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Bayesian Learning

Instructor: Jesse Davis



Announcements

 Homework 1 is due today

 Homework 2 is out

 Slides for this lecture are online

 We‟ll review some of homework 1 next class

 Techniques for efficient implementation of 
collaborative filtering

 Common mistakes made on rest of HW
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Random Variables

 A random variable is a number (or value) 
determined by chance 

 More formally it is drawn from a probability 
distribution

 Types of random variables

 Continuous

 Binary

 Discrete
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Why Random Variables

 Our goal is to predict a target variable

 We are not given the true function

 We are given observations

 Number of times a dice lands on 4

 Can estimate the probability of this event

 We don‟t know where the dice will land

 Can only guess what is likely to happen
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Bernoulli Distribution

 Bernoulli RV takes two values: 0 and 1 

 Prob(1) = p and P(0) = 1 – p

 The performance of one trial with fixed 
probability of success (p) is a Bernoulli trial

6

px(1-p)x, if x= 0 or 1
0, otherwise 

P(x) = 



Binomial Distribution

 Like Bernoulli distribution, two values: 0 or 1 
and probability P(1)=p and P(0)=1-p

 What is the probability of k successes, P(k), in 
a series of n independent trials? (n>=k)

 P(k) is a binomial random variable:

 Bernoulli distribution is a special case of the 
binomial distribution (i.e., n=1)
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pk(1-p)n-k , where        = P(x) = 
n
k 

n
k 

n!

k!(n-k)!



Multinomial Distribution

 Generalizes binomial distribution to multiple 
outputs (classes)

 N independent trials

 r possible outcomes

 Each outcome cr has P(cr) = pr

 Σ P(cr) = 1

 Multinomial RV: Probability that in n trials, the 
frequency of the r classes is (n1,…,nr)
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p1
n1*…*pr

nr , where           = P(x) = 
n

n1…nr

n!

n1!*…*nr!

n
n1…nr



Axioms of Probability Theory

Just three are enough to build entire theory!

1. All probabilities between 0 and 1

0 ≤ P(A) ≤ 1

2. P(true) = 1   and P(false) = 0

3. Probability of  disjunction of events is:

P(A v B) = P(A) + P(B) - P(A  B)
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Conditional Probability

 P(A | B) is the probability of A given B

 Assumes that B is the only info known.

 Defined as 
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P(A | B) =
P(A  B)

P(B)
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Independence

 A and B are independent iff:

 P(A | B) = P(A)

 P(B | A) = P(B)

 Therefore if A and B are independent
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These two constraints are 
logically equivalent

P(A | B) =
P(A  B)

P(B)
= P(A)

P(A  B) = P(A)P(B)



Independence
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Independence is powerful, but rarely holds



Conditional Independence
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A A  B

A&B not independent, 

since P(A|B) < P(A)
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Conditional Independence
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AC

But:  A&B are made independent by C

P(A|C) =

P(A|B,C)



Bayes Rule

 Bayes rule  is:

 Proof:
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P(A | B) =
P(B | A) P(A)

P(B)

P(A | B)  =
P(B | A) P(A)

P(B)
Sub in prev result

P(A ^ B) =  P(B | A) P(A) Rearrange line 2 

P(A | B)   =
P(A ^ B)

P(B)

P(B | A)  =
P(A ^ B)

P(A)

Defn of cond. prob



Use to Compute Diagnostic 
Probability from Causal Probability

 For example, let M be meningitis, S be stiff neck

 P(M) = 0.0001 

 P(S) = 0.1

 P(S|M) = 0.8

 P(M | S) = 0.8 x 0.0001 / 0.1 = 0.0008

 Probability is very low!
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Naïve Bayes: Motivation

 We will see many draws of X1,…,Xn and the 
response (class) Y

 We want to estimate the most likely value of Y 
for the input, that is, P(Y| X1,…,Xn)

 What difficulty arises?

 Exponentially many settings for X1,…,Xn

 Next case probably has not been seen
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One Approach: Assume 
Conditional Independence

 By Bayes Rule (with normalization):

 P(Y| X1,…,Xn) = αP(X1,…,Xn|Y)P(Y)

 Normalization: Compute above for each 
value of Y, then normalize so sum to 1

 Recall Conditional independence:
P(X1,…,Xn|Y) = P(X1|Y)…P(Xn|Y) 

 P(Y| X1,…,Xn)= αP(X1|Y)…P(Xn|Y)P(Y)



Naïve Bayes

 Assumes (naïvely) that all features are 
conditionally independent given the class

 P(A ^ B | Class) = P(A | Class) * P(B | Class)

 Avoids estimating P(A ^ B), etc.

