Bayesian Learning

Instructor: Jesse Davis



* Announcements

= Homework 1 is due today

= Homework 2 is out

= Slides for this lecture are online

= We'll review some of homework 1 next class

» Techniques for efficient implementation of
collaborative filtering

= Common mistakes made on rest of HW



* Outline

= Probability overview
= Naive Bayes

= Bayesian learning

= Bayesian networks




* Random Variables

= A random variable is a number (or value)
determined by chance

= More formally it is drawn from a probability
distribution

= Types of random variables
= Continuous
= Binary
= Discrete



* Why Random Variables

= Our goal is to predict a target variable
= We are not given the true function
= We are given observations
= Number of times a dice lands on 4
» Can estimate the probability of this event
= We don’t know where the dice will land
= Can only guess what is likely to happen



* Bernoulli Distribution

= Bernoulli RV takes two values: 0 and 1
= Prob(1) =pand P(0) =1-p

pX(1-p)%, if x=0or 1

P(X) = 7 0, otherwise

= The performance of one trial with fixed
probability of success (p) is a Bernoulli trial



* Binomial Distribution

Like Bernou

and probability
What is the pro

a series of n inc

i distribution, two values: 0 or 1

P(1)=p and P(0)=1-p
pability of k successes, P(k), in

ependent trials? (n>=k)

P(k) is a blnomlal random variable:

P(x) =

Bernoulli
binomia

k n-k
_k p¥(1-p)™*, where [k]

n!

k!(n-k)!

| distribution is a special case of the

distribution (i.e., n=1)



* Multinomial Distribution

= Generalizes binomial distribution to multiple
outputs (classes)

= N independent trials
= I possible outcomes
= Each outcome c, has P(c,) = p,
= >P(c) =1

= Multinomial RV: Probability that in n trials, the
frequency of the r classes is (ny,...,n.)

_| n r n J_
P(x) _[nl...nr] P TR Where[nl...nj -

n!
Xk ok
n*..*n/!

8




* Axioms of Probability Theory

Just three are enough to build entire theory!
1. All probabilities between 0 and 1
0<PA) <1
2. P(true) =1 and P(false) =0
3. Probability of disjunction of events is:
P(A v B) = P(A) + P(B) - P(A A B)

True




* Conditional Probability

= P(A | B) is the probability of A4 given B

= Assumes that Bis the only info known.

P(A A B)
P(B)

s Definedas P(A | B) =

A AB B

True
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;Jh Independence

= A and B are independent jff:
= P(A| B) =P(A) These two constraints are
. P(B | A) = P(B) logically equivalent

= Therefore if A and B are independent
P(A A B)
P(B)

P(A A B) = P(A)P(B)

P(A | B) = = P(A)
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* Independence

A

0,
O
—

Independence is powerful, but rarely holds
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* Conditional Independence

A&B notindependent,
since P(A|B) < P(A)

True
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+ Conditional Independence
But: A&B are made independent by —C

P(A|=C) =
P(A‘ BI_'C)

True




* Bayes Rule

. P(B | A) P(A)
= Bayes rule is: P(A| B) = P(B)
= Proof: P(A A B)
P(A|B) =
(A1E) P(B) Defn of cond. prob
P(A N B)
P(B| A) = PA)
P(ANB) = P(B|A)P(A) Rearrange line 2
P(B | A) P(A)
P(A|B) = Sub in prev result

P(B) 15



Use to Compute Diagnostic
Probability from Causal Probability

= For example, let M be meningitis, S be stiff neck
= P(M) = 0.0001

= P(M|S) = 0.8 x0.0001 /0.1 = 0.0008

= Probability is very low!
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* Outline

= Probability overview
= Naive Bayes

= Bayesian learning

= Bayesian networks
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* Nalve Bayes: Motivation

= We will see many draws of Xj,...,X,, and the
response (class) Y

= We want to estimate the most likely value of Y
for the input, that is, P(Y| X4,...,X.)

= What difficulty arises?
= Exponentially many settings for X, ..., X,
= Next case probably has not been seen

© Jude Shavlik 2006
David Page 2007 Lecture #5, Slide 18



One Approach: Assume
* Conditional Independence

= By Bayes Rule (with normalization):
= P(Y| Xq,..., X)) = aP(Xy,..., X | Y)P(Y)

»« Normalization: Compute above for each
value of Y, then normalize so sum to 1

= Recall Conditional independence:
P(Xy,...,. X |Y) = P(X{]Y)...P(X, |Y)

s P(Y| Xy,...,.X )= aP(X{]Y)...P(X,|Y)P(Y)

© Jude Shavlik 2006 CS 760 — Machine Learning (UW-
David Page 2007 Madison) Lecture #5, Slide 19



* Naive Bayes

= Assumes (naively) that all features are
conditionally independent given the class

« P(A~ B | Class) = P(A | Class) * P(B | Class)
= Avoids estimating P(A ™ B), etc.

= Surprisingly, though the assumption is often
violated naive Bayes works well in practice

= Bag of words for text, spam filtering, etc.

