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Bayesian Learning

Instructor: Jesse Davis



Announcements

 Homework 1 is due today

 Homework 2 is out

 Slides for this lecture are online

 We‟ll review some of homework 1 next class

 Techniques for efficient implementation of 
collaborative filtering

 Common mistakes made on rest of HW
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Outline

 Probability overview

 Naïve Bayes

 Bayesian learning

 Bayesian networks
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Random Variables

 A random variable is a number (or value) 
determined by chance 

 More formally it is drawn from a probability 
distribution

 Types of random variables

 Continuous

 Binary

 Discrete
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Why Random Variables

 Our goal is to predict a target variable

 We are not given the true function

 We are given observations

 Number of times a dice lands on 4

 Can estimate the probability of this event

 We don‟t know where the dice will land

 Can only guess what is likely to happen
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Bernoulli Distribution

 Bernoulli RV takes two values: 0 and 1 

 Prob(1) = p and P(0) = 1 – p

 The performance of one trial with fixed 
probability of success (p) is a Bernoulli trial
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px(1-p)x, if x= 0 or 1
0, otherwise 

P(x) = 



Binomial Distribution

 Like Bernoulli distribution, two values: 0 or 1 
and probability P(1)=p and P(0)=1-p

 What is the probability of k successes, P(k), in 
a series of n independent trials? (n>=k)

 P(k) is a binomial random variable:

 Bernoulli distribution is a special case of the 
binomial distribution (i.e., n=1)
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pk(1-p)n-k , where        = P(x) = 
n
k 

n
k 

n!

k!(n-k)!



Multinomial Distribution

 Generalizes binomial distribution to multiple 
outputs (classes)

 N independent trials

 r possible outcomes

 Each outcome cr has P(cr) = pr

 Σ P(cr) = 1

 Multinomial RV: Probability that in n trials, the 
frequency of the r classes is (n1,…,nr)
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p1
n1*…*pr

nr , where           = P(x) = 
n

n1…nr

n!

n1!*…*nr!

n
n1…nr



Axioms of Probability Theory

Just three are enough to build entire theory!

1. All probabilities between 0 and 1

0 ≤ P(A) ≤ 1

2. P(true) = 1   and P(false) = 0

3. Probability of  disjunction of events is:

P(A v B) = P(A) + P(B) - P(A  B)
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Conditional Probability

 P(A | B) is the probability of A given B

 Assumes that B is the only info known.

 Defined as 
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P(A | B) =
P(A  B)

P(B)

A        
BAB

T
ru

e



Independence

 A and B are independent iff:

 P(A | B) = P(A)

 P(B | A) = P(B)

 Therefore if A and B are independent
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These two constraints are 
logically equivalent

P(A | B) =
P(A  B)

P(B)
= P(A)

P(A  B) = P(A)P(B)



Independence
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B

A A  B

Independence is powerful, but rarely holds



Conditional Independence
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T
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e

B

A A  B

A&B not independent, 

since P(A|B) < P(A)
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Conditional Independence
T
ru

e

B

A A  B

C

B  C

AC

But:  A&B are made independent by C

P(A|C) =

P(A|B,C)



Bayes Rule

 Bayes rule  is:

 Proof:
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P(A | B) =
P(B | A) P(A)

P(B)

P(A | B)  =
P(B | A) P(A)

P(B)
Sub in prev result

P(A ^ B) =  P(B | A) P(A) Rearrange line 2 

P(A | B)   =
P(A ^ B)

P(B)

P(B | A)  =
P(A ^ B)

P(A)

Defn of cond. prob



Use to Compute Diagnostic 
Probability from Causal Probability

 For example, let M be meningitis, S be stiff neck

 P(M) = 0.0001 

 P(S) = 0.1

 P(S|M) = 0.8

 P(M | S) = 0.8 x 0.0001 / 0.1 = 0.0008

 Probability is very low!
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Outline

 Probability overview

 Naïve Bayes

 Bayesian learning

 Bayesian networks
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Naïve Bayes: Motivation

 We will see many draws of X1,…,Xn and the 
response (class) Y

 We want to estimate the most likely value of Y 
for the input, that is, P(Y| X1,…,Xn)

 What difficulty arises?