 Surprisingly, though the assumption is often 
violated naïve Bayes works well in practice

 Bag of words for text, spam filtering, etc. 
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Naïve Bayes in Practice

 Empirically, estimates relative probabilities 
more reliably than absolute ones:

 Better than

 Naïve Bayes tends to push probability estimates 
towards either 0 or 1
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P(Pos | Features) P(Features | Pos) * P(Pos) 

P(Neg | Features) P(Features | Neg) * P(Neg) 
=

P(Pos | Features) = P(Features | Pos) * P(Pos) 



Technical Detail: Underflow

 Assume we have 100 features

 We multiple 100 numbers in [0,1]

 If values are small, we are likely to „underflow‟ the 
min positive/float value

 Solution: ∏ probs = e

 Sum log‟s of prob‟s

 Subtract logs since log         = logP(+) – logP(-)
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P(+)

P(-)

Σ log(prob)



Log Odds
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P(F1 | Pos)*…* P(Fn | Pos) * P(Pos) 

P(F1 | Neg)*…* P(Fn | Neg) * P(Neg) 
Odds =

log(Odds) = [∑ log{ P(Fi | Pos) / P(Fi | Neg)}]
+ log( P(Pos) / P(Neg) )

Notice if a feature value is more likely in a pos, the log is 
pos and if more likely in neg, the log is neg (0 if tie)
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Naïve Bayes Example

Color Shape Size Category

red • big +

blue  small +

red  small +

red  big 

blue • small 

red  small ?
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Naïve Bayes Example

 For the new example (red, , small)

P(+|F‟s) P(red|+)*P(|+)*P(small|+)*P(+)
=

P( |F‟s) P(red|)*P(| )*P(small| )*P()

= 2/3 * 1/3 * 2/3 * 3/5 =   1.77
1/2 * 1/2 * 1/2 * 2/5

 So most likely a POS example
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Dealing with Zeroes 
(and Small Samples)

 If we never see something (eg, in the train 
set), should we assume its probability is zero?

 If we only see 3 pos ex‟s and 2 are red, do we 
really think 

P(red|pos) = 2/3  ?
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M-estimates 
(Eq 6.22 in Mitchell; Eq 7 in draft chapter)

 Imagine we had m hypothetical pos ex‟s

 Assume p is prob these examples are red

 Improved estimate:

P(red | pos) = 2 + p * m

3 + m

(In general, red is some feature value and 2 and 3 are actual 
counts in the training set)
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M-Estimate

Prob =
nc +  m p

n  + m

# of actual examples

# of fi = vi 

examples Equivalent sample size used 
in guess

Prior guess

Prob (color=red) =
8 + 100 x 0.5

10 + 100
=

58

110
= 0.53

Example: Of 10 examples, 8 have color = red
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M-Estimates More Generally

P(fi=vi) =

# times fi = vi +
Equivalent 
sample size

# train ex‟s    + Equivalent 
sample size

initial guess 
for P(fi = vi) 

x

Estimate based on prior 
knowledge (“priors”)

Estimate based 
on data

m
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Laplace Smoothing

 Special case of m estimates
 Let m = #colors, p = 1/m
 Ie, assume one hypothetical pos ex of each color

 Implementation trick
 Start all counters at 1 instead of 0

 Eg, initialize count(pos, feature(i), value(i, j)) = 1
 count(pos, color, red), 

count(neg, color, red),
count(pos, color, blue), 
…



Naïve Bayes as a Graphical Model

F2 FN-2 F N-1 FNF1 F3

Class
Value

…

Node i stores P(Fi | POS) and P(Fi | NEG)



How Does Naïve Bayes Partition 
Feature Space?
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Homework: Spam Filtering

 Task:

 P(C|E)  = P(E|C)P(C) / P(E)

 C  ← argmax {  P(E|C)P(C)  }

From: Branded anti-ED Pills <otubu9068@telesp.net.br>
To: andrey.kolobov@gmail.com

Date: Fri, Apr 2, 2010 at 7:23 PM
Subject: Hot Sale, andrey.kolobov! 77% off on top goods Emen

Mailed-by: telesp.net.br

Why aren't you on our site, andrey.kolobov? We have 77% off today!!

Ham or Spam?