20



* Nalve Bayes in Practice

= Empirically, estimates relative probabilities
more reliably than absolute ones:

P(Pos | Features) _ P(Features | Pos) * P(Pos)
P(Neg | Features) P(Features | Neg) * P(Neg)

= Better than
P(Pos | Features) = P(Features | Pos) * P(Pos)

= Naive Bayes tends to push probability estimates
towards either 0 or 1

21



* Technical Detail: Underflow

Assume we have 100 features
= We multiple 100 numbers in [0,1]
» If values are small, we are likely to ‘underflow’ the

min positive/float value

Solution: 1 probs = eZ 109(prob)

Sum log’s of prob’s
Subtract logs since log

P(+)

= logP(+) — logP(-)
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* Log Odds

Odds = __P(Fi [ Pos)*..* P(F, | Pos) * P(Pos)

P(F, | Neg)*...* P(F, | Neg) * P(Neg)

log(Odds) = [Z log{ P(F; | Pos) / P(F, | Neg)}]
+ log( P(Pos) / P(Neg) )

Notice if a feature value is more likely in a pos, the log is

pos and if more likely in neg, the log is neg (0 if tie)
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* Naive Bayes Example

Color Shape Size Category
red o big +
blue A small +
red N small +
red A big —
blue ° small _
red A small ?

© Jude Shavlik 2006
David Page 2007

CS 760 — Machine Learning (UW-

Madison)

Lecture #5, Slide 24



* Naive Bayes Example

= For the new example (red, A, small)

P(+[F's) P(red|+)*P(A|+)*P(small|+)*P(+)

P(— |F's) _P(redl—)*P(Al —)*P(small| —)*P(-)

=2/3*1/3*2/3*3/5 = 1.77
1/2*1/2*1/2 * 2/5

= S0 most likely a POS example

© Jude Shavlik 2006 CS 760 — Machine Learning (UW-
David Page 2007 Madison) Lecture #5, Slide 25



Dealing with Zeroes
(and Small Samples)

= If we never see something (eg, in the train
set), should we assume its probability is zero?

= If we only see 3 pos ex’s and 2 are red, do we
really think

P(red|pos) = 2/3 ?

© Jude Shavlik 2006 CS 760 — Machine Learning (UW-
David Page 2007 Madison) Lecture #5, Slide 26



M-estimates
(Eq 6.22 in Mitchell; Eq 7 in draft chapter)

= Imagine we had m hypothetical pos ex’s
= Assume pis prob these examples are red

= Improved estimate:
P(red | pos) =2 +p*m
3+ m

(In general, red is some feature value and 2 and 3 are actual
counts in the training set)

© Jude Shavlik 2006 CS 760 — Machine Learning (UW-
David Page 2007 Madison) Lecture #5, Slide 27



M-Estimate

Prob = @+ ”\

# of f £ v @\ N\ Prior guess
-

examples Equivalent sample size used
# of actual examples IN guess

Example: Of 10 examples, 8 have color = red

8 + 100 x 0.5 58
Prob (color=red) = = = 0.53
10 + 100 110

© Jude Shavlik 2006 CS 760 — Machine Learning (UW-
David Page 2007 Madison) Lecture #5, Slide 28




* M-Estimates More Generally

_ quivalent initial gues
# times f; = Vit [ sample size X for P(f=vV)

P(fi=v) = _
# train ex's /+ Equivalent
sample size
3 m
Estimate based Estimate based on prior
on data knowledge (“priors”)
© Jude Shavlik 2006 CS 760 — Machine Learning (UW-

David Page 2007 Madison) Lecture #5, Slide 29



* Laplace Smoothing

= Special case of m estimates
« Let m = #colors, p = 1/m
« Ie, assume one hypothetical pos ex of each color

= Implementation trick

« Start all counters at 1 instead of 0
= Eg, initialize count(pos, feature(i), value(i, j)) = 1
= count(pos, color, red),

count(neg, color, red),
count(pos, color, blue),

© Jude Shavlik 2006 CS 760 — Machine Learning (UW-
David Page 2007 Madison) Lecture #5, Slide 30



* Naive Bayes as a Graphical Model

Node /stores P(F, | POS) and P(F; | NEG)



How Does Naive Bayes Partition
Feature Space?




* Homework: Spam Filtering

s [ask:

From: Branded anti-ED Pills <otubu9068 @telesp.net.br>
To: andrey.kolobov@gmail.com
Date: Fri, Apr 2, 2010 at 7:23 PM

Subject: Hot Sale, andrey.kolobov! 77% off on top goods Emen
Mailed-by: telesp.net.br P( E | C)

Why aren't you on our site, andrey.kolobov? We have 77% off today!!

LI
__Hamor Spam? _> P(C)

= P(C|E) = P(E|C)P(C) / P(E)

s C —argmax{ P(E|C)P(C) }
Cin {h, m}




* ... with Naive Bayes

From: Branded anti-ED Pills <otubu9068@telesp.net.br>
To: andrey.kolobov@gmail.com
Date: Fri, Apr 2, 2010 at 7:23 PM
Subject: Hot Sale, andrey.kolobov! 77% off on top goods Emen
Mailed-by: telesp.net.br

P(E|C)

day” C)

A/ Ny ey, Kolobao

P(”w"l

| 4

<__Hamor Spam? _> P(C)

C & argmax {P(E|C)P(C)} = argmax {P(C) TT P(W |C)}
Cin {h, m} Cin{h, m} Win E



* Estimating Parameters

= Given:
= Set of training spam emails S -
= Set of training ham emails H Toavold getting

P(w|c) =0 due
u PrObabllltleS% to data sparsity
= P(wic) = I+ (#w)) / 2 D+ #W'))

w inV

= P(c) = |c| / (IS| + [H])



