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Clustering

Instructor: Jesse Davis

Slides from: Colin Dewey, Pedro Domingos, Ray 

Mooney, David Page, Sofus Macskassy, Dan Weld
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Announcements

 No class final week

 Office hours June 1st from 5:30-7:30 or 8

 Homework 4 will be due @ midnight June 1st

 Andrey is out of town

 He has access to email at funny times

 Email both of us

 Clustering reading (Chapters 16+17): 
http://nlp.stanford.edu/IR-book/

 Lecture notes are available online

http://nlp.stanford.edu/IR-book/
http://nlp.stanford.edu/IR-book/
http://nlp.stanford.edu/IR-book/


Outline

 Homework 4: VC-Dimension problem

 Clustering
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Definition: Shattering

 A hypothesis space is said to shatter a set of 
instances iff for every partition of the instances 
into positive and negative, there is a hypothesis 
that produces that partition

 Example: Consider 2 instances with a single 
real-valued feature being shattered by intervals
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VC Dimensions

The Vapnik-Chervonenkis dimension, VC(H). of 
hypothesis space H defined over instance space 
X is the size of the largest finite subset of X
shattered by H. If arbitrarily large finite subsets 
of X can be shattered then VC(H) = 
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Mitchell 7.5a
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Part 1: For VC-dim, show ONE configuration of examples 
that can be separated regardless of labels

Part 2: For VC-dim+1, show that for ANY configuration 
of examples, there exists a labeling of the examples that 
can’t be separated

VC-Dim of rectangles in 2-D space



Example Justification
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Part 1: Can classify 3 ex’s no matter how labeled

3

1,2 are 
same class

1,2,3 are 
same class

1,3 are 
same class
2,3 are 
same class

VC-dim of points in 2-D space, 
separated by single line

Therefore VC-dim at least 3



Example Justification
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Case 1: 3 or more points co-linear
Obviously can’t label

23
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Case 2: Other allignments
Form a regular polygon with points
Examples not connected get same label
Single line won’t be able to separate (XOR)
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 Clustering

 Unsupervised learning, clustering intro

 Hierarchical clustering

 Partitional clustering

 Model-based clustering

 Applications
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Unsupervised Learning

 In supervised learning, we have data in the 
form of pairs <x,y>, where y=f(x). The 
goal is to approximate f

 In unsupervised learning, the data just 
contains x!

 The main goal is to find structure in the data

 The definition of ground truth is often missing 
(no clear error function, like in supervised 
learning)
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Uses of Unsupervised Learning

 Visualization of the data

 Data compression

 Density estimation: what distribution generated 
the data?

 Pre-processing step for supervised learning

 Partition data

 Novelty detection
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Unsupervised Learning: Clustering

 In many problems there are no class labels

 Humans: How do we form categories of 
objects?

 Humans are good at creating 
groups/categories/clusters from data

 Image analysis finding groups in data is very 
useful

 e.g., can find pixels with similar intensities

 e.g., can find images that are similar -> can 
automatically find classes/clusters of images

12



What is Clustering

 Cluster: a collection of data objects

 Similar to one another within the same cluster

 Dissimilar to the objects in other clusters

 Cluster analysis: Grouping objects into clusters

 Clustering is unsupervised classification

 Clusterings are usually not right or wrong

 Different clusterings can reveal different things 
about the data

 More direct measure of goodness if it is a first step 
towards supervised learning, or data compression
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How is Clustering Used

 Clustering is grouping similar objects together

 To establish prototypes or detect outliers

 To simplify data for further analysis/learning

 To visualize data

 As a stand-alone tool to get insight into data 
distribution 

 As a preprocessing step for other algorithms
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Example: Two Clusters

15

Feature 1

F
e
a
tu

re
 2



Example: Gene Expression
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(Green = up-regulated, Red = down-regulated)
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Experiments (Samples)



Clustering Applications

 Marketing: Help marketers discover distinct groups in 

their customer bases, and then use this knowledge to 

develop targeted marketing programs

 Land use: Identification of areas of similar land use in 

an earth observation database

 Insurance: Identifying groups of motor insurance policy 

holders with a high average claim cost

 Urban planning: Identifying groups of houses according 

to their house type, value, and geographical location

 Seismology: Observed earth quake epicenters should 

be clustered along continent faults
17



What Is a Good Clustering?

