Bayesian Learning

Instructor: Jesse Davis

Announcements

- Homework 1 is due today
- Homework 2 is out
- Slides for this lecture are online
- We'll review some of homework 1 next class
- Techniques for efficient implementation of collaborative filtering
- Common mistakes made on rest of HW

Outline

- Probability overview
- Naïve Bayes
- Bayesian learning
- Bayesian networks

Random Variables

- A random variable is a number (or value) determined by chance
- More formally it is drawn from a probability distribution
- Types of random variables
- Continuous
- Binary
- Discrete

Why Random Variables

- Our goal is to predict a target variable
- We are not given the true function
- We are given observations
- Number of times a dice lands on 4
- Can estimate the probability of this event
- We don't know where the dice will land
- Can only guess what is likely to happen

Bernoulli Distribution

- Bernoulli RV takes two values: 0 and 1
- $\operatorname{Prob}(1)=p$ and $P(0)=1-p$

$$
P(x)=\left\{\begin{array}{l}
p^{x}(1-p)^{x}, \text { if } x=0 \text { or } 1 \\
0, \text { otherwise }
\end{array}\right.
$$

- The performance of one trial with fixed probability of success (p) is a Bernoulli trial

Binomial Distribution

- Like Bernoulli distribution, two values: 0 or 1 and probability $P(1)=p$ and $P(0)=1-p$
- What is the probability of k successes, $P(k)$, in a series of n independent trials? ($n>=k$)
- $P(k)$ is a binomial random variable:

$$
P(x)=\left[\begin{array}{l}
n \\
k
\end{array}\right] p^{k}(1-p)^{n-k} \text {, where }\left[\begin{array}{l}
n \\
k
\end{array}\right]=\frac{n!}{k!(n-k)!}
$$

- Bernoulli distribution is a special case of the binomial distribution (i.e., $\mathrm{n}=1$)

Multinomial Distribution

- Generalizes binomial distribution to multiple outputs (classes)
- N independent trials
- r possible outcomes
- Each outcome c_{r} has $P\left(c_{r}\right)=p_{r}$
- $\Sigma P\left(c_{r}\right)=1$
- Multinomial RV: Probability that in n trials, the frequency of the r classes is $\left(n_{1}, \ldots, n_{r}\right)$

Axioms of Probability Theory

Just three are enough to build entire theory!

1. All probabilities between 0 and 1
$0 \leq P(A) \leq 1$
2. $P($ true $)=1$ and $P($ false $)=0$
3. Probability of disjunction of events is:

$$
P(A \vee B)=P(A)+P(B)-P(A \wedge B)
$$

Conditional Probability

- $\mathrm{P}(\mathrm{A} \mid \mathrm{B})$ is the probability of A given B
- Assumes that B is the only info known.
- Defined as $P(A \mid B)=\frac{P(A \wedge B)}{P(B)}$

Independence

- A and B are independent iff:
- $P(A \mid B)=P(A)$
- $P(B \mid A)=P(B)$

These two constraints are logically equivalent

- Therefore if A and B are independent

$$
\begin{aligned}
& P(A \mid B)=\frac{P(A \wedge B)}{P(B)}=P(A) \\
& P(A \wedge B)=P(A) P(B)
\end{aligned}
$$

Independence

Independence is powerful, but rarely holds

Conditional Independence

Conditional Independence

- But: A\&B are made independent by $\neg \mathrm{C}$

Bayes Rule

- Bayes rule is: $P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B)}$
- Proof:

$$
\begin{array}{ll}
P(A \mid B)=\frac{P(A \wedge B)}{P(B)} \\
P(B \mid A)=\frac{P(A \wedge B)}{P(A)} & \\
& \\
P(A \wedge B)=P(B \mid A) P(A) & \text { Refn of cond. prob } \\
& \\
P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B)} & \text { Sub in prev result line } 2
\end{array}
$$

Use to Compute Diagnostic Probability from Causal Probability

- For example, let M be meningitis, S be stiff neck
- $P(M)=0.0001$
- $P(S)=0.1$
- $\mathrm{P}(\mathrm{S} \mid \mathrm{M})=0.8$
- $\mathrm{P}(\mathrm{M} \mid \mathrm{S})=0.8 \times 0.0001 / 0.1=0.0008$
- Probability is very low!

Outline

- Probability overview
- Naïve Bayes
- Bayesian learning
- Bayesian networks

Naïve Bayes: Motivation

- We will see many draws of X_{1}, \ldots, X_{n} and the response (class) Y
- We want to estimate the most likely value of Y for the input, that is, $\mathrm{P}\left(\mathrm{Y} \mid \mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{n}}\right)$
- What difficulty arises?
- Exponentially many settings for X_{1}, \ldots, X_{n}
- Next case probably has not been seen

One Approach: Assume Conditional Independence

- By Bayes Rule (with normalization):
- $P\left(Y \mid X_{1}, \ldots, X_{n}\right)=a P\left(X_{1}, \ldots, X_{n} \mid Y\right) P(Y)$
- Normalization: Compute above for each value of Y, then normalize so sum to 1
- Recall Conditional independence: $P\left(X_{1}, \ldots, X_{n} \mid Y\right)=P\left(X_{1} \mid Y\right) \ldots P\left(X_{n} \mid Y\right)$
- $P\left(Y \mid X_{1}, \ldots, X_{n}\right)=a P\left(X_{1} \mid Y\right) \ldots P\left(X_{n} \mid Y\right) P(Y)$

Naïve Bayes

- Assumes (naïvely) that all features are conditionally independent given the class
- $\mathrm{P}(\mathrm{A} \wedge \mathrm{B} \mid$ Class $)=\mathrm{P}(\mathrm{A} \mid$ Class $) * \mathrm{P}(\mathrm{B} \mid$ Class $)$
- Avoids estimating $P\left(A^{\wedge} B\right)$, etc.
- Surprisingly, though the assumption is often violated naïve Bayes works well in practice
- Bag of words for text, spam filtering, etc.