* Naive Bayes Summary

Fast, simple algorithm

Effective in practice [good baseline comparison]
Gives estimates of confidence in class label
Makes simplifying assumptions

Extensions to come...
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* Outline

= Probability overview
= Naive Bayes

= Bayesian learning

= Bayesian networks
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* Coin Flip

4 - 3 -~
3 3 R

+ Ji KN ".-",“, ®

! Y / ;:(, e 4

\ W

P(H|IC,)=0.1 P(H|C,))=05 P(H|C,)=0.9

Which coin will | use?
P(C,)=1/3  P(C,) =1/3 P(C,) = 1/3

Prior: Probability of a hypothesis
before we make any observations



* Coin Flip

4 - 3 -
3 3 R

+ Ji KN ".-",“, ®

! Y / ;:(, e 4

\ R —

P(H|IC,)=0.1 P(H|C,))=05 P(H|C,)=0.9

Which coin will | use?
P(C,)=1/3  P(C,) =1/3 P(C,) = 1/3

Uniform Prior: All hypothesis are equally
likely before we make any observations



* Experiment 1: Heads

Which coin did | use?
P(CJH)=?  P(CJH)=?  P(C,H)="2

pecyi) - PEZPT [y

P(H|C.)=0.1] P(HIC))=0.5 P(H|C,) = 0.9
P(C)=1/3] P(C)=13  P(C,)=1/3



* Experiment 1: Heads

Which coin did | use?
P(C,|H) = 0.066 P(C,|H) = 0.333 P(C,|H) =0.6

Posterior: Probability of a hypothesis given data

N \
P(H|C)=0.1 P(HIC,)=05 P(H|C,)=0.9
P(C)=1/3 P(C,) = 1/3 P(C,) = 1/3



* Terminology

Prior: Probability of a hypothesis before we
see any data

Uniform prior: A prior that makes all
hypothesis equally likely

Posterior: Probability of hypothesis after we
saw some data

Likelihood: Probability of the data given the
hypothesis

42



* Experiment 2: Tails

Which coin did | use?
P(C,HT)=? P(CJHT)=? P(CJHT)="?

P(C1|HT) = aP(HT|C,)P(C:) = aP(H|C,)P(T|C1)P(Ch)

P(HIC;) =0.1 P(H|C,)=0.5 P(H|C,) = 0.9
P(C)=1/3 P(C,) = 1/3 P(C,) = 1/3




* Experiment 2: Tails

Which coin did | use?
P(C,|HT) = 0.21P(C_|HT) = 0.58 P(C,|HT) = 0.21

P(C1|HT) = aP(HT|C,)P(C:) = aP(H|C,)P(T|C1)P(Ch)

e LT A
\ SIS
: b et R
- A [
- N i\
‘;.l ~ i / A2 N J /
\ " // : *‘h . AT

P(HIC;) =0.1 P(H|C,)=0.5 P(H|ci;”)' = 0.9
P(C)=1/3 P(C,) = 1/3 P(C,) = 1/3




* Experiment 2: Tails

Which coin did | use?
P(C,|HT) = 0.21P(C_|HT) = 0.58 P(C,|HT) = 0.21

P(HICl) 0.1 P(H|C2) 0.5 P(H|C.) = 0.9
P(c)=13 | Pcc)=13 = P(C)=1/3




* Your Estimate?

What is the probability of heads after two experiments?
Most likely coin: Best estimate for P(H)

P(H|C,) = 0.5

P(HIC)=0.1 P(H|C,) =05
P(C)=1/3 P(C)=1/3 P(C,) = 1/3



Your Estimate?
Maximum Likelihood Estimate: The best hypothesis

that fits observed data assuming uniform
Most likely colin: Best estimate for P(H)

P(H|C,) = 0.5

P(H|C,) = 0.5
P(C,) = 1/3



* Using Prior Knowledge

= Should we always use a Uniform Prior?

= Background knowledge:
=« Heads => we have take-home midterm
= Jesse likes take-homes...
= => Jesse is more likely to use a coin biased in his favor

P(H|IC,)=0.1 P(H|C,)=05 P(H|C,)=0.9



* Using Prior Knowledge

We can encode it in the prior:

P(C,)=0.05 P(C)=0.25 P(C,)=0.70

P(H|IC)=0.1 P(HI|C,)=0.5 P(H|C,) =0.9



* Experiment 1: Heads

Which coin did | use?
P(CJH)=?  P(CJH)=?  P(CH) =7

P(Ci|H) = aP(H|C1)P(C)

P(HIC)=0.1 P(H|C,)=05 P(H|C,) =0.9
P(C)=0.05 P(C,)=025 P(C.)=0.70



* Experiment 1: Heads

Which coin did | use?
P(C,|H) = 0.006 P(C,|H) = 0.165 P(C,H) = 0.829

Compare with ML posterior after Exp 1:
P(C,|H) = 0.066 P(C,|H) = 0.333 P(C,|H) = 0.600

L 4
P(H|C,) =0.1
P(C,)=0.05 P(C)=0.25 P(C,)=0.70




* Experiment 2: Tails

Which coin did | use?
P(C,JHT)=? P(C,|HT)="? P(C,|HT) =7

P(C1|HT) = aP(HT|C,)P(C:) = aP(H|C,)P(T|C1)P(Ch)