 A good clustering method will produce      

clusters with

 High intra-class similarity

 Low inter-class similarity 

 Precise definition of clustering quality is difficult

 Application-dependent

 Ultimately subjective
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Requirements for Clustering in
Data Mining

 Scalability

 Ability to deal with different types of attributes

 Discovery of clusters with arbitrary shape

 Minimal domain knowledge required to determine input 

parameters

 Ability to deal with noise and outliers

 Insensitivity to order of input records

 Robustness wrt high dimensionality

 Incorporation of user-specified constraints

 Interpretability and usability
19



The Clustering Problem

 Let x = (x1, x2,…, xd,) be a d-dimensional 
feature vector

 Let D be a set of x vectors,

 D = { x1, x2, ….. xN }

 Given data D, group the N vectors into K 
groups such that the grouping is “optimal”
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Basic Concept: Distances/Similarities

 Clustering methods use a distance (similarity) 
measure to assess the distance between

 a pair of instances

 a cluster and an instance

 a pair of clusters

 Given a distance value, can convert it into a 
similarity value: sim(i,j) = 1/[1+dist(i,j)]

 Not always straightforward to go the other way

 We’ll describe our algorithms in terms of 
distances

21



Distances Between Instances

 Same we used for IBL (e.g, Lp norm)

 Euclidean distance (p = 2):

 Properties of a metric d(i,j):

 d(i,j)  0

 d(i,i) = 0

 d(i,j) = d(j,i)

 d(i,j)  d(i,k) + d(k,j)
22
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Basic Concept: Clusters Structure
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Hierarchical Flat



Basic Concept: Cluster Assignment

 Hard clustering: 
 Each item in only one cluster

 Soft clustering:
 Each item has a probability of membership in each 

cluster

 Disjunctive / overlapping clustering:
 An item can be in more than one cluster
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Major Clustering Approaches

 Hierarchical: Create a hierarchical 
decomposition of the set of objects using some 
criterion

 Partitioning: Construct various partitions and 
then evaluate them by some criterion

 Model-based: Hypothesize a model for each 
cluster and find best fit of models to data

 Density-based: Guided by connectivity and 
density functions
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Hierarchical Clustering

 Can do top-down (divisive) or bottom-up 
(agglomerative)

 In either case, we maintain a matrix of distance 
(or similarity) scores for all pairs of

 Instances

 Clusters (formed so far)

 Instances and clusters
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Hierarchical Clustering: Dendogram
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Leaves represent instances
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Bottom-Up Hierarchical Clustering

Given: instances x1,…,xn

For i = 1 to n, ci = {xi}

C = {c1,…,cn}

j = n

While |C| > 1

j = j+1

(ca,cb) = argmin dist(cu,cv)

cj = ca U cv

add node to tree joining a and b

C = C – {ca,cb} U cj

Return tree with root node j

29



Bottom-Up Example
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Distance Between Two Clusters

 The distance between two clusters can be 
determined in several ways

 Single link: distance of two most similar instances: 
dist(cu, cv) = min{dist(a, b) |  a∈cu, b∈cv}

 Complete link: distance of two least similar 
instances: dist(cu, cv) = max{dist(a, b) |  a∈cu, b∈cv}

 Average link: average distance between instances: 
dist(cu, cv) = avg{dist(a, b) |  a∈cu, b∈cv}
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Single Link

32

Cluster similarity = similarity of two most similar members



Complete Link
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Cluster similarity = similarity of two least similar members



Average Link
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Note: Picture doesn’t show all connections

Cluster similarity = average similarity of all pairs



Efficient Distance Updates

 If we merged and cu and cv into cj, we can 
determine distance to each other cluster:

 Single link: 
dist(cj, ck) = min{dist(cu, ck) , dist(cv, ck)}

 Complete link: 
dist(cj, ck) = max{dist(cu, ck) , dist(cv, ck)}

 Average link:
dist(cj, ck) =

35

|cu| * dist(cu, ck) + |cv| * dist(cv, ck)} 

|cu| + |cv|



Computational Complexity

Naïve implementation has O(n3) time complexity,

where n is the number of instances

 Compute initial distances: O(n2) 