Naïve Bayes in Practice

- Empirically, estimates relative probabilities more reliably than absolute ones:

$$
\frac{P(\text { Pos } \mid \text { Features })}{P(\text { Neg } \mid \text { Features })}=\frac{P(\text { Features | Pos }) * P(\text { Pos })}{P(\text { Features | Neg }) * P(\text { Neg })}
$$

- Better than

$$
P(\text { Pos } \mid \text { Features })=P(\text { Features } \mid \text { Pos }) * P(\text { Pos })
$$

- Naïve Bayes tends to push probability estimates towards either 0 or 1

Technical Detail: Underflow

- Assume we have 100 features
- We multiple 100 numbers in [0,1]
- If values are small, we are likely to 'underflow' the min positive/float value
- Solution: Π probs $=\mathrm{e}^{\Sigma \log (p r o b)}$
- Sum log's of prob's

Log Odds

$$
\text { Odds }=\frac{P\left(F_{1} \mid P o s\right) * \ldots * P\left(F_{n} \mid P o s\right) * P(P o s)}{P\left(F_{1} \mid \mathrm{Neg}\right)^{*} \ldots * P\left(F_{\mathrm{n}} \mid \mathrm{Neg}\right) * P(\mathrm{Neg})}
$$

$\log ($ Odds $)=\left[\Sigma \log \left\{P\left(F_{i} \mid \operatorname{Pos}\right) / P\left(F_{i} \mid \operatorname{Neg}\right)\right\}\right]$

$+\log (P($ Pos $) / P(N e g))$

Notice if a feature value is more likely in a pos, the log is pos and if more likely in neg, the log is neg (0 if tie)

Naïve Bayes Example

Color	Shape	Size	Category
red	\bullet	big	+
blue	Δ	small	+
red	\square	small	+
red	Δ	big	-
blue	\bullet	small	-
red	Δ	small	$?$

CS 760 - Machine Learning (UW-

Naïve Bayes Example

- For the new example (red, Δ, small)

$$
\begin{aligned}
\frac{\mathrm{P}\left(+\mid \mathrm{F}^{\prime} \mathrm{s}\right)}{\mathrm{P}(-\mid \mathrm{F} \text { 's })} & =\frac{\mathrm{P}(\text { red } \mid+) * \mathrm{P}(\Delta \mid+) * \mathrm{P}(\text { small } \mid+) * \mathrm{P}(+)}{\mathrm{P}(\text { red } \mid-) * \mathrm{P}(\Delta \mid-) * \mathrm{P}(\text { small } \mid-) * \mathrm{P}(-)} \\
& =\frac{2 / 3 * 1 / 3 * 2 / 3 * 3 / 5}{1 / 2 * 1 / 2 * 1 / 2 * 2 / 5}=1.77
\end{aligned}
$$

- So most likely a POS example

CS 760 - Machine Learning (UW-
Madison)

Dealing with Zeroes (and Small Samples)

- If we never see something (eg, in the train set), should we assume its probability is zero?
- If we only see 3 pos ex's and 2 are red, do we really think

$$
P(\text { red } \mid \text { pos })=2 / 3 ?
$$

CS 760 - Machine Learning (UW-
Madison)

M-estimates
 (Eq 6.22 in Mitchell; Eq 7 in draft chapter)

- Imagine we had m hypothetical pos ex's
- Assume p is prob these examples are red
- Improved estimate:

$$
P(\text { red } \mid \text { pos })=\frac{2+p * m}{3+m}
$$

(In general, red is some feature value and 2 and 3 are actual counts in the training set)

M-Estimate

Example: Of 10 examples, 8 have color $=$ red

$$
\text { Prob }(\text { color }=\text { red })=\frac{8+100 \times 0.5}{10+100}=\frac{58}{110}=0.53
$$

M-Estimates More Generally

Laplace Smoothing

- Special case of m estimates
- Let $m=$ \#colors, $p=1 / m$
- Ie, assume one hypothetical pos ex of each color
- Implementation trick
- Start all counters at 1 instead of 0
- Eg, initialize count(pos, feature(i), value(i, j)) = 1
- count(pos, color, red), count(neg, color, red), count(pos, color, blue),

Naïve Bayes as a Graphical Model

Node istores $P\left(F_{i} \mid P O S\right)$ and $P\left(F_{i} \mid\right.$ NEG $)$

How Does Naïve Bayes Partition Feature Space?

Homework: Spam Filtering

- Task:

From: Branded anti-ED Pills otubu9068@telesp.net.br
To: andrey.kolobov@gmail.com
Date: Fri, Apr 2, 2010 at 7:23 PM
Subject: Hot Sale, andrey.kolobov! 77\% off on top goods Emen
Mailed-by: telesp.net.br

Why aren't you on our site, andrey.kolobov? We have 77\% off today!!

Ham or Spam?

$P(C)$

- $P(C \mid E)=P(E \mid C) P(C) / P(E)$
- $C \leftarrow \operatorname{argmax}\{P(E \mid C) P(C)\}$

C in $\{\mathrm{h}, \mathrm{m}\}$

... with Naïve Bayes

From: Branded anti-ED Pills otubu9068@telesp.net.br

To: andrey.kolobov@gmail.com
Date: Fri, Apr 2, 2010 at 7:23 PM
Subject: Hot Sale, andrey.kolobov! 77\% off on top goods Emen
Mailed-by: telesp.net.br
Whvaren't voulon our site andrev.kolobov We have offltodav $P(E \mid C)$
$P(" w h y " \mid C)$

Ham or Spam?

P(C)

$C \leqslant \operatorname{argmax}\{P(E \mid C) P(C)\}=\operatorname{argmax}\{P(C) \Pi P(W \mid C)\}$ C in $\{\mathrm{h}, \mathrm{m}\}$
 C in $\{\mathrm{h}, \mathrm{m}\} \quad \mathrm{W}$ in E

Estimating Parameters

- Given:
- Set of training spam emails S
- Set of training ham emails H

To avoid getting $P(w \mid c)=0$ due

- Probabilities:
- $\left.P(w \mid c)=(11+(\# c w)) /\left(\sum_{w^{\prime} i n v}^{1}+\#_{c} w^{\prime}\right)\right)$
- $P(c)=|c| /(|S|+|H|)$

Naïve Bayes Summary

- Fast, simple algorithm
- Effective in practice [good baseline comparison]
- Gives estimates of confidence in class label
- Makes simplifying assumptions
- Extensions to come...