 Exponentially many settings for X1,…,Xn

 Next case probably has not been seen
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One Approach: Assume 
Conditional Independence

 By Bayes Rule (with normalization):

 P(Y| X1,…,Xn) = αP(X1,…,Xn|Y)P(Y)

 Normalization: Compute above for each 
value of Y, then normalize so sum to 1

 Recall Conditional independence:
P(X1,…,Xn|Y) = P(X1|Y)…P(Xn|Y) 

 P(Y| X1,…,Xn)= αP(X1|Y)…P(Xn|Y)P(Y)



Naïve Bayes

 Assumes (naïvely) that all features are 
conditionally independent given the class

 P(A ^ B | Class) = P(A | Class) * P(B | Class)

 Avoids estimating P(A ^ B), etc.

 Surprisingly, though the assumption is often 
violated naïve Bayes works well in practice

 Bag of words for text, spam filtering, etc. 
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Naïve Bayes in Practice

 Empirically, estimates relative probabilities 
more reliably than absolute ones:

 Better than

 Naïve Bayes tends to push probability estimates 
towards either 0 or 1
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P(Pos | Features) P(Features | Pos) * P(Pos) 

P(Neg | Features) P(Features | Neg) * P(Neg) 
=

P(Pos | Features) = P(Features | Pos) * P(Pos) 



Technical Detail: Underflow

 Assume we have 100 features

 We multiple 100 numbers in [0,1]

 If values are small, we are likely to „underflow‟ the 
min positive/float value

 Solution: ∏ probs = e

 Sum log‟s of prob‟s

 Subtract logs since log         = logP(+) – logP(-)
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P(+)

P(-)

Σ log(prob)



Log Odds
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P(F1 | Pos)*…* P(Fn | Pos) * P(Pos) 

P(F1 | Neg)*…* P(Fn | Neg) * P(Neg) 
Odds =

log(Odds) = [∑ log{ P(Fi | Pos) / P(Fi | Neg)}]
+ log( P(Pos) / P(Neg) )

Notice if a feature value is more likely in a pos, the log is 
pos and if more likely in neg, the log is neg (0 if tie)
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Naïve Bayes Example

Color Shape Size Category

red • big +

blue  small +

red  small +

red  big 

blue • small 

red  small ?
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Naïve Bayes Example

 For the new example (red, , small)

P(+|F‟s) P(red|+)*P(|+)*P(small|+)*P(+)
=

P( |F‟s) P(red|)*P(| )*P(small| )*P()

= 2/3 * 1/3 * 2/3 * 3/5 =   1.77
1/2 * 1/2 * 1/2 * 2/5

 So most likely a POS example
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Dealing with Zeroes 
(and Small Samples)

 If we never see something (eg, in the train 
set), should we assume its probability is zero?

 If we only see 3 pos ex‟s and 2 are red, do we 
really think 

P(red|pos) = 2/3  ?
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M-estimates 
(Eq 6.22 in Mitchell; Eq 7 in draft chapter)

 Imagine we had m hypothetical pos ex‟s

 Assume p is prob these examples are red

 Improved estimate:

P(red | pos) = 2 + p * m

3 + m

(In general, red is some feature value and 2 and 3 are actual 
counts in the training set)
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M-Estimate

Prob =
nc +  m p

n  + m

# of actual examples

# of fi = vi 

examples Equivalent sample size used 
in guess

Prior guess

Prob (color=red) =
8 + 100 x 0.5

10 + 100
=

58

110
= 0.53

Example: Of 10 examples, 8 have color = red
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M-Estimates More Generally

P(fi=vi) =

# times fi = vi +
Equivalent 
sample size

# train ex‟s    + Equivalent 
sample size

initial guess 
for P(fi = vi) 

x

Estimate based on prior 
knowledge (“priors”)

Estimate based 
on data

m
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Laplace Smoothing

 Special case of m estimates
 Let m = #colors, p = 1/m
 Ie, assume one hypothetical pos ex of each color