P(HICl) =0.1 P(H|C2) 0.5 P(H|C3) = 0.9
P(C)=0.05 P(C)=0.25 P(C,) =0.70



* Experiment 2: Tails

Which coin did | use?
P(C,|HT) = 0.035 P(C,|HT) = 0.481 P(C,|HT) = 0.485

P(C1|HT) = aP(HT|C,)P(C:) = aP(H|C,)P(T|C1)P(Ch)

P(HIC,)=0.1 P(HIC
P(C,)=0.05 P(C)=0.25 P(C,)=0.70



* Experiment 2: Tails

Which coin did | use?
P(C,|HT) = 0.035 P(C,|HT)=0.481 P(C,|HT) = 0.485

k| &
o
S

3 A
A

P(HIC)=0.1 P(H|C,)=05 |P(HIC, =0.9
P(C)=0.05 P(C)=025 | P(C)=0.70

s N b
ISG #B. o B |
b 5‘”" *

e
1.7




* Your Estimate?

What is the probability of heads after two experiments?

Best estimate for P(H)

P(H|C.) = 0.9

P(C)=0.05 P(C)=0.25 P(C,)=0.70



Your Estimate?

Maximum A Posteriori (MAP) Estimate:
The best hypothesis that fits observed data

assuming a non-uniform prior

Most likely coin: Best estimate for P(H)

K
7 ~ AN
e

P(H|C,) = 0.9

P(C,) = 0.70



* Did We Do The Right Thing?

P(C,|HT)=0.035 P(C,|HT)=0.481 P(C,|HT)=0.485

P(HIC)=0.1 P(HI|C,)=0.5 P(H|C,) =0.9



* Did We Do The Right Thing?

P(C,|HT) =0.035 P(C,|HT)=0.481 P(C,|HT)=0.485

C, and C, are almost
equally likely

) g 2\

, | *o?’ ‘_»,,‘s"“'s )*.

&k N S
Cl C2 C3

P(H|IC)=0.1 P(H|C,)=05 P(H|C,)) =0.9



* A Better Estimate

3
Recall: P(H) =Y P(H|C;)P(C;) = 0.680
=1

O

1 C, C,
P(H|C,)=0.1 P(H|C,))=05 P(H|C,)=0.9



Bayesian Estimate

Bayesian Estimate: Minimizes prediction error,

given data and (generally) assuming a
non-uniform prior

P(H) =) P(H|C;)P(C;) = 0.680

=1

P(C,|HT)=0.035 P(C,|HT)=0.481 P(C,|HT)=0.485

(E\E;;' / 5
Cl CZ C3
P(HIC,)=0.1 P(HIC,)=05 P(HIC,)=0.9



* Comparison After more Experiments

« Seen: HTHHHHHHHH

= Maximum likelihood:

« P(H) =0.5

« After 10 experiments: P(H) = 0.9
= Maximum a posteriori:

« P(H) =0.9

« After 10 experiments: P(H) = 0.9
= Bayesian:

= P(H) = 0.68

« After 10 experiments: P(H) = 0.9
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* Comparison

= ML:
= Easy to compute
= MAP:
» Easy to compute
= Incorporates prior knowledge
= Bayesian:
= Minimizes error -> great with little data
= Potentially very difficult to compute
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Brute-Force MAP Hypothesis Learner

1. For each hypothesis h in H, calculate the posterior
probability

P(D|h)P(h)
P(D)

2. Output the hypothesis hy;4p with the highest
posterior probability

P(h|D) =

hMAp — argmax P(h|D)
heH



Relation to Concept Learning

Let D = (c(x1),...,c(zm)) (examples’ classes)
Choose P(D|h)

e P(D|h) =1 if h consistent with D

e P(D|h) = 0 otherwise
Choose P(h) to be uniform distribution

e P(h) = # for all hin H

— |H|
Then
( m if h is consistent with D
P(h|D) = <
\ 0 otherwise




Most Probable Classification
of New Instances

So far we’ve sought the most probable hypothesis given the
data D (i.e., hMAP)

Given new instance x, what is its most probable
classification? Not harap(x)!

Consider:
e Three possible hypotheses:
P(h1|D) = 4, P(hs|D) = .3, P(h3|D) = .3
e Given new instance z,
hi(z) = +, ha(z) = —, ha(z) = -

e What’s most probable classification of x7



Bayes Optimal Classifier

Bayes optimal classification:

arg max P(vj|hi)P(h;| D)
Vj eV hicH

P(hi|D) = .4, P(—|h1) =0, P(+|h1) =
P(he|D) = .3, P(—|he) =1, P(+]ha) =0
P(hs|D) = .3, P(—|h3) =1, P(+]h3) =




therefore

> P(+|hi)P(hi|D) = A4
h,eH
> P(—|hi)P(hi|D) = .6
h,eH

and

arg gg‘)g hZE:H P(v;lh;)P(h;|D) = -—



Gibbs Classifier

Bayes optimal classifier is hopelessly inefficient

Gibbs algorithm:
1. Choose one hypothesis at random, according to P(h|D)

2. Use this to classify new instance

Surprising fact: Assume target concepts are drawn at
random from H according to priors on H. Then

E[errorGibbs] S 2 X E[e'r'rOTBayesOptz’mal]



* Outline

= Probability overview
= Naive Bayes
= Bayesian learning
= Bayesian networks
» Representation
= Inference
= Parameter learning
= Structure learning
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* Bayesian Network

= In general, a joint distribution P over variables
(Xy,---,X,,) requires exponential space