Outline

- Probability overview
- Naïve Bayes
- Bayesian learning
- Bayesian networks

Coin Flip

$\mathrm{P}\left(\mathrm{H} \mid \mathrm{C}_{1}\right)=0.1 \quad \mathrm{P}\left(\mathrm{H} \mid \mathrm{C}_{2}\right)=0.5 \quad \mathrm{P}\left(\mathrm{H} \mid \mathrm{C}_{3}\right)=0.9$
Which coin will I use?

$$
P\left(C_{1}\right)=1 / 3
$$

$$
P\left(C_{2}\right)=1 / 3
$$

$$
P\left(C_{3}\right)=1 / 3
$$

Prior: Probability of a hypothesis before we make any observations

Coin Flip

$\mathrm{P}\left(\mathrm{H} \mid \mathrm{C}_{1}\right)=0.1 \quad \mathrm{P}\left(\mathrm{H} \mid \mathrm{C}_{2}\right)=0.5 \quad \mathrm{P}\left(\mathrm{H} \mid \mathrm{C}_{3}\right)=0.9$
Which coin will I use?

$$
P\left(C_{1}\right)=1 / 3 \quad P\left(C_{2}\right)=1 / 3 \quad P\left(C_{3}\right)=1 / 3
$$

Uniform Prior: All hypothesis are equally likely before we make any observations

Experiment 1: Heads

Which coin did I use?

$$
\begin{array}{ccc}
\mathrm{P}\left(\mathrm{C}_{1} \mid \mathrm{H}\right)=? & \mathrm{P}\left(\mathrm{C}_{2} \mid \mathrm{H}\right)=? & \mathrm{P}\left(\mathrm{C}_{3} \mid \mathrm{H}\right)=? \\
P\left(C_{1} \mid H\right)=\frac{\left.P\left(H \mid C_{1}\right) P\left(C_{1}\right)\right]}{P(H)} & P(H)=\sum_{i=1}^{3} P\left(H \mid C_{i}\right) P\left(C_{i}\right) \\
\mathrm{C}_{1} & \mathrm{C}_{2} & \mathrm{C}_{3} \\
\text { (iC) } & & \\
\mathrm{P}\left(\mathrm{H} \mid \mathrm{C}_{1}\right)=0.1 & \mathrm{P}\left(\mathrm{H} \mid \mathrm{C}_{2}\right)=0.5 & \mathrm{P}\left(\mathrm{H} \mid \mathrm{C}_{3}\right)=0.9 \\
\mathrm{P}\left(\mathrm{C}_{1}\right)=1 / 3 & \mathrm{P}\left(\mathrm{C}_{2}\right)=1 / 3 & \mathrm{P}\left(\mathrm{C}_{3}\right)=1 / 3
\end{array}
$$

Experiment 1: Heads

Which coin did I use?

$$
\mathrm{P}\left(\mathrm{C}_{1} \mid \mathrm{H}\right)=0.066 \mathrm{P}\left(\mathrm{C}_{2} \mid \mathrm{H}\right)=0.333 \quad \mathrm{P}\left(\mathrm{C}_{3} \mid \mathrm{H}\right)=0.6
$$

Posterior: Probability of a hypothesis given data

$\mathrm{P}\left(\mathrm{H} \mid \mathrm{C}_{1}\right)=0.1$
$P\left(C_{1}\right)=1 / 3$
$\mathrm{P}\left(\mathrm{H} \mid \mathrm{C}_{2}\right)=0.5$
$P\left(C_{2}\right)=1 / 3$
$\mathrm{P}\left(\mathrm{H}_{\mathrm{C}} \mathrm{C}_{3}\right)=0.9$
$P\left(C_{3}\right)=1 / 3$

Terminology

- Prior: Probability of a hypothesis before we see any data
- Uniform prior: A prior that makes all hypothesis equally likely
- Posterior: Probability of hypothesis after we saw some data
- Likelihood: Probability of the data given the hypothesis

Experiment 2: Tails

Which coin did I use?

$$
\mathrm{P}\left(\mathrm{C}_{1} \mid \mathrm{HT}\right)=? \quad \mathrm{P}\left(\mathrm{C}_{2} \mid \mathrm{HT}\right)=? \quad \mathrm{P}\left(\mathrm{C}_{3} \mid \mathrm{HT}\right)=?
$$

$$
P\left(C_{1} \mid H T\right)=\alpha P\left(H T \mid C_{1}\right) P\left(C_{1}\right)=\alpha P\left(H \mid C_{1}\right) P\left(T \mid C_{1}\right) P\left(C_{1}\right)
$$

$\mathrm{P}\left(\mathrm{H} \mid \mathrm{C}_{1}\right)=0.1 \quad \mathrm{P}\left(\mathrm{H} \mid \mathrm{C}_{2}\right)=0.5$
$P\left(C_{1}\right)=1 / 3$
$P\left(C_{2}\right)=1 / 3$
$\mathrm{P}\left(\mathrm{H}_{\mathrm{C}} \mathrm{C}_{3}\right)=0.9$
$P\left(C_{3}\right)=1 / 3$

Experiment 2: Tails

Which coin did I use?

$$
\mathrm{P}\left(\mathrm{C}_{1} \mid \mathrm{HT}\right)=0.21 \mathrm{P}\left(\mathrm{C}_{2} \mid \mathrm{HT}\right)=0.58 \mathrm{P}\left(\mathrm{C}_{3} \mid \mathrm{HT}\right)=0.21
$$

$$
P\left(C_{1} \mid H T\right)=\alpha P\left(H T \mid C_{1}\right) P\left(C_{1}\right)=\alpha P\left(H \mid C_{1}\right) P\left(T \mid C_{1}\right) P\left(C_{1}\right)
$$

$$
\begin{array}{rlrl}
\mathrm{P}\left(\mathrm{H} \mid \mathrm{C}_{1}\right) & =0.1 & \mathrm{P}\left(\mathrm{H} \mid \mathrm{C}_{2}\right) & =0.5 \\
\mathrm{P}\left(\mathrm{C}_{1}\right) & =1 / 3\left(\mathrm{H} \mid \mathrm{C}_{3}\right) & =0.9 \\
\mathrm{P}\left(\mathrm{C}_{2}\right) & =1 / 3 & \mathrm{P}\left(\mathrm{C}_{3}\right) & =1 / 3
\end{array}
$$

Experiment 2: Tails

Which coin did I use?

$$
\mathrm{P}\left(\mathrm{C}_{1} \mid \mathrm{HT}\right)=0.21 \mathrm{P}\left(\mathrm{C}_{2} \mid \mathrm{HT}\right)=0.58 \mathrm{P}\left(\mathrm{C}_{3} \mid \mathrm{HT}\right)=0.21
$$

Your Estimate?