C in {h, m}

P(C)

P(E|C)



C  ← argmax {P(E|C)P(C)} = argmax {P(C) ∏ P(W |C)}

… with Naïve Bayes

From: Branded anti-ED Pills <otubu9068@telesp.net.br>
To: andrey.kolobov@gmail.com

Date: Fri, Apr 2, 2010 at 7:23 PM
Subject: Hot Sale, andrey.kolobov! 77% off on top goods Emen

Mailed-by: telesp.net.br

Why aren't you on our site , andrey.kolobov ?We have 77% off today!!

Ham or Spam?

C in {h, m}

P(C)

P(“why”|C) P(“today”|C)

W in E C in {h, m}

P(E|C)



Estimating Parameters

 Given: 

 Set of training spam emails S

 Set of training ham emails H

 Probabilities:

 P(w|c) = (1+ (#cw)) / (∑ (1 + #cw‟ ))

 P(c) = |c| / (|S| + |H|)

w’ in V 

To avoid getting 
P(w|c) = 0 due 
to data sparsity



Naïve Bayes Summary

 Fast, simple algorithm

 Effective in practice [good baseline comparison]

 Gives estimates of confidence in class label

 Makes simplifying assumptions

 Extensions to come…
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Coin Flip

P(H|C
2
) = 0.5P(H|C

1
) = 0.1

C
1

C
2

P(H|C
3
) = 0.9

C
3

Which coin will I use?

P(C
1
) = 1/3 P(C

2
) = 1/3 P(C

3
) = 1/3

Prior: Probability of a hypothesis 

before we make any observations



Coin Flip

P(H|C
2
) = 0.5P(H|C

1
) = 0.1

C
1

C
2

P(H|C
3
) = 0.9

C
3

P(C
1
) = 1/3 P(C

2
) = 1/3 P(C

3
) = 1/3

Uniform Prior: All hypothesis are equally

likely before we make any observations

Which coin will I use?



Experiment 1: Heads

Which coin did I use?

P(C
1
|H) = ? P(C

2
|H) = ? P(C

3
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P(H|C
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Experiment 1: Heads

Which coin did I use?

P(C
1
|H) = 0.066 P(C

2
|H) = 0.333 P(C

3
|H) = 0.6

P(H|C
2
) = 0.5 P(H|C

3
) = 0.9P(H|C

1
) = 0.1

C
1

C
2

C
3

P(C
1
) = 1/3 P(C

2
) = 1/3 P(C

3
) = 1/3

Posterior: Probability of a hypothesis given data



Terminology

 Prior: Probability of a hypothesis before we 
see any data

 Uniform prior: A prior that makes all 
hypothesis equally likely

 Posterior: Probability of hypothesis after we 
saw some data

 Likelihood: Probability of the data given the 
hypothesis
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Experiment 2: Tails
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Experiment 2: Tails

Which coin did I use?
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Your Estimate?

What is the probability of heads after two experiments?

P(H|C
2
) = 0.5 P(H|C

3
) = 0.9P(H|C

1
) = 0.1

C
1

C
2

C
3

P(C
1
) = 1/3 P(C

2
) = 1/3 P(C

3
) = 1/3

Best estimate for P(H) 

P(H|C
2
) = 0.5

Most likely coin: 

C
2



Your Estimate?

P(H|C
2
) = 0.5

C
2

P(C
2
) = 1/3

Most likely coin: Best estimate for P(H) 

P(H|C
2
) = 0.5C

2

Maximum Likelihood Estimate: The best hypothesis

that fits observed data assuming uniform prior



Using Prior Knowledge

 Should we always use a Uniform Prior ?

 Background knowledge:

 Heads => we have take-home midterm

 Jesse likes take-homes…

 => Jesse is more likely to use a coin biased in his favor

P(H|C
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C
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Using Prior Knowledge

P(H|C
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1
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C
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P(H|C
3
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C
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P(C
1
) = 0.05 P(C

2
) = 0.25 P(C

3
) = 0.70

We can encode it in the prior:



Experiment 1: Heads

Which coin did I use?
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Experiment 1: Heads

Which coin did I use?

P(C
1
|H) = 0.006 P(C

2
|H) = 0.165 P(C

3
|H) = 0.829

P(H|C
2
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3
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3
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P(C
1
|H) = 0.066 P(C

2
|H) = 0.333 P(C

3
|H) = 0.600

Compare with ML posterior after Exp 1:



Experiment 2: Tails
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Experiment 2: Tails

Which coin did I use?