= A Bayesian network is a graphical representation
of the conditional independence relations in P
= Usually quite compact

= Requires fewer parameters than the full joint
distribution

= Can yield more efficient inference and belief updates

70



* Bayesian Network

= Formally, a Bayesian network is
= A directed, acyclic graph
= Each node is a random variable

= Each node X has a conditional probability distribution
P(X | Parents(X))

= Intuitively, an arc from X to Y means that X and Y
are related

71



* An Example Bayes Net

© Daniel S. Weld

Earthq@

@ 0.05  0.95

Pr(A|E,B)
0.9 (0.1)
0.2 (0.8)
0.85 (0.15)
0.01 (0.99)
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* Terminology

= If Xand its parents are discrete, we represent
P(X| Parents(X)) by
= A conditional probability table (CPT)

» It specifies the probability of each value of X given
all possible settings for the variables in Parents(X).

= Number of parameters /ocally exponential in
[Parents(X)/
s A conditioning caseis a row in this CPT: A
setting of values for the parent nodes

73



* Bayesian Network Semantics

= A Bayesian network completely specifies a full
joint distribution over variables Xi,..., X,

s P(Xy,....X%,) = ﬁ P(x; | Parents(x;))

s Here P(Xy,...,X,) represents a specific setting for
all variables (i.e., P(X; =Xy,..., X,.=X,))

74



* Conditional Indepencies

= A node X is conditionally independent of its
predecessors given its parents
= Markov Blanket of X consists of:
= Parents of X.
= Children of X
= Other parents of X's children

= X is conditionally independent of all nodes in
the network given its Markov Blanket

75



* Example: Parents

=



* Example: Parents

b =



* Example: Parents

(A




* Example: Markov Blanket

b =



* Example: Markov Blanket

CPN ¢
(F >




* D-Separation
A

Evidence flows
from A to C
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* D-Separation

Evidence fiows
from A to C

Evidence at B cuts

flow from A to C
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* D-Separation

Knowing A

does not tell us
about B

Pr(C|A,B)

0.9 (0.1)
0.2 (0.8)

0.85 (0.15)
0.01 (0.99)
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Knowing C

allows evidence
to flow for Ato B

* D-Separation

Pr(C|A,B)

O

~

~

O|T T

~

olol o o

~

0.9 (0.1)
0.2 (0.8)
0.85 (0.15)
0.01 (0.99)




* D-Separation

Pr(C|A,B)

Evidence flows 0.9 (0.1)
0.2 (0.8)

fromDto E 085 (0.15)
0.01 (0.99)

Pr(D|C)
c| 0.1(0.9) Pr(E[C)
c| 0.6 (0.4) % g.ggg.gi




* D-Separation

Knowing C

stops evidence
fromDto E

0?

Oolo

0.1 (0.9)
0.6 (0.4)

Pr(E|C)

Olo

0.2 (0.8)
0.7 (0.3)

@
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* Outline

= Probability overview
= Naive Bayes
= Bayesian learning
= Bayesian networks
= Representation
= Inference
= Parameter learning
= Structure learning
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* Inference in BNs

The graphical independence representation
yields efficient inference schemes

Generally, we want to compute

= P(X) or

« P(X | E), where E is (conjunctive) evidence
Computations organized by network topology
Two well-known exact algorithms:

= Variable elimination

= Junction trees

88



* Variable Elimination

s A factor is a function from set of variables to a
specific value: CPTS are factors

=« E.g.: p(A | E,B) is a function of AE,B

= VE works by eliminating all variables in turn
until there is a factor with only query variable

89



Joint Distributions & CPDs
Vs. Potentials

CPT for P(B | A)

b -b
1 9 Represent probability distributions
ap . . 1. For CPT, specific setting of parents, values
of child must sum to 1
-a| .6 4 2. For joint, all entries sum to 1
Potential
b -b
Potentials occur when we temporarily forget
-a ) 4 meaning associated with table
1. Must be non-negative
—-a 3 5 2. Doesn't have to sumto 1
' ' Arise when incorporating evidence




* Multiplying Potentials

a 1ad C
bl 1 5 b| .2
-b| .2 8 -b | .3
-d
C —1C C —1C
b | .02




* Multiplying Potentials

a —1d C
b| 1 5 b| .2
X
bl .2 8 -b| .3
1A
C —C C =C
b | .02 | .04




* Multiplying Potentials

a —1ad C —1C
bl 1 5 b| .2 4
X
-b| .2 .8 -b| .3 .5
a -a
C -C C -C
b .02 04




* Multiplying Potentials

a —1ad C —1C
bl 1 5 b| .2 4
X
-b| .2 .8 -b| .3 .5
a -a
C -C C -C
b .02 04




* Multiplying Potentials

a —1ad C —1C
b| .1 5 b| .2 | .4
X
-b| .2 .3 -b| .3 .5
1A
C —C C —1C
b .02 .04 .10 .20
-b | .06 .10 .24 40




Marginalize/sum out a variable

—ad

b =b
1 .5
2 .8

>

Normalize a potential

b -b
1 .5
2 .8

D -b
3 1.3
D -b
al.0625|.3125
1A 125 5




Key Observation

2 (P xXP,)=(X,P,)xP,1fAisnotinP,

b -b
1 |.5
2 |.8

X

C -C
b|.2 |.4
-b| .3 |.5

a

—a

C

—1C

C

=C

.02

.04

.04

.08

.06

.25

24

.40




Key Observation
2 (P xXP,)=(X,P,)xP,1fAisnotinP,

b b C__C c T e c ¢
al.l |.5 |y b[.2 |4 |_ b|.02].04].04].08
-al.2 |8 | ~bl.3 |.5 | -b|.15[.25].24] .40