What is the probability of heads after two experiments?
Most likely coin:

Best estimate for $\mathrm{P}(\mathrm{H})$

$$
\mathrm{P}\left(\mathrm{H} \mid \mathrm{C}_{2}\right)=0.5
$$

Your Estimate?

Maximum Likelihood Estimate: The best hypothesis that fits observed data assuming uniform prior

Most likely coin:
Best estimate for $\mathrm{P}(\mathrm{H})$

$$
\mathrm{P}\left(\mathrm{H} \mid \mathrm{C}_{2}\right)=0.5
$$

Using Prior Knowledge

- Should we always use a Uniform Prior ?
- Background knowledge:
- Heads => we have take-home midterm
- Jesse likes take-homes...
- => Jesse is more likely to use a coin biased in his favor

$\mathrm{P}\left(\mathrm{H} \mid \mathrm{C}_{1}\right)=0.1$
$\mathrm{P}\left(\mathrm{H} \mid \mathrm{C}_{2}\right)=0.5$
$\mathrm{P}\left(\mathrm{H} \mid \mathrm{C}_{3}\right)=0.9$

Using Prior Knowledge

We can encode it in the prior:

$$
\begin{array}{ccc}
\mathrm{P}\left(\mathrm{C}_{1}\right)=0.05 & \mathrm{P}\left(\mathrm{C}_{2}\right)=0.25 & \mathrm{P}\left(\mathrm{C}_{3}\right)=0.70 \\
\mathrm{C}_{1} & \mathrm{C}_{2} & \mathrm{C}_{3} \\
\mathrm{P}\left(\mathrm{H} \mid \mathrm{C}_{1}\right)=0.1 & \mathrm{P}\left(\mathrm{H} \mid \mathrm{C}_{2}\right)=0.5 & \mathrm{P}\left(\mathrm{H} \mid \mathrm{C}_{3}\right)=0.9
\end{array}
$$

Experiment 1: Heads

Which coin did I use?

$$
\begin{array}{ll}
\mathrm{P}\left(\mathrm{C}_{1} \mid \mathrm{H}\right)=? & \mathrm{P}\left(\mathrm{C}_{2} \mid \mathrm{H}\right)=? \\
P\left(C_{1} \mid H\right)=\alpha P\left(H \mid C_{1}\right) P\left(C_{1}\right) & \mathrm{P}\left(\mathrm{C}_{3} \mid \mathrm{H}\right)=?
\end{array}
$$

$\mathrm{P}\left(\mathrm{H} \mid \mathrm{C}_{1}\right)=0.1 \quad \mathrm{P}\left(\mathrm{H} \mid \mathrm{C}_{2}\right)=0.5 \quad \mathrm{P}\left(\mathrm{H} \mid \mathrm{C}_{3}\right)=0.9$
$\mathrm{P}\left(\mathrm{C}_{1}\right)=0.05 \quad \mathrm{P}\left(\mathrm{C}_{2}\right)=0.25$
$\mathrm{P}\left(\mathrm{C}_{3}\right)=0.70$

Experiment 1: Heads

Which coin did I use?

$$
\mathrm{P}\left(\mathrm{C}_{1} \mid \mathrm{H}\right)=0.006 \mathrm{P}\left(\mathrm{C}_{2} \mid \mathrm{H}\right)=0.165 \mathrm{P}\left(\mathrm{C}_{3} \mid \mathrm{H}\right)=0.829
$$

Compare with ML posterior after Exp 1:

$$
\mathrm{P}\left(\mathrm{C}_{1} \mid \mathrm{H}\right)=0.066 \mathrm{P}\left(\mathrm{C}_{2} \mid \mathrm{H}\right)=0.333 \mathrm{P}\left(\mathrm{C}_{3} \mid \mathrm{H}\right)=0.600
$$

$$
\begin{array}{rrr}
\mathrm{P}\left(\mathrm{H} \mid \mathrm{C}_{1}\right)=0.1 & \mathrm{P}\left(\mathrm{H} \mid \mathrm{C}_{2}\right)=0.5 & \mathrm{P}\left(\mathrm{H} \mid \mathrm{C}_{3}\right)=0.9 \\
\mathrm{P}\left(\mathrm{C}_{1}\right)=0.05 & \mathrm{P}\left(\mathrm{C}_{2}\right)=0.25 & \mathrm{P}\left(\mathrm{C}_{3}\right)=0.70
\end{array}
$$

Experiment 2: Tails

Which coin did I use?

$$
\mathrm{P}\left(\mathrm{C}_{1} \mid \mathrm{HT}\right)=? \quad \mathrm{P}\left(\mathrm{C}_{2} \mid \mathrm{HT}\right)=? \quad \mathrm{P}\left(\mathrm{C}_{3} \mid \mathrm{HT}\right)=?
$$

$$
P\left(C_{1} \mid H T\right)=\alpha P\left(H T \mid C_{1}\right) P\left(C_{1}\right)=\alpha P\left(H \mid C_{1}\right) P\left(T \mid C_{1}\right) P\left(C_{1}\right)
$$

$$
\begin{array}{rrr}
\mathrm{P}\left(\mathrm{H} \mid \mathrm{C}_{1}\right)=0.1 & \mathrm{P}\left(\mathrm{H} \mid \mathrm{C}_{2}\right)=0.5 & \mathrm{P}\left(\mathrm{H} \mid \mathrm{C}_{3}\right)=0.9 \\
\mathrm{P}\left(\mathrm{C}_{1}\right)=0.05 & \mathrm{P}\left(\mathrm{C}_{2}\right)=0.25 & \mathrm{P}\left(\mathrm{C}_{3}\right)=0.70
\end{array}
$$

Experiment 2: Tails

Which coin did I use?