P(C
1
|HT) = 0.035 P(C

2
|HT)=0.481 P(C

3
|HT) = 0.485

P(H|C
2
) = 0.5 P(H|C

3
) = 0.9P(H|C

1
) = 0.1

C
1

C
2

C
3

P(C
1
) = 0.05 P(C

2
) = 0.25 P(C

3
) = 0.70



Your Estimate?

What is the probability of heads after two experiments?

P(H|C
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3
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) = 0.1
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Most likely coin: 



Your Estimate?

Most likely coin: Best estimate for P(H) 

P(H|C
3
) = 0.9C

3

Maximum A Posteriori (MAP) Estimate: 

The best hypothesis that fits observed data 

assuming a non-uniform prior
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C
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3
) = 0.70



Did We Do The Right Thing?
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Did We Do The Right Thing?
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A Better Estimate
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Bayesian Estimate

P(C
1
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C
1

C
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C
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= 0.680

Bayesian Estimate: Minimizes prediction error, 

given data and (generally) assuming a 

non-uniform prior



Comparison After more Experiments

 Seen: HTHHHHHHHH

 Maximum likelihood:

 P(H) = 0.5

 After 10 experiments: P(H) = 0.9

 Maximum a posteriori:

 P(H) = 0.9

 After 10 experiments: P(H) = 0.9

 Bayesian: 

 P(H) = 0.68

 After 10 experiments: P(H) = 0.9
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Comparison

 ML: 

 Easy to compute

 MAP: 

 Easy to compute

 Incorporates prior knowledge

 Bayesian:

 Minimizes error -> great with little data

 Potentially very difficult to compute
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Bayesian Network

 In general, a joint distribution P over variables 
(X1,…,Xn) requires exponential space

 A Bayesian network is a graphical representation 
of the conditional independence relations in P

 Usually quite compact

 Requires fewer parameters than the full joint 
distribution

 Can yield more efficient inference and belief updates
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Bayesian Network

 Formally, a Bayesian network is

 A directed, acyclic graph

 Each node is a random variable

 Each node X has a conditional probability distribution 
P(X | Parents(X))

 Intuitively, an arc from X to Y means that X and Y 
are related

71



© Daniel S. Weld 72

An Example Bayes Net

Earthquake Burglary

Alarm

Nbr2CallsNbr1Calls

Pr(B=t) Pr(B=f)
0.05    0.95

Pr(A|E,B)

e,b    0.9 (0.1)

e,b    0.2 (0.8)

e,b    0.85 (0.15)

e,b    0.01 (0.99)                 

Radio



Terminology

 If X and its parents are discrete, we represent 
P(X|Parents(X)) by

 A conditional probability table (CPT)

 It specifies the probability of each value of X, given 
all possible settings for the variables in Parents(X).

 Number of parameters locally exponential in 
|Parents(X)|

 A conditioning case is a row in this CPT: A 
setting of values for the parent nodes
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Bayesian Network Semantics

 A Bayesian network completely specifies a full 
joint distribution over variables X1,…,Xn

 P(x1,…,xn) = ∏ P(xi | Parents(xi))

 Here P(x1,…,xn) represents a specific setting for 
all variables (i.e., P(X1 =x1,…, Xn=xn))

74
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Conditional Indepencies

 A node X is conditionally independent of its 
predecessors given its parents

 Markov Blanket of Xi consists of:

 Parents of Xi

 Children of Xi

 Other parents of Xi‟s children

 X is conditionally independent of all nodes in 
the network given its Markov Blanket
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Example: Parents

76

C D

G

Nbr2CallsNbr1Calls

F

JI

B E

H

A
A



Example: Parents
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Example: Parents

78

C D

G

Nbr2CallsNbr1Calls

F

JI

B E

H

A
A



Example: Markov Blanket
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Example: Markov Blanket
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D-Separation
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C

B

A

Evidence flows
from A to C



D-Separation
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C

A

Evidence flows
from A to C

Evidence at B cuts
flow from A to CB



D-Separation
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C

B

Nbr2CallsNbr1Calls ED

Pr(C|A,B)

a,b 0.9 (0.1)

a,b 0.2 (0.8)

a,b 0.85 (0.15)

a,b 0.01 (0.99)                 

Knowing A
does not tell us 
about B

A



D-Separation
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A B

C

Nbr2CallsNbr1Calls ED

Pr(C|A,B)

a,b 0.9 (0.1)

a,b 0.2 (0.8)

a,b 0.85 (0.15)

a,b 0.01 (0.99)                 