C ~C
\—>b 06| .12
b[ .39 | .65

b b C_ ~—C C_—C
al.l |5 |_ PL3]  bl2 |4 |_ D|.06].12
~al.2 |.8 |*2-b[1.3]" -b[.3 |.5 | -b[.39].65




* Variable Elimination Procedure

= The initial potentials are the CPTS in the BN

= Repeat until only query variable remains:
= Choose a variable to eliminate
= Multiply all potentials that contain the variable

= If no evidence for the variable then sum the variable
out and replace original potential by the new result

=« Else, remove variable based on evidence

= Normalize the remaining potential to get the
final distribution over the query variable
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b C
al.8 1
-a|.3 .6
d e
b|.4 .5
-b|.7 9
-d
-e | e |-e
3 1.41.9

P(A,B,C,D,E,F) = P(A) P(B]A) P(C|A) P(D|B) P(E|C) P(F|D,E)



Query: P(F| C = true)
Elimination Ordering: A,B,C,D,E

a —a

Sum out 21.016(.144|.004(.036

A| —a[.144|.096|.336(.224
> .16 .24 .34 .26




Now, eliminate B, multiple all potentials involving B

C ~C
e .................................. @ b|.16 .24
d ~d | -b|.34].26
bl .4 |6 | ¥ .7
o215 (@)

d _ld d _ld
Sum out P |.064|.096|.096|.144

BI -b|.238(.102|.182/.078
> 302 .198 .278 .222




Next, eliminate C, multiple all potentials involving C

C(.302.

~C|.278|.

*
*
*
.
.
*
.
*
**
g

**
**
**
.

.
*
.
*
.
.
.
.
.
.
*
.
.
.
.
.
“
*

**
**
*
*

e e
C|.5 |.5
-C|.9 |.1

We have evidence for
C, so eliminate ~c¢




Next, eliminate D, multiple all potentials involving D

.151].

.151].

.040

.059

.089

.010

> .055.195.129 .116

.055

.195

.129

116




Next, eliminate E

.055

.195

.129

116

f f
.184|.311
< Normalize
a = 2.0202
f Y f




* Notes on Variable Elimination

= Each operation is a simple multiplication of
factors and summing out a variable

= Complexity determined by size of largest factor

= E.g., in example 3 variables (not 6)

= Linear in number of variables, exponential in largest
factor

= Elimination ordering greatly impacts factor size
= Optimal elimination ordering: NP-hard
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* Outline

= Probability overview
= Naive Bayes
= Bayesian learning
= Bayesian networks
= Representation
= Inference
» Parameter learning
= Structure learning
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Parameter Estimate for
Bayesian Networks

EBRAJ'M
/ T|IF|T|T|F|T
Ratio ) Calarm FIFIF]F]F]T
/ F| T|F | T| T | T
F| T|F|F | F|F

We have:

- Bayes Net structure and observations
- We need: Bayes Net parameters
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Parameter Estimate for
Bayesian Networks

Earthquake

—4|m|4|™m| M| ®

Prior

-7

P(B) = + data = | |

anl
r

Now compute
either MAP or
Bayesian estimate
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* What Prior to Use

= The following are two common priors
= Binary variable Beta

= Posterior distribution is binomial

= Easy to compute posterior

» Discrete variable Dirichlet
= Posterior distribution is multinomial
= Easy to compute posterior
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* One Prior: Beta Distribution

I'la + b) -
L'(a)l'(b)

ﬂ'_]'(]_ L I}E—l?

Blx) =
ab

0 <z <1 and a,b > 0

Here I'(y) = fﬂm ¥ le=%dx

For any positive integer y, I'(y) = (y-1)!



=
L
T

Bix)
in
1

=
L
T

| | | 1 | Y

1
i 0.1 0z 03 04 05 0.8 0.7 0.8 og i
Randorm Varable x

Figure 3. Beta distributions with a = 4 and b = 8 (solid
line) and with @ = 8 and 6 = 4 (dashed line). To get a
higher peak (and stronger skew), use a and b that sum to
a higher value.



* Beta Distribution

= Example: Flip coin with Beta distribution as
prior p [prob(heads)]
=« Parameterized by two positive numbers: aand b
= Mode of distribution (E[p]) is a /(a+b)
» Specify our prior belief for p = a / (a+b)
» Specify confidence with initial values of aand b
= Updating our prior belief based on data by
»« Increment a for each head outcome
= Increment b for each tail outcome

s Posterior is a binomial distribution!
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Parameter Estimate for
Bayesian Networks

Earthquake

H4|m|4q4|m|m| ®

Prior

P(B) = Beta(1,4) + data = (3,7)
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Parameter Estimate for
* Bayesian Networks

= &
Qorzcats

D(A|E,B) = ?
D(A|E,-B) = ?
D(A|-E,B) = ?
D(A —IE,—IB) =7

M| M| M| M| | m
|| H4|m| M| ®
||| >
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Parameter Estimate for
* Bayesian Networks

& &
Qe

Prior

M| MM M| 4| m
—4|m| 4| M|
m|H| ||| >

P(A|-E,B) = Beta(2,3)+ data= (3,4)
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General EM Framework:
Handling Missing Values

= Given: Data with missing values, space of
possible models, initial model

= Repeat until no change greater than threshold:

= Expectation (E) Step: Compute expectation over
missing values, given model.