 Implementation trick
 Start all counters at 1 instead of 0

 Eg, initialize count(pos, feature(i), value(i, j)) = 1
 count(pos, color, red), 

count(neg, color, red),
count(pos, color, blue), 
…



Naïve Bayes as a Graphical Model

F2 FN-2 F N-1 FNF1 F3

Class
Value

…

Node i stores P(Fi | POS) and P(Fi | NEG)



How Does Naïve Bayes Partition 
Feature Space?
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Homework: Spam Filtering

 Task:

 P(C|E)  = P(E|C)P(C) / P(E)

 C  ← argmax {  P(E|C)P(C)  }

From: Branded anti-ED Pills <otubu9068@telesp.net.br>
To: andrey.kolobov@gmail.com

Date: Fri, Apr 2, 2010 at 7:23 PM
Subject: Hot Sale, andrey.kolobov! 77% off on top goods Emen

Mailed-by: telesp.net.br

Why aren't you on our site, andrey.kolobov? We have 77% off today!!

Ham or Spam?

C in {h, m}

P(C)

P(E|C)



C  ← argmax {P(E|C)P(C)} = argmax {P(C) ∏ P(W |C)}

… with Naïve Bayes

From: Branded anti-ED Pills <otubu9068@telesp.net.br>
To: andrey.kolobov@gmail.com

Date: Fri, Apr 2, 2010 at 7:23 PM
Subject: Hot Sale, andrey.kolobov! 77% off on top goods Emen

Mailed-by: telesp.net.br

Why aren't you on our site , andrey.kolobov ?We have 77% off today!!

Ham or Spam?

C in {h, m}

P(C)

P(“why”|C) P(“today”|C)

W in E C in {h, m}

P(E|C)



Estimating Parameters

 Given: 

 Set of training spam emails S

 Set of training ham emails H

 Probabilities:

 P(w|c) = (1+ (#cw)) / (∑ (1 + #cw‟ ))

 P(c) = |c| / (|S| + |H|)

w’ in V 

To avoid getting 
P(w|c) = 0 due 
to data sparsity



Naïve Bayes Summary

 Fast, simple algorithm

 Effective in practice [good baseline comparison]

 Gives estimates of confidence in class label

 Makes simplifying assumptions

 Extensions to come…
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Outline

 Probability overview

 Naïve Bayes

 Bayesian learning

 Bayesian networks
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Coin Flip

P(H|C
2
) = 0.5P(H|C

1
) = 0.1

C
1

C
2

P(H|C
3
) = 0.9

C
3

Which coin will I use?

P(C
1
) = 1/3 P(C

2
) = 1/3 P(C

3
) = 1/3

Prior: Probability of a hypothesis 

before we make any observations



Coin Flip

P(H|C
2
) = 0.5P(H|C

1
) = 0.1

C
1

C
2

P(H|C
3
) = 0.9

C
3

P(C
1
) = 1/3 P(C

2
) = 1/3 P(C

3
) = 1/3

Uniform Prior: All hypothesis are equally

likely before we make any observations

Which coin will I use?



Experiment 1: Heads

Which coin did I use?

P(C
1
|H) = ? P(C

2
|H) = ? P(C

3
|H) = ?

P(H|C
2
) = 0.5 P(H|C

3
) = 0.9P(H|C

1
)=0.1 

C
1

C
2

C
3

P(C
1
)=1/3 P(C

2
) = 1/3 P(C

3
) = 1/3



Experiment 1: Heads

Which coin did I use?

P(C
1
|H) = 0.066 P(C

2
|H) = 0.333 P(C

3
|H) = 0.6

P(H|C
2
) = 0.5 P(H|C

3
) = 0.9P(H|C

1
) = 0.1

C
1

C
2

C
3

P(C
1
) = 1/3 P(C

2
) = 1/3 P(C

3
) = 1/3

Posterior: Probability of a hypothesis given data



Terminology

 Prior: Probability of a hypothesis before we 
see any data

 Uniform prior: A prior that makes all 
hypothesis equally likely

 Posterior: Probability of hypothesis after we 
saw some data

 Likelihood: Probability of the data given the 
hypothesis
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Experiment 2: Tails

Which coin did I use?

P(H|C
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1
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3
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3
|HT) = ?