$\mathrm{P}\left(\mathrm{C}_{1} \mid \mathrm{HT}\right)=0.035 \mathrm{P}\left(\mathrm{C}_{2} \mid \mathrm{HT}\right)=0.481 \mathrm{P}\left(\mathrm{C}_{3} \mid \mathrm{HT}\right)=0.485$

$$
P\left(C_{1} \mid H T\right)=\alpha P\left(H T \mid C_{1}\right) P\left(C_{1}\right)=\alpha P\left(H \mid C_{1}\right) P\left(T \mid C_{1}\right) P\left(C_{1}\right)
$$

$$
\begin{array}{rrr}
\mathrm{P}\left(\mathrm{H} \mid \mathrm{C}_{1}\right)=0.1 & \mathrm{P}\left(\mathrm{H} \mid \mathrm{C}_{2}\right)=0.5 & \mathrm{P}\left(\mathrm{H} \mid \mathrm{C}_{3}\right)=0.9 \\
\mathrm{P}\left(\mathrm{C}_{1}\right)=0.05 & \mathrm{P}\left(\mathrm{C}_{2}\right)=0.25 & \mathrm{P}\left(\mathrm{C}_{3}\right)=0.70
\end{array}
$$

Experiment 2: Tails

Which coin did I use?

$\mathrm{P}\left(\mathrm{C}_{1} \mid \mathrm{HT}\right)=0.035 \quad \mathrm{P}\left(\mathrm{C}_{2} \mid \mathrm{HT}\right)=0.481 \quad \mathrm{P}\left(\mathrm{C}_{3} \mid \mathrm{HT}\right)=0.485$

Your Estimate?

What is the probability of heads after two experiments?
Most likely coin:
Best estimate for $\mathrm{P}(\mathrm{H})$
C_{3}

$$
\mathrm{P}\left(\mathrm{H} \mid \mathrm{C}_{3}\right)=0.9
$$

$\mathrm{P}\left(\mathrm{H} \mid \mathrm{C}_{3}\right)=0.9$
$P\left(C_{3}\right)=0.70$

Your Estimate?

Maximum A Posteriori (MAP) Estimate:
The best hypothesis that fits observed data assuming a non-uniform prior

Most likely coin:
Best estimate for $\mathrm{P}(\mathrm{H})$

$$
\mathrm{P}\left(\mathrm{H} \mid \mathrm{C}_{3}\right)=0.9
$$

C_{3}

$$
\begin{gathered}
\mathrm{P}\left(\mathrm{H} \mid \mathrm{C}_{3}\right)=0.9 \\
\mathrm{P}\left(\mathrm{C}_{3}\right)=0.70
\end{gathered}
$$

Did We Do The Right Thing?

$\mathrm{P}\left(\mathrm{C}_{1} \mid \mathrm{HT}\right)=0.035 \quad \mathrm{P}\left(\mathrm{C}_{2} \mid \mathrm{HT}\right)=0.481 \quad \mathrm{P}\left(\mathrm{C}_{3} \mid \mathrm{HT}\right)=0.485$

C

C_{2}

C_{3}
$\mathrm{P}\left(\mathrm{H} \mid \mathrm{C}_{1}\right)=0.1 \quad \mathrm{P}\left(\mathrm{H} \mid \mathrm{C}_{2}\right)=0.5 \quad \mathrm{P}\left(\mathrm{H} \mid \mathrm{C}_{3}\right)=0.9$

Did We Do The Right Thing?

$$
\mathrm{P}\left(\mathrm{C}_{1} \mid \mathrm{HT}\right)=0.035 \quad \mathrm{P}\left(\mathrm{C}_{2} \mid \mathrm{HT}\right)=0.481 \quad \mathrm{P}\left(\mathrm{C}_{3} \mid \mathrm{HT}\right)=0.485
$$

C_{2} and C_{3} are almost equally likely

C_{2}
$\mathrm{P}\left(\mathrm{H} \mid \mathrm{C}_{2}\right)=0.5$
$\mathrm{P}\left(\mathrm{H} \mid \mathrm{C}_{3}\right)=0.9$

A Better Estimate

Recall: $P(H)=\sum_{i=1}^{3} P\left(H \mid C_{i}\right) P\left(C_{i}\right)=0.680$
$\mathrm{P}\left(\mathrm{C}_{1} \mid \mathrm{HT}\right)=0.035 \quad \mathrm{P}\left(\mathrm{C}_{2} \mid \mathrm{HT}\right)=0.481 \quad \mathrm{P}\left(\mathrm{C}_{3} \mid \mathrm{HT}\right)=0.485$

Bayesian Estimate

Bayesian Estimate: Minimizes prediction error, given data and (generally) assuming a non-uniform prior

$$
P(H)=\sum_{i=1}^{3} P\left(H \mid C_{i}\right) P\left(C_{i}\right)=0.680
$$

$\mathrm{P}\left(\mathrm{C}_{1} \mid \mathrm{HT}\right)=0.035$
$\mathrm{P}\left(\mathrm{C}_{2} \mid \mathrm{HT}\right)=0.481$
$\mathrm{P}\left(\mathrm{C}_{3} \mid \mathrm{HT}\right)=0.485$

$P\left(H \mid C_{1}\right)=0.1$
$\mathrm{P}\left(\mathrm{H} \mid \mathrm{C}_{2}\right)=0.5$
$\mathrm{P}\left(\mathrm{H} \mid \mathrm{C}_{3}\right)=0.9$

Comparison After more Experiments

- Seen: HTHHHHHHHH
- Maximum likelihood:
- $\mathrm{P}(\mathrm{H})=0.5$
- After 10 experiments: $P(H)=0.9$
- Maximum a posteriori:
- $\mathrm{P}(\mathrm{H})=0.9$
- After 10 experiments: $P(H)=0.9$
- Bayesian:
- $\mathrm{P}(\mathrm{H})=0.68$
- After 10 experiments: $\mathrm{P}(\mathrm{H})=0.9$

Comparison

- ML:
- Easy to compute
- MAP:
- Easy to compute
- Incorporates prior knowledge
- Bayesian:
- Minimizes error -> great with little data
- Potentially very difficult to compute

Brute-Force MAP Hypothesis Learner

1. For each hypothesis h in H, calculate the posterior probability

$$
P(h \mid D)=\frac{P(D \mid h) P(h)}{P(D)}
$$

2. Output the hypothesis $h_{M A P}$ with the highest posterior probability

$$
h_{M A P}=\underset{h \in H}{\operatorname{argmax}} P(h \mid D)
$$

Relation to Concept Learning

Let $D=\left\langle c\left(x_{1}\right), \ldots, c\left(x_{m}\right)\right\rangle \quad$ (examples' classes)
Choose $P(D \mid h)$

- $P(D \mid h)=1$ if h consistent with D
- $P(D \mid h)=0$ otherwise

Choose $P(h)$ to be uniform distribution

- $P(h)=\frac{1}{|H|}$ for all h in H

Then

$$
P(h \mid D)=\left\{\begin{array}{cl}
\frac{1}{\left|V S_{H, D}\right|} & \text { if } h \text { is consistent with } D \\
0 & \text { otherwise }
\end{array}\right.
$$

Most Probable Classification of New Instances

So far we've sought the most probable hypothesis given the data D (i.e., $h_{M A P}$)

Given new instance x, what is its most probable classification? Not $h_{M A P}(x)$!