= Maximization (M) Step: Replace current model with
model that maximizes probability of data.

© Jude Shavlik 2006
David Page 2007 Lecture #5, Slide 117



Jl “Soft” EM vs. “Hard” EM

= Soft EM: Expectation is a probability distribution

= Hard EM: Expectation is “all or nothing,” assign
most likely/probable value

= Advantage of hard EM is computational
efficiency when expectation is over state
consisting of values for multiple variables

© Jude Shavlik 2006 CS 760 — Machine Learning (UW-
David Page 2007 Madison) Lecture #5, Slide 118



* EM for Parameter Learning: E Step

= For each data point with missing values

= Compute the probability of each possible
completion of that data point

= Replace the original data point with all
completions, weighted by probabilities

= Computing the probability of each completion
(expectation) is just answering query over
missing variables given others
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* EM For Parameter Learning: M Step

= Use the completed data set to update our
Beta/Dirichlet distributions

=« Same as if complete data set
= Note: Counts may be fractional now

= Update CPTs based on new Beta/Dirichlet
distribution

= Same as if complete data set
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* Subtlety for Parameter Learning

= Overcounting based on number of iterations
required to converge to settings for the missing
values

s After each E step, reset all Beta/Dirichlet
distributions before repeating M step.

© Jude Shavlik 2006 CS 760 — Machine Learning (UW-
David Page 2007 Madison) Lecture #5, Slide 121



EM for Parameter Learning

+

P(A)

0.1(1,9)

(D)

C

P(D)

T
F

0.9 (9,1)
0.2 (1,4)

© Jude Shavlik 2006
David Page 2007

(B

P(B)

0.2 (1,4)

AB|P(C)

TT

TF

0.9 (9,1)
0.6 (3,2)
0.3(3,7)
0.2 (1,4)

CS 760 — Machine Learning (UW-

Madison)

Data
A B CDE
0O 0 ? 0 O
0O 0 ?27 1 O
1 0 ?2 1 1
0O 0 ? 0 1
01 7?2 1 O
0O 0 ? 0 1
1 1 2?2 1 1
O 0 ?2 0 O
O 0 ?2 1 O
0O 0 ? 0 1

Lecture #5, Slide 122



* EM for Parameter Learning: E Step

Data

P(A) P(B)

0.1(1,9)|(B) 0.2 (1,4) ABCDE

ABIP(C) 00?2 00
TT[0.9(9,1) P(A=0) * P(B=0) *
TF[0.6(3,2) P(C=0 | A=0,B=0)

FT1(0.3(3,7) *P(D=0 | C=0)
FF|0.2(1,4) *P(E=0|C =0) =2

(D) (E) P(A=0) * P(B=0) *
C
T
F

P(C=1|A=0,B=0)

C|P(D P(E) P(C=1|A=0
T o.g ()9,1) 0.8 (4,1) *P(D_—OIC—_l) ,
F10.2(1,9) 0.1(1,9) P(E=0|C=1)="*

Lecture #5, Slide 123



4

EM for Parameter Learning: E Step

P(A)

N
/@\

(D)

C

P(D)

T
F

0.9 (9,1)
0.2 (1,4)

© Jude Shavlik 2006
David Page 2007

P(B)

0.2

(1,4)

Data

A B CDE

AB

P(C)

0O 0 ? 0 O

TT
TF

0.9 (9,1)
0.6 (3,2)
0.3(3,7)
0.2 (1,4)

P(A=0) * P(B=0) *
P(C=0 | A=0,B=0)
*p(D=0 | C=0)

*P(E=0 | C =0) = .41472

P(A=0) * P(B=0) *
P(C=1|A=0,B=0)
*p(D=0 | C=1)

*P(E=0 | C =1) = .00288

CS 760 — Machine Learning (UW-

Madison)

Lecture #5, Slide 124



* EM for Parameter Learning: E Step

Data

A B CDE

0O 0 ? 0 O

P(A) P(B)
0.1(1,9)|(B) 0.2 (1,4)
AB|P(C)
TT10.9(9,1)
TF 0.6 (3,2)
FT1[0.3(3,7)
FF|0.2(1,4)
(D) (E)
C| P(D) C| P(E)
T|0.9(9,1) T|0.8(4,1)
F|10.2(1,4) F10.1(1,9)

© Jude Shavlik 2006
David Page 2007

P(C=0) = .41472
4176
P(C=0) = .99

P(C=1) = .00288
4176
P(C=1) = .01

CS 760 — Machine Learning (UW-

Madison)
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EM for Parameter Learning: E Step

+

P(A)

0.1(1,9)

(D)

C

P(D)

T
F

0.9 (9,1)
0.2 (1,4)

© Jude Shavlik 2006
David Page 2007

(B

P(B)

0.2 (1,4)

AB|P(C)

TT

Data

O

TF

0.9 (9,1)
0.6 (3,2)
0.3(3,7)
0.2 (1,4)

CS 760 — Machine Learning (UW-

Madison)

COOPFrPOO0OOFr OO >

OO OPFrRPOPFrrOO0OOoo|

0: 0.99
1:0.01
0: 0.80
1:0.20
0:0.02
1:0.98
0: 0.80
1:0.20
0:0.70
1:0.30
0: 0.80
1:0.20
0: 0.003
1:0.997
0:0.99
1:0.01
0: 0.80
1:0.20
0:080 ()
1:0.20