Knowing C
allows evidence
to flow for A to B

A



D-Separation
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A B

Nbr2CallsNbr1Calls ED Pr(E|C)

c 0.2 (0.8)

c 0.7 (0.3)

Pr(D|C)

c 0.1 (0.9)

c 0.6 (0.4)
D

C
Evidence flows
from D to E

Pr(C|A,B)

a,b 0.9 (0.1)

a,b 0.2 (0.8)

a,b 0.85 (0.15)

a,b 0.01 (0.99)                 



D-Separation
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A B

C

Nbr2CallsNbr1Calls ED

Pr(E|C)

c 0.2 (0.8)

c 0.7 (0.3)

Knowing C
stops evidence
from D to E

Pr(D|C)

c 0.1 (0.9)

c 0.6 (0.4)
D
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Inference in BNs

 The graphical independence representation 
yields efficient inference schemes

 Generally, we want to compute

 P(X) or

 P(X | E), where E is (conjunctive) evidence

 Computations organized by network topology

 Two well-known exact algorithms:

 Variable elimination

 Junction trees
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Variable Elimination

 A factor is a function from set of variables to a 
specific value: CPTS are factors 

 E.g.: p(A | E,B) is a function of A,E,B

 VE works by eliminating all variables in turn 
until there is a factor with only query variable
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Joint Distributions & CPDs 
Vs. Potentials
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Potential

Potentials occur when we temporarily forget 
meaning associated with table
1. Must be non-negative
2. Doesn‟t have to sum to 1
Arise when incorporating evidence

Represent probability distributions
1. For CPT, specific setting of parents, values 

of child must sum to 1
2. For joint, all entries sum to 1



Multiplying Potentials

¬c¬a

¬b ¬b

¬b

¬c ¬ccc

b

b

a

b

c

a ¬a

.1

.2

.5

.8

.2

.3

.4

.5

.02

x =



Multiplying Potentials

¬c¬a

¬b ¬b

¬b

¬c ¬ccc

b

b

a

b

c

a ¬a

.1

.2

.5

.8

.2

.3

.4

.5

.02 .04

x =



Multiplying Potentials

¬c¬a

¬b ¬b

¬b

¬c ¬ccc

b

b

a

b

c

a ¬a

.1

.2

.5

.8

.2

.3

.4

.5

.02

.06

.04

x =



Multiplying Potentials

¬c¬a

¬b ¬b

¬b

¬c ¬ccc

b

b

a

b

c

a ¬a

.1

.2

.5

.8

.2

.3

.4

.5

.02

.06

.04

.10

x =



Multiplying Potentials

¬c¬a

¬b ¬b

¬b

¬c ¬ccc

b

b

a

b

c

a ¬a

.1

.2

.5

.8

.2

.3

.4

.5

.10

.24

.20

.40

.02

.06

.04

.10

x =



¬b

¬a

a

b

.1

.2

.5

.8

=

¬b

¬a

a

b

.1

.2

.5

.8

¬b

¬a

a

b

.0625

.125

.3125

.5

 a

¬bb

.3 1.3

Marginalize/sum out a variable

Normalize a potential

α



Key Observation
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Variable Elimination Procedure

 The initial potentials are the CPTS in the BN

 Repeat until only query variable remains:

 Choose a variable to eliminate

 Multiply all potentials that contain the variable

 If no evidence for the variable then sum the variable 
out and replace original potential by the new result

 Else, remove variable based on evidence

 Normalize the remaining potential to get the 
final distribution over the query variable
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Normalize
α = 2.0202
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Notes on Variable Elimination

 Each operation is a simple multiplication of 
factors and summing out a variable

 Complexity determined by size of largest factor

 E.g., in example 3 variables (not 6)

 Linear in number of variables, exponential in largest 
factor 

 Elimination ordering greatly impacts factor size

 Optimal elimination ordering: NP-hard
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Parameter Estimate for 
Bayesian Networks

108

E B R A J M

T F T T F T

F F F F F T

F T F T T T

F F F T T T

F T F F F F

...

We have: 

- Bayes Net structure and observations

- We need: Bayes Net parameters



Parameter Estimate for 
Bayesian Networks

109
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What Prior to Use

 The following are two common priors

 Binary variable Beta

 Posterior distribution is binomial

 Easy to compute posterior

 Discrete variable Dirichlet

 Posterior distribution is multinomial

 Easy to compute posterior 
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One Prior: Beta Distribution

a,b

For any positive integer y, G(y) = (y-1)!