Experiment 2: Tails

Which coin did I use?
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|HT) = 0.21



Experiment 2: Tails

Which coin did I use?

P(H|C
2
) = 0.5 P(H|C
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Your Estimate?

What is the probability of heads after two experiments?

P(H|C
2
) = 0.5 P(H|C

3
) = 0.9P(H|C

1
) = 0.1

C
1

C
2

C
3

P(C
1
) = 1/3 P(C

2
) = 1/3 P(C

3
) = 1/3

Best estimate for P(H) 

P(H|C
2
) = 0.5

Most likely coin: 

C
2



Your Estimate?

P(H|C
2
) = 0.5

C
2

P(C
2
) = 1/3

Most likely coin: Best estimate for P(H) 

P(H|C
2
) = 0.5C

2

Maximum Likelihood Estimate: The best hypothesis

that fits observed data assuming uniform prior



Using Prior Knowledge

 Should we always use a Uniform Prior ?

 Background knowledge:

 Heads => we have take-home midterm

 Jesse likes take-homes…

 => Jesse is more likely to use a coin biased in his favor

P(H|C
2
) = 0.5P(H|C

1
) = 0.1

C
1

C
2

P(H|C
3
) = 0.9

C
3



Using Prior Knowledge

P(H|C
2
) = 0.5P(H|C

1
) = 0.1

C
1

C
2

P(H|C
3
) = 0.9

C
3

P(C
1
) = 0.05 P(C

2
) = 0.25 P(C

3
) = 0.70

We can encode it in the prior:



Experiment 1: Heads

Which coin did I use?

P(C
1
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3
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Experiment 1: Heads

Which coin did I use?

P(C
1
|H) = 0.006 P(C

2
|H) = 0.165 P(C

3
|H) = 0.829

P(H|C
2
) = 0.5 P(H|C

3
) = 0.9P(H|C

1
) = 0.1

C
1

C
2

C
3

P(C
1
) = 0.05 P(C

2
) = 0.25 P(C

3
) = 0.70

P(C
1
|H) = 0.066 P(C

2
|H) = 0.333 P(C

3
|H) = 0.600

Compare with ML posterior after Exp 1:



Experiment 2: Tails

Which coin did I use?
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Experiment 2: Tails

Which coin did I use?

P(C
1
|HT) = 0.035 P(C

2
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3
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P(H|C
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1
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Your Estimate?

What is the probability of heads after two experiments?

P(H|C
2
) = 0.5 P(H|C

3
) = 0.9P(H|C

1
) = 0.1

C
1

C
2

C
3

P(C
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Best estimate for P(H) 

P(H|C
3
) = 0.9C

3

Most likely coin: 



Your Estimate?

Most likely coin: Best estimate for P(H) 

P(H|C
3
) = 0.9C

3

Maximum A Posteriori (MAP) Estimate: 

The best hypothesis that fits observed data 

assuming a non-uniform prior

P(H|C
3
) = 0.9

C
3

P(C
3
) = 0.70



Did We Do The Right Thing?
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Did We Do The Right Thing?

P(C
1
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2
|HT)=0.481 P(C
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C
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C
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and C
3

are almost 

equally likely



A Better Estimate

P(H|C
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Bayesian Estimate

P(C
1
|HT)=0.035 P(C

2
|HT)=0.481 P(C

3
|HT)=0.485

P(H|C
2
) = 0.5 P(H|C

3
) = 0.9P(H|C

1
) = 0.1

C
1

C
2

C
3

= 0.680

Bayesian Estimate: Minimizes prediction error, 

given data and (generally) assuming a 

non-uniform prior



Comparison After more Experiments

 Seen: HTHHHHHHHH

 Maximum likelihood:

 P(H) = 0.5

 After 10 experiments: P(H) = 0.9

 Maximum a posteriori:

 P(H) = 0.9

 After 10 experiments: P(H) = 0.9

 Bayesian: 

 P(H) = 0.68

 After 10 experiments: P(H) = 0.9
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Comparison

 ML: 

 Easy to compute

 MAP: 

 Easy to compute

 Incorporates prior knowledge

 Bayesian:

 Minimizes error -> great with little data

 Potentially very difficult to compute
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Outline

 Probability overview

 Naïve Bayes

 Bayesian learning

 Bayesian networks

 Representation

 Inference

 Parameter learning

 Structure learning
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Bayesian Network

 In general, a joint distribution P over variables 
(X1,…,Xn) requires exponential space

 A Bayesian network is a graphical representation 
of the conditional independence relations in P

 Usually quite compact

 Requires fewer parameters than the full joint 
distribution

 Can yield more efficient inference and belief updates
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Bayesian Network

 Formally, a Bayesian network is

 A directed, acyclic graph

 Each node is a random variable

 Each node X has a conditional probability distribution 
P(X | Parents(X))

 Intuitively, an arc from X to Y means that X and Y 
are related
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An Example Bayes Net

Earthquake Burglary

Alarm

Nbr2CallsNbr1Calls

Pr(B=t) Pr(B=f)
0.05    0.95

Pr(A|E,B)

e,b    0.9 (0.1)

e,b    0.2 (0.8)

e,b    0.85 (0.15)

e,b    0.01 (0.99)                 

Radio



Terminology

 If X and its parents are discrete, we represent 
P(X|Parents(X)) by

 A conditional probability table (CPT)

 It specifies the probability of each value of X, given 
all possible settings for the variables in Parents(X).

 Number of parameters locally exponential in 
|Parents(X)|

 A conditioning case is a row in this CPT: A 
setting of values for the parent nodes
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Bayesian Network Semantics

 A Bayesian network completely specifies a full 
joint distribution over variables X1,…,Xn

 P(x1,…,xn) = ∏ P(xi | Parents(xi))

 Here P(x1,…,xn) represents a specific setting for 
all variables (i.e., P(X1 =x1,…, Xn=xn))
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Conditional Indepencies

 A node X is conditionally independent of its 
predecessors given its parents

 Markov Blanket of Xi consists of:

 Parents of Xi

 Children of Xi

 Other parents of Xi‟s children

 X is conditionally independent of all nodes in 
the network given its Markov Blanket
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Example: Parents
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Example: Parents
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Example: Markov Blanket
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Example: Markov Blanket
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D-Separation
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D-Separation
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Evidence flows
from A to C
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D-Separation
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C

B

Nbr2CallsNbr1Calls ED

Pr(C|A,B)

a,b 0.9 (0.1)

a,b 0.2 (0.8)

a,b 0.85 (0.15)

a,b 0.01 (0.99)                 

Knowing A
does not tell us 
about B
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D-Separation
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Pr(C|A,B)
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a,b 0.2 (0.8)
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a,b 0.01 (0.99)                 
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D-Separation
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A B

Nbr2CallsNbr1Calls ED Pr(E|C)

c 0.2 (0.8)

c 0.7 (0.3)

Pr(D|C)

c 0.1 (0.9)

c 0.6 (0.4)
D

C
Evidence flows
from D to E

Pr(C|A,B)

a,b 0.9 (0.1)

a,b 0.2 (0.8)

a,b 0.85 (0.15)

a,b 0.01 (0.99)                 



D-Separation

86

A B

C

Nbr2CallsNbr1Calls ED

Pr(E|C)

c 0.2 (0.8)

c 0.7 (0.3)

Knowing C
stops evidence
from D to E

Pr(D|C)

c 0.1 (0.9)

c 0.6 (0.4)
D



Outline

 Probability overview

 Naïve Bayes

 Bayesian learning

 Bayesian networks

 Representation

 Inference

 Parameter learning

 Structure learning
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Inference in BNs

 The graphical independence representation 
yields efficient inference schemes

 Generally, we want to compute

 P(X) or

 P(X | E), where E is (conjunctive) evidence

 Computations organized by network topology

 Two well-known exact algorithms:

 Variable elimination

 Junction trees
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Variable Elimination

 A factor is a function from set of variables to a 
specific value: CPTS are factors 

 E.g.: p(A | E,B) is a function of A,E,B

 VE works by eliminating all variables in turn 
until there is a factor with only query variable
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Joint Distributions & CPDs 
Vs. Potentials
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meaning associated with table
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Arise when incorporating evidence