Consider:

- Three possible hypotheses:

$$
P\left(h_{1} \mid D\right)=.4, P\left(h_{2} \mid D\right)=.3, P\left(h_{3} \mid D\right)=.3
$$

- Given new instance x,

$$
h_{1}(x)=+, h_{2}(x)=-, h_{3}(x)=-
$$

- What's most probable classification of x ?

Bayes Optimal Classifier

Bayes optimal classification:

$$
\arg \max _{v_{j} \in V} \sum_{h_{i} \in H} P\left(v_{j} \mid h_{i}\right) P\left(h_{i} \mid D\right)
$$

Example:

$$
\begin{array}{lll}
P\left(h_{1} \mid D\right)=.4, & P\left(-\mid h_{1}\right)=0, & P\left(+\mid h_{1}\right)=1 \\
P\left(h_{2} \mid D\right)=.3, & P\left(-\mid h_{2}\right)=1, & P\left(+\mid h_{2}\right)=0 \\
P\left(h_{3} \mid D\right)=.3, & P\left(-\mid h_{3}\right)=1, & P\left(+\mid h_{3}\right)=0
\end{array}
$$

therefore

$$
\begin{aligned}
& \sum_{h_{i} \in H} P\left(+\mid h_{i}\right) P\left(h_{i} \mid D\right)=.4 \\
& \sum_{h_{i} \in H} P\left(-\mid h_{i}\right) P\left(h_{i} \mid D\right)=.6
\end{aligned}
$$

and

$$
\arg \max _{v_{j} \in V} \sum_{h_{i} \in H} P\left(v_{j} \mid h_{i}\right) P\left(h_{i} \mid D\right)=-
$$

Gibbs Classifier

Bayes optimal classifier is hopelessly inefficient
Gibbs algorithm:

1. Choose one hypothesis at random, according to $P(h \mid D)$
2. Use this to classify new instance

Surprising fact: Assume target concepts are drawn at random from H according to priors on H. Then

$$
E\left[\text { error }_{\text {Gibbs }}\right] \leq 2 \times E\left[\text { error }_{\text {BayesOptimal }}\right]
$$

Outline

- Probability overview
- Naïve Bayes
- Bayesian learning
- Bayesian networks
- Representation
- Inference
- Parameter learning
- Structure learning

Bayesian Network

- In general, a joint distribution P over variables ($\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{n}}$) requires exponential space
- A Bayesian network is a graphical representation of the conditional independence relations in P
- Usually quite compact
- Requires fewer parameters than the full joint distribution
- Can yield more efficient inference and belief updates

Bayesian Network

- Formally, a Bayesian network is
- A directed, acyclic graph
- Each node is a random variable
- Each node X has a conditional probability distribution P(X | Parents(X))
- Intuitively, an arc from X to Y means that X and Y are related

An Example Bayes Net

Terminology

- If X and its parents are discrete, we represent $\mathbf{P}(X \mid$ Parents $(X))$ by
- A conditional probability table (CPT)
- It specifies the probability of each value of X, given all possible settings for the variables in Parents(X).
- Number of parameters locally exponential in |Parents(X)|
- A conditioning case is a row in this CPT: A setting of values for the parent nodes

Bayesian Network Semantics

- A Bayesian network completely specifies a full joint distribution over variables X_{1}, \ldots, X_{n}
- $P\left(x_{1}, \ldots, x_{n}\right)=\prod_{i}^{n} P\left(x_{i} \mid \operatorname{Parents}\left(x_{i}\right)\right)$
- Here $P\left(x_{1}, \ldots, x_{n}\right)$ represents a specific setting for all variables (i.e., $\left.P\left(X_{1}=x_{1}, \ldots, X_{n}=x_{n}\right)\right)$

Conditional Indepencies

- A node X is conditionally independent of its predecessors given its parents
- Markov Blanket of X_{i} consists of:
- Parents of X_{i}
- Children of X_{i}
- Other parents of X_{i} 's children
- X is conditionally independent of all nodes in the network given its Markov Blanket

Example: Parents

Example: Parents

Example: Parents

Example: Markov Blanket

Example: Markov Blanket

D-Separation

D-Separation

D-Separation

Knowing A

 does not tell us about B
D-Separation

Knowing C

 allows evidence to flow for A to B

D-Separation

Evidence flows from D to E

	$\operatorname{Pr}(\mathrm{D} \mid \mathrm{C})$
$\frac{c}{c}$	$0.1(0.9)$
c	$0.6(0.4)$

D-Separation

Knowing C stops evidence from D to E

	$\operatorname{Pr}(\mathrm{D} \mid \mathrm{C})$
c	$0.1(0.9)$
c	$0.6(0.4)$

Outline

- Probability overview
- Naïve Bayes
- Bayesian learning
- Bayesian networks
- Representation
- Inference
- Parameter learning
- Structure learning

Inference in BNs

- The graphical independence representation yields efficient inference schemes
- Generally, we want to compute
- $P(X)$ or
- $P(X \mid E)$, where E is (conjunctive) evidence
- Computations organized by network topology
- Two well-known exact algorithms:
- Variable elimination
- Junction trees

Variable Elimination

- A factor is a function from set of variables to a specific value: CPTS are factors
- E.g.: $p(A \mid E, B)$ is a function of A, E, B
- VE works by eliminating all variables in turn until there is a factor with only query variable