R ororrro|lU

—k O

P OORFRPFROPRFR R ool

Lecture #5, Slide 126



EM for Parameter Learning: M Step

+

P(A)

0.1(1,9)

(D)

C

P(D)

T
F

0.9 (9,1)
0.2 (1,4)

© Jude Shavlik 2006
David Page 2007

(B

P(B)

0.2 (1,4)

AB|P(C)

TT

Data

O

0:0.99
1: 0.01
0:0.80
1:0.20

TF

0.9 (9,1)
0.6 (3,2)
0.3(3,7)

0:0.02
1: 0.98

0:0.80
1:0.20

0.2 (1,4)

0:0.70
1: 0.30

CS 760 — Machine Learning (UW-

Madison)

0:0.80
1:0.20

0:0.003
1:0.997

© OO Froo o oo >

O O OFrOFrr oo o o

0:0.99
1: 0.01
0:0.80
1: 0.20
0:0.80
1:0.20

oOrororor ol

R OOFREFROFR ool

C=0
A+
99 +
8+
8+
8+
99+
8+
8+

9.98
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EM for Parameter Learning: M Step

+

P(A)

0.1(1,9)

(D)

C

P(D)

T
F

0.9 (9,1)
0.2 (1,4)

© Jude Shavlik 2006
David Page 2007

(B

P(B)

0.2 (1,4)

AB|P(C)

TT

Data

O

0:0.99
1: 0.01
0:0.80
1:0.20

TF

0.9 (9,1)
0.6 (3,2)
0.3(3,7)

0:0.02
1: 0.98

0:0.80
1:0.20

0.2 (1,4)

0:0.70
1: 0.30

CS 760 — Machine Learning (UW-

Madison)

0:0.80
1:0.20

0:0.003
1:0.997

© OO Froo o oo >

O O OFrOFrr oo o o

0:0.99
1: 0.01
0:0.80
1: 0.20
0:0.80
1:0.20

oOrororor ol

P OORFRPFROPRFR R ool

C=1
1+
01+
2+
2+
2+
01+
2+
2+

2.02
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* EM for Parameter Learning: M Step

P(A)

/@\

(D)

C

P(D)

T
F

0.9 (9,1)
0.2 (1,4)

© Jude Shavlik 2006
David Page 2007

P(B)

0.2 (1,4)

AB|P(C)

%@-m

TT[0.9(9,1)
TF|0.6(3,2)
FT10.3(3,7)

FF (0.2 (1,4)

CS 760 — Machine Learning (UW-

Madison)

—> 2.02/(2.02 + 9.98) = .16
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* Problems with EM

= Only local optimum
= Deterministic: Uniform priors can cause issues

= See next slide
= Use randomness to overcome this problem
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* What will EM do here?

P(A)
0.5 (1,1)

P(B)

0.5 (1,1)
HHO
B| P(C)
T|0.5(1,1) e

F 0.5 (1,1)

© Jude Shavlik 2006 CS 760 — Machine Learning (UW-
David Page 2007 Madison) Lecture #5, Slide 131
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* Outline

= Probability overview
= Naive Bayes
= Bayesian learning
= Bayesian networks
= Representation
= Inference
= Parameter learning
» Structure learning
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Learning the Structure of a
Bayesian Network

= Search through the space of possible structures

For each structure, learn parameters

Pick the one that fits observed data the best
= Problem: Will get a fully connected structure?

= Solution: Add a penalty term

Problem?

= Exponential number of networks!

= Exhaustive search infeasible

What now?
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* Structure Learning as Search

= Local search
= Start with some network structure

= Try to make a change:
Add, delete or reverse an edge

= See if the new structure is better

= What should the initial state be

=« Uniform prior over random networks?
= Based on prior knowledge
= Empty network?

= How do we evaluate networks?
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* Structure Search Example

“‘,
e®
L
e®
“

O
V “ e
Z !



* Score Functions

= Bayesian Information Criteion (BIC)
= P(D | BN) — penalty
» Penalty = V2 (# parameters) Log (# data
points)
= MAP score
= P(BN | D) = P(D | BN) P(BN)
« P(BN) must decay exponential with # of
parameters for this to work well

= Note: We use log P(D | BN)

© Daniel S. Weld 136




* Recall: Naive Bayes




Tree Augmented Naive Bayes
* (TAN) [Friedman,Geiger & Goldszmidt 1997]

Class

Value

@/ F3 @ @ FN

Models limited set of dependencies
Guaranteed to find best structure
Runs in polynomial time



* Tree-Augmented Naive Bayes

Each feature has at most one parent in addition
to the class attribute

For every pair of features, compute the
conditional mutual information

Im(Xiylc) = 2, c P(X,y,€) log [p(x,y|c)/[p(x|c)*p(ylc)]]
Add arcs between all pairs of features, weighted
by this value

Compute the maximum weight spanning tree,
and direct arcs from the root

Compute parameters as already seen



* Next Class

= Proposition rule induction
= First-order rule induction

= Read Mitchell Chapter 10
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* Summary

= Homework 2 is now available
= Naive Bayes: Reasonable, simple baseline
= Different ways to incorporate prior beliefs

= Bayesian networks are an efficient way to
represent joint distributions

= Representation
= Inference
= Learning
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