Represent probability distributions
1. For CPT, specific setting of parents, values 

of child must sum to 1
2. For joint, all entries sum to 1



Multiplying Potentials

¬c¬a

¬b ¬b

¬b

¬c ¬ccc

b

b

a

b

c

a ¬a

.1

.2

.5

.8

.2

.3

.4

.5

.02

x =



Multiplying Potentials

¬c¬a

¬b ¬b

¬b

¬c ¬ccc

b

b

a

b

c

a ¬a

.1

.2

.5

.8

.2

.3

.4

.5

.02 .04

x =



Multiplying Potentials

¬c¬a

¬b ¬b

¬b

¬c ¬ccc

b

b

a

b

c

a ¬a

.1

.2

.5

.8

.2

.3

.4

.5

.02

.06

.04

x =



Multiplying Potentials

¬c¬a

¬b ¬b

¬b

¬c ¬ccc

b

b

a

b

c

a ¬a

.1

.2

.5

.8

.2

.3

.4

.5

.02

.06

.04

.10

x =



Multiplying Potentials

¬c¬a

¬b ¬b

¬b

¬c ¬ccc

b

b

a

b

c

a ¬a

.1

.2

.5

.8

.2

.3

.4

.5

.10

.24

.20

.40

.02

.06

.04

.10

x =



¬b

¬a

a

b

.1

.2

.5

.8

=

¬b

¬a

a

b

.1

.2

.5

.8

¬b

¬a

a

b

.0625

.125

.3125

.5

 a

¬bb

.3 1.3

Marginalize/sum out a variable

Normalize a potential

α



Key Observation
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Variable Elimination Procedure

 The initial potentials are the CPTS in the BN

 Repeat until only query variable remains:

 Choose a variable to eliminate

 Multiply all potentials that contain the variable

 If no evidence for the variable then sum the variable 
out and replace original potential by the new result

 Else, remove variable based on evidence

 Normalize the remaining potential to get the 
final distribution over the query variable
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Normalize
α = 2.0202
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Notes on Variable Elimination

 Each operation is a simple multiplication of 
factors and summing out a variable

 Complexity determined by size of largest factor

 E.g., in example 3 variables (not 6)

 Linear in number of variables, exponential in largest 
factor 

 Elimination ordering greatly impacts factor size

 Optimal elimination ordering: NP-hard
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Outline

 Probability overview

 Naïve Bayes

 Bayesian learning

 Bayesian networks

 Representation

 Inference

 Parameter learning

 Structure learning
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Parameter Estimate for 
Bayesian Networks

108
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F T F F F F

...

We have: 

- Bayes Net structure and observations

- We need: Bayes Net parameters



Parameter Estimate for 
Bayesian Networks
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What Prior to Use

 The following are two common priors

 Binary variable Beta

 Posterior distribution is binomial

 Easy to compute posterior

 Discrete variable Dirichlet

 Posterior distribution is multinomial

 Easy to compute posterior 
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One Prior: Beta Distribution

a,b

For any positive integer y, G(y) = (y-1)!





Beta Distribution

 Example: Flip coin with Beta distribution as 
prior p [prob(heads)]

 Parameterized by two positive numbers: a and b

 Mode of distribution (E[p]) is a /(a+b)

 Specify our prior belief for p = a / (a+b)

 Specify confidence with initial values of a and b

 Updating our prior belief based on data by 

 Increment a for each head outcome

 Increment b for each tail outcome

 Posterior is a binomial distribution!
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Parameter Estimate for 
Bayesian Networks
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Parameter Estimate for 
Bayesian Networks
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Parameter Estimate for 
Bayesian Networks
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General EM Framework:
Handling Missing Values

 Given: Data with missing values, space of 
possible models, initial model

 Repeat until no change greater than threshold:

 Expectation (E) Step: Compute expectation over 
missing values, given model.