Beta Distribution

 Example: Flip coin with Beta distribution as 
prior p [prob(heads)]

 Parameterized by two positive numbers: a and b

 Mode of distribution (E[p]) is a /(a+b)

 Specify our prior belief for p = a / (a+b)

 Specify confidence with initial values of a and b

 Updating our prior belief based on data by 

 Increment a for each head outcome

 Increment b for each tail outcome

 Posterior is a binomial distribution!
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Parameter Estimate for 
Bayesian Networks
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Prior

+ data = Beta(1,4) (3,7) .3

B ¬B

.7



Parameter Estimate for 
Bayesian Networks
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Parameter Estimate for 
Bayesian Networks
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General EM Framework:
Handling Missing Values

 Given: Data with missing values, space of 
possible models, initial model

 Repeat until no change greater than threshold:

 Expectation (E) Step: Compute expectation over 
missing values, given model.

 Maximization (M) Step: Replace current model with 
model that maximizes probability of data.
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“Soft” EM vs. “Hard” EM

 Soft EM: Expectation is a probability distribution

 Hard EM: Expectation is “all or nothing,” assign 
most likely/probable value

 Advantage of hard EM is computational 
efficiency when expectation is over state 
consisting of values for multiple variables



EM for Parameter Learning: E Step

 For each data point with missing values

 Compute the probability of each possible 
completion of that data point

 Replace the original data point with all  
completions, weighted by probabilities

 Computing the probability of each completion 
(expectation) is just answering query over 
missing variables given others
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EM For Parameter Learning: M Step

 Use the completed data set to update our 
Beta/Dirichlet distributions 

 Same as if complete data set

 Note: Counts may be fractional now

 Update CPTs based on new Beta/Dirichlet
distribution

 Same as if complete data set
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Subtlety for Parameter Learning

 Overcounting based on number of iterations 
required to converge to settings for the missing 
values

 After each E step, reset all Beta/Dirichlet
distributions before repeating M step.
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EM for Parameter Learning
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EM for Parameter Learning: E Step
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EM for Parameter Learning: E Step
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EM for Parameter Learning: E Step
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EM for Parameter Learning: E Step
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EM for Parameter Learning: M Step
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EM for Parameter Learning: M Step
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EM for Parameter Learning: M Step

2.02/(2.02 + 9.98) = .16



Problems with EM

 Only local optimum

 Deterministic: Uniform priors can cause issues 

 See next slide

 Use randomness to overcome this problem
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What will EM do here?
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Learning the Structure of a 
Bayesian Network

 Search through the space of possible structures

 For each structure, learn parameters

 Pick the one that fits observed data the best

 Problem: Will get a fully connected structure?

 Solution: Add a penalty term

 Problem?

 Exponential number of networks!

 Exhaustive search infeasible

 What now?
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Structure Learning as Search

 Local search

 Start with some network structure

 Try to make a change: 
Add, delete or reverse an edge

 See if the new structure is better

 What should the initial state be

 Uniform prior over random networks?

 Based on prior knowledge

 Empty network?

 How do we evaluate networks?
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Structure Search Example
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Score Functions

 Bayesian Information Criteion (BIC)

 P(D | BN) – penalty

 Penalty = ½ (# parameters) Log (# data 
points)

 MAP score

 P(BN | D) = P(D | BN) P(BN)

 P(BN) must decay exponential with # of 
parameters for this to work well

 Note: We use log P(D | BN) 
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Recall: Naïve Bayes

F2 FN-2 F N-1 FNF1 F3

Class
Value

…



Tree Augmented Naïve Bayes 
(TAN) [Friedman,Geiger & Goldszmidt 1997]

F2 FN-2 F N-1 FNF1 F3

Class
Value

…

Models limited set of dependencies
Guaranteed to find best structure
Runs in polynomial time



Tree-Augmented Naïve Bayes

 Each feature has at most one parent in addition 
to the class attribute

 For every pair of features, compute the 
conditional mutual information
Icm(x;y|c) = Σx,y,c P(x,y,c) log [p(x,y|c)/[p(x|c)*p(y|c)]] 

 Add arcs between all pairs of features, weighted 
by this value

 Compute the maximum weight spanning tree, 
and direct arcs from the root

 Compute parameters as already seen



Next Class

 Proposition rule induction

 First-order rule induction

 Read Mitchell Chapter 10
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Summary

 Homework 2 is now available

 Naïve Bayes: Reasonable, simple baseline

 Different ways to incorporate prior beliefs

 Bayesian networks are an efficient way to 
represent joint distributions

 Representation

 Inference

 Learning
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Questions?
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