000.00° 1967 33.23 .

T Sheet! / = "

May 24, 2010 Data Mining: Concepts and Techniques

100

Visualization of Association Rule Using Rule Graph

2.DBMiner Enterprise - [#1- Associator]

&Eile Mining Associator View Window Options Help =12 x|

wla| B| 2 a3/ 2

== ES BT

Color: - Q

Activated Meutral Disabled m
B3
| Size:: ‘ Support Q|

on
Education Level = [High School Degree] e

¢ =

Marital Status = [M]
Gender = [F]

23

Educatior;‘Lgvel = [Elach.'é‘“"
: Gender = [M]

Education Level = [Partial College].

Marital Status (5]

For Help, press F1 | NUM ;

* Outline

= Homework 3 review
= Association rule mining
= [ake away messages from class

102

* Take Away: Feature Construction

Real World

Feature construction iIs

crucial!!
Feature Space

l Worth spending time on

Concepts/

Classes/
Decisions

103

Use
statistical
techniques
such as 10-

fold cross
validation

to get
meaningful
results

* Take Away: Empirical Evaluation

coIIection of classified examples

tralnlnj examples [testing examples]

train’ set |tune set

|

generate
solutions

V

j\/ classifier

g

expected accuracy
LEARNER on future examples

104

Take Away: Empirical Evaluation

Often, an ML system has to choose when to stop learning, select
among alternative answers, etc.

One wants the model that produces the highest accuracy on
future examples (“overfitting avoidance”)

It is a “cheat” to look at the test set while still learning
Better method
= Set aside part of the training set

= Measure performance on this “tuning” data to estimate future
performance for a given set of parameters

= Use best parameter settings, train with all training data
(except test set) to estimate future performance on new
examples

105

* Take Away: Empirical Evaluation

= Accuracy only can be misleading
= Look at alternative measures

= True positive rate/recall

= False positive rate

= Precision

= Area under the curve

106

* Take Away: Be Wary of Assumptions

$5000

$4000

$3000

$2000
$1000 M

$0

3/94

7/98

LTCM
DJ
30 T-Bill

Simplification:
Assumed investments
were independent
Reality:

All similar type of bet

107

* Take Away: Simple Methods

= Simple approaches often work reasonable well
In practice

= 1-nn
= Naive Bayes
= Perceptron

= Often worth trying tfirst

108

* Take Away: Ensembles

Learner,

Learner,

Learner,

1) Many classifiers often better than single classifier
2) Bagging/boosting are simple and very effective
3) Worth trying!

109

* Summary

= Association rules: Efficient way to mine
interesting information very large databases

= Get probabilities

= Don't require user guidance for interesting
patterns

= Apriori algorithm and it's extensions allow the
user to gather a good deal of information
without too many passes through data

110

111