Joint Distributions \& CPDs Vs. Potentials

CPT for $P(B \mid A)$

b $\quad \neg$

Represent probability distributions

1. For CPT, specific setting of parents, values of child must sum to 1
2. For joint, all entries sum to 1

Potential

Potentials occur when we temporarily forget meaning associated with table

1. Must be non-negative
2. Doesn't have to sum to 1

Arise when incorporating evidence

Multiplying Potentials

		a		$\neg a$	
	c	$\neg c$	c	$\neg c$	
	.02	.04	.10	.20	
	.04	.06	.10	.24	
	.40				

Marginalize/sum out a variable

Normalize a potential

Key Observation

$$
\begin{aligned}
& \Sigma_{\mathrm{a}}\left(\mathrm{P}_{1} \times \mathrm{P}_{2}\right)=\left(\Sigma_{\mathrm{a}} \mathrm{P}_{1}\right) \times \mathrm{P}_{2} \text { if } \mathrm{A} \text { is not in } \mathrm{P}_{2}
\end{aligned}
$$

Key Observation

$\Sigma_{\mathrm{a}}\left(\mathrm{P}_{1} \times \mathrm{P}_{2}\right)=\left(\Sigma_{\mathrm{a}} \mathrm{P}_{1}\right) \times \mathrm{P}_{2}$ if A is not in P_{2}

Variable Elimination Procedure

- The initial potentials are the CPTS in the BN
- Repeat until only query variable remains:
- Choose a variable to eliminate
- Multiply all potentials that contain the variable
- If no evidence for the variable then sum the variable out and replace original potential by the new result
- Else, remove variable based on evidence
- Normalize the remaining potential to get the final distribution over the query variable

$P(A, B, C, D, E, F)=P(A) P(B \mid A) P(C \mid A) P(D \mid B) P(E \mid C) P(F \mid D, E)$

Query: P(F| C = true)

Elimination Ordering: A,B,C,D,E

Before eliminating A , multiple all potentials involving A

	b			\neg	
		c	7 C	c	70
Sum out	a	. 016	. 144	. 004	036
A	ᄀа	. 144	. 096	. 336	. 224
		. 16	. 24	34	26

Now, eliminate B, multiple all potentials involving B

Next, eliminate C, multiple all potentials involving C

Next, eliminate D, multiple all potentials involving D

Next, eliminate E

Notes on Variable Elimination

- Each operation is a simple multiplication of factors and summing out a variable
- Complexity determined by size of largest factor
- E.g., in example 3 variables (not 6)
- Linear in number of variables, exponential in largest factor
- Elimination ordering greatly impacts factor size
- Optimal elimination ordering: NP-hard

Outline

- Probability overview
- Naïve Bayes
- Bayesian learning
- Bayesian networks
- Representation
- Inference
- Parameter learning
- Structure learning

Parameter Estimate for Bayesian Networks

E	B	R	A	J	\mathbf{M}
T	F	T	T	F	T
F	F	F	F	F	T
F	T	F	T	T	T
F	F	F	T	T	T
F	T	F	F	F	F
\ldots					

We have:

- Bayes Net structure and observations
- We need: Bayes Net parameters

Parameter Estimate for Bayesian Networks

$P(B)=\square+$ data $=\square$
Now compute either MAP or Bayesian estimate

What Prior to Use

- The following are two common priors
- Binary variable Beta
- Posterior distribution is binomial
- Easy to compute posterior
- Discrete variable Dirichlet
- Posterior distribution is multinomial
- Easy to compute posterior

One Prior: Beta Distribution

$\underset{\substack{\beta, b}}{\beta(x)}=\frac{\Gamma(a+b)}{\Gamma(a) \Gamma(b)} x^{a-1}(1-x)^{b-1}$,
$0 \leq x \leq 1$ and $a, b>0$
Here $\Gamma(y)=\int_{0}^{\infty} x^{y-1} e^{-x} d x$
For any positive integer $y, \Gamma(y)=(y-1)$!

Figure 3. Beta distributions with $a=4$ and $b=8$ (solid line) and with $a=8$ and $b=4$ (dashed line). To get a higher peak (and stronger skew), use a and b that sum to a higher value.

Beta Distribution

- Example: Flip coin with Beta distribution as prior p [prob(heads)]
- Parameterized by two positive numbers: a and b
- Mode of distribution (E[p]) is a /(a+b)
- Specify our prior belief for $p=a /(a+b)$
- Specify confidence with initial values of a and b
- Updating our prior belief based on data by
- Increment a for each head outcome
- Increment b for each tail outcome
- Posterior is a binomial distribution!

Parameter Estimate for Bayesian Networks

Parameter Estimate for Bayesian Networks

$\mathrm{P}(\mathrm{A} \mid \mathrm{E}, \mathrm{B})=$?

E	B
T	F
F	F
F	T
F	F
F	T
\ldots	

A
T
F
T
T
F

$\mathrm{P}(\mathrm{A} \mid \mathrm{E}, \neg \mathrm{B})=$?
$\mathrm{P}(\mathrm{A} \mid \neg \mathrm{E}, \mathrm{B})=$?
$\mathrm{P}(\mathrm{A} \mid \neg \mathrm{E}, \neg \mathrm{B})=$?

Parameter Estimate for Bayesian Networks

General EM Framework: Handling Missing Values

- Given: Data with missing values, space of possible models, initial model
- Repeat until no change greater than threshold:
- Expectation (E) Step: Compute expectation over missing values, given model.
- Maximization (M) Step: Replace current model with model that maximizes probability of data.

"Soft" EM vs. "Hard" EM

- Soft EM: Expectation is a probability distribution
- Hard EM: Expectation is "all or nothing," assign most likely/probable value
- Advantage of hard EM is computational efficiency when expectation is over state consisting of values for multiple variables

EM for Parameter Learning: E Step

- For each data point with missing values
- Compute the probability of each possible completion of that data point
- Replace the original data point with all completions, weighted by probabilities
- Computing the probability of each completion (expectation) is just answering query over missing variables given others

EM For Parameter Learning: M Step

- Use the completed data set to update our Beta/Dirichlet distributions
- Same as if complete data set
- Note: Counts may be fractional now
- Update CPTs based on new Beta/Dirichlet distribution
- Same as if complete data set

Subtlety for Parameter Learning

- Overcounting based on number of iterations required to converge to settings for the missing values
- After each E step, reset all Beta/Dirichlet distributions before repeating M step.