 Maximization (M) Step: Replace current model with 
model that maximizes probability of data.
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“Soft” EM vs. “Hard” EM

 Soft EM: Expectation is a probability distribution

 Hard EM: Expectation is “all or nothing,” assign 
most likely/probable value

 Advantage of hard EM is computational 
efficiency when expectation is over state 
consisting of values for multiple variables



EM for Parameter Learning: E Step

 For each data point with missing values

 Compute the probability of each possible 
completion of that data point

 Replace the original data point with all  
completions, weighted by probabilities

 Computing the probability of each completion 
(expectation) is just answering query over 
missing variables given others
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EM For Parameter Learning: M Step

 Use the completed data set to update our 
Beta/Dirichlet distributions 

 Same as if complete data set

 Note: Counts may be fractional now

 Update CPTs based on new Beta/Dirichlet
distribution

 Same as if complete data set
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Subtlety for Parameter Learning

 Overcounting based on number of iterations 
required to converge to settings for the missing 
values

 After each E step, reset all Beta/Dirichlet
distributions before repeating M step.
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EM for Parameter Learning
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EM for Parameter Learning: E Step
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EM for Parameter Learning: E Step
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EM for Parameter Learning: E Step
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EM for Parameter Learning: E Step
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EM for Parameter Learning: M Step
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EM for Parameter Learning: M Step
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EM for Parameter Learning: M Step

2.02/(2.02 + 9.98) = .16



Problems with EM

 Only local optimum

 Deterministic: Uniform priors can cause issues 

 See next slide

 Use randomness to overcome this problem
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What will EM do here?

A

B

C

Data

A     B     C

0      ?      0

1 ?      1

0      ?      0

1 ?      1

0      ?      0

1      ?      1

P(A)

0.5 (1,1)

B   P(C)

T   0.5 (1,1)

F   0.5 (1,1)

A   P(B)

T   0.5 (1,1)

F   0.5 (1,1)



Outline

 Probability overview

 Naïve Bayes

 Bayesian learning

 Bayesian networks

 Representation

 Inference

 Parameter learning

 Structure learning
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Learning the Structure of a 
Bayesian Network

 Search through the space of possible structures

 For each structure, learn parameters

 Pick the one that fits observed data the best

 Problem: Will get a fully connected structure?

 Solution: Add a penalty term

 Problem?

 Exponential number of networks!

 Exhaustive search infeasible

 What now?
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Structure Learning as Search

 Local search

 Start with some network structure

 Try to make a change: 
Add, delete or reverse an edge

 See if the new structure is better

 What should the initial state be

 Uniform prior over random networks?

 Based on prior knowledge

 Empty network?

 How do we evaluate networks?
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Structure Search Example
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A

E

C

D

B

A

E

C

D

B

A

E

C

D

B

A

E

C

D

B

A

E

C

D

B



Score Functions

 Bayesian Information Criteion (BIC)

 P(D | BN) – penalty

 Penalty = ½ (# parameters) Log (# data 
points)

 MAP score

 P(BN | D) = P(D | BN) P(BN)

 P(BN) must decay exponential with # of 
parameters for this to work well

 Note: We use log P(D | BN) 
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Recall: Naïve Bayes

F2 FN-2 F N-1 FNF1 F3

Class
Value

…



Tree Augmented Naïve Bayes 
(TAN) [Friedman,Geiger & Goldszmidt 1997]

F2 FN-2 F N-1 FNF1 F3

Class
Value

…

Models limited set of dependencies
Guaranteed to find best structure
Runs in polynomial time



Tree-Augmented Naïve Bayes

 Each feature has at most one parent in addition 
to the class attribute

 For every pair of features, compute the 
conditional mutual information
Icm(x;y|c) = Σx,y,c P(x,y,c) log [p(x,y|c)/[p(x|c)*p(y|c)]] 

 Add arcs between all pairs of features, weighted 
by this value

 Compute the maximum weight spanning tree, 
and direct arcs from the root

 Compute parameters as already seen



Next Class

 Proposition rule induction

 First-order rule induction

 Read Mitchell Chapter 10
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Summary

 Homework 2 is now available

 Naïve Bayes: Reasonable, simple baseline

 Different ways to incorporate prior beliefs

 Bayesian networks are an efficient way to 
represent joint distributions

 Representation

 Inference

 Learning
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Questions?
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