CS 760 - Machine Learning (UW-
Madison)

EM for Parameter Learning

Data

A	B	C	D	E
0	0	$?$	0	0
0	0	$?$	1	0
1	0	$?$	1	1
0	0	$?$	0	1
0	1	$?$	1	0
0	0	$?$	0	1
1	1	$?$	1	1
0	0	$?$	0	0
0	0	$?$	1	0
0	0	$?$	0	1

EM for Parameter Learning: E Step

Data

$$
\begin{array}{|lllll|}
\hline \mathrm{A} & \mathrm{~B} & \mathrm{C} & \mathrm{D} & \mathrm{E} \\
\hline 0 & 0 & ? & 0 & 0 \\
\hline
\end{array}
$$

EM for Parameter Learning: E Step

Data

$$
\begin{array}{|lcccc|}
\hline \mathrm{A} & \mathrm{~B} & \mathrm{C} & \mathrm{D} & \mathrm{E} \\
\hline 0 & 0 & ? & 0 & 0 \\
\hline \mathrm{P}(\mathrm{~A}=0) & * \mathrm{P}(\mathrm{~B}=0) * \\
\mathrm{P}(\mathrm{C}=0 \mid \mathrm{A}=0, \mathrm{~B}=0) \\
* \mathrm{P}(\mathrm{D}=0 \mid \mathrm{C}=0) \\
* \mathrm{P}(\mathrm{E}=0 \mid \mathrm{C}=0)=.41472 \\
\mathrm{P}(\mathrm{~A}=0) * \mathrm{P}(\mathrm{~B}=0) * \\
\mathrm{P}(\mathrm{C}=1 \mid \mathrm{A}=0, \mathrm{~B}=0) \\
* \mathrm{P}(\mathrm{D}=0 \mid \mathrm{C}=1) \\
* \mathrm{P}(\mathrm{E}=0 \mid \mathrm{C}=1)=.00288
\end{array}
$$

EM for Parameter Learning: E Step

Data

$$
\begin{array}{|lcccc|}
\hline \mathrm{A} & \mathrm{~B} & \mathrm{C} & \mathrm{D} & \mathrm{E} \\
\hline 0 & 0 & ? & 0 & 0 \\
\hline \mathrm{P}(\mathrm{C}=0)=\frac{.41472}{.4176} \\
& \\
\mathrm{P}(\mathrm{C}=0)=.99 \\
\mathrm{P}(\mathrm{C}=1)=\frac{.00288}{.4176} \\
\mathrm{P}(\mathrm{C}=1)=.01
\end{array}
$$

EM for Parameter Learning: E Step

Data

	B	3	C	D	E
0	0		0:0.99	0	0
0	0	0	-0:0.80 $1: 0.20$ 0.00		0
1			(i:0.02	1	1
0	0			0	1
0				1	0
0		0	-0:0.80	0	1
1	1			1	1
				0	0
	0	0	cioction		
			(i.0.20	0	

EM for Parameter Learning: M Step

Data

EM for Parameter Learning: M Step

Data

A $\quad \mathrm{B} \quad \mathrm{C} \quad \mathrm{D} \quad \mathrm{E}$	$\mathrm{C}=$
$\begin{array}{lllll}0 & 0 & \\ \substack{0: 0.09 \\ 1: 0.01} & 0 & 0\end{array}$	1+
	. $01+$
	. $2+$
$00_{0} 00^{0: 0.0 .80} 10.020$. $2+$
$0 \begin{array}{lllll}0 & 1 \\ \substack{0: 0.70 \\ 1: 0.30} & 1 & 0\end{array}$. $2+$
	.01+
	.2+
	. $2+$
	=
	2.02

EM for Parameter Learning: M Step

Problems with EM

- Only local optimum
- Deterministic: Uniform priors can cause issues
- See next slide
- Use randomness to overcome this problem

What will EM do here?

Data		
A	B	C
0	$?$	0
1	$?$	1
0	$?$	0
1	$?$	1
0	$?$	0
1	$?$	1

CS 760 - Machine Learning (UW-

Outline

- Probability overview
- Naïve Bayes
- Bayesian learning
- Bayesian networks
- Representation
- Inference
- Parameter learning
- Structure learning

Learning the Structure of a Bayesian Network

- Search through the space of possible structures
- For each structure, learn parameters
- Pick the one that fits observed data the best
- Problem: Will get a fully connected structure?
- Solution: Add a penalty term
- Problem?
- Exponential number of networks!
- Exhaustive search infeasible
- What now?

Structure Learning as Search

- Local search
- Start with some network structure
- Try to make a change:

Add, delete or reverse an edge

- See if the new structure is better
- What should the initial state be
- Uniform prior over random networks?
- Based on prior knowledge
- Empty network?
- How do we evaluate networks?

Structure Search Example

Score Functions

- Bayesian Information Criteion (BIC)
- P(D | BN) - penalty
- Penalty = ½ (\# parameters) Log (\# data points)
- MAP score
- $P(B N \mid D)=P(D \mid B N) P(B N)$
- $\mathrm{P}(\mathrm{BN})$ must decay exponential with \# of parameters for this to work well
- Note: We use log P(D|BN)

Tree Augmented Naïve Bayes (TAN) [friedman,Geiger \& Goldszmidt 1997]

Models limited set of dependencies
Guaranteed to find best structure Runs in polynomial time

Tree-Augmented Naïve Bayes

- Each feature has at most one parent in addition to the class attribute
- For every pair of features, compute the conditional mutual information

$$
I_{c m}(x ; y \mid c)=\Sigma_{x, y, c} P(x, y, c) \log [p(x, y \mid c) /[p(x \mid c) * p(y \mid c)]]
$$

- Add arcs between all pairs of features, weighted by this value
- Compute the maximum weight spanning tree, and direct arcs from the root
- Compute parameters as already seen

Next Class

- Proposition rule induction
- First-order rule induction
- Read Mitchell Chapter 10

Summary

- Homework 2 is now available
- Naïve Bayes: Reasonable, simple baseline
- Different ways to incorporate prior beliefs
- Bayesian networks are an efficient way to represent joint distributions
- Representation
- Inference
- Learning

Questions?