 Merge steps: O(n), each step 

 Update distance matrix: O(n) 

 Select next pair of clusters: O(n2) 
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Computational Complexity

 Single link: Can update and pick pair in O(n), 
which results in O(n2) algorithm 

 Complete and average link: Can do these steps 
in O(n log n), which yields an O(n2 log n) 
algorithm
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Single Link

 Chaining:

38



Single Link

 Chaining:
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Single Link

 Chaining:
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Single Link

 Chaining:

 Bottom line: 

 Simple, fast

 Often low quality
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Complete Link

 Worst case O(n3)

 Fast algorithm: Requires O(n2) space

 No chaining

 Bottom line: 

 Typically much faster than O(n3)

 Often good quality
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Divisive or Top-Down Clustering

Initialize: All items one cluster

Iterate: 

1. select a cluster cj (least coherent)

2. divide cj into two clusters

Halt: When have required # of clusters

43

Note: Step 2 requires another clustering algorithm!



Top-Down Example
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Other Hierarchical
Clustering Methods

 Major weakness of agglomerative clustering methods

 Do not scale well: time complexity of at least O(n2), 
where n is the number of total objects

 Can never undo what was done previously

 Integration of hierarchical with distance-based 
clustering

 BIRCH: uses CF-tree and incrementally adjusts the 
quality of sub-clusters

 CURE: selects well-scattered points from the cluster 
and then shrinks them towards the center of the 
cluster by a specified fraction

45



BIRCH

 BIRCH: Balanced Iterative Reducing and Clustering 
using Hierarchies (Zhang, Ramakrishnan & Livny, 1996)

 Incrementally construct a CF (Clustering Feature) tree

 Parameters: max diameter, max children

 Phase 1: scan DB to build an initial in-memory CF 
tree (each node: #points, sum, sum of squares)

 Phase 2: use an arbitrary clustering algorithm to 
cluster the leaf nodes of the CF-tree 

 Scales linearly: finds a good clustering with a single 
scan

 Weaknesses: handles only numeric data, sensitive to 
order of data records
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Definitions

 Centroid:

 Radius: average distance from member points 
to cluster centroid
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Cluster Feature Vector

 Given: X1,…,Xn, data points in a cluster where 
each with d-dimensions 

 We define CF = (N, LS, SS), where

 N: Number of data points

 LS: N
i=1   Xi

 SS: N
i=1   Xi

2

 Note: CFs are additive!

 E.g., CF1 + CF2 = (N1+N2, LS1+LS2, SS1+SS2) 
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Cluster Feature Example
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0 1 2 3 4 5 6 7 8 9 10

CF = (5, (16,30),(54,190))

(3,4)

(2,6)

(4,5)

(4,7)

(3,8)

LSx = 3 + 2 + 4 + 4 + 3 = 16

LSy = 4 + 6 + 5 + 7 + 8 = 30

SSx = 32 + 22 + 42 +42 + 32 = 54

SSy = 42 + 62 + 52 +72 + 82 = 190



Cluster Feature Tree

 A CF-tree is a height-balanced tree with two 
parameters: 
 Branching factor (non leaf nodes B, leaf nodes, L)

 Threshold T 

 Each non leaf node has the form [CFi, childi]

 Each leaf node has CF

 Set of CFs

 Two pointers: prev and next

 Diameter of a subcluster under a leaf node can 
not exceed the threshold T

50
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CF Tree

CF1

child1

CF3

child3

CF2

child2

CF6

child6

CF11

child1

CF13

child3

CF12

child2

CF15

child5

CF1 CF2 CF6
prev next CF1 CF2 CF4

prev next

B = 7

L = 6

Root

Non-leaf node

Leaf node Leaf node

Note: Dropped subscripts on leaf nodes due to space



CF-Tree Construction

 Scan data set and insert the incoming data 
instances into the CF tree one by one

 Each instance is inserted into the closest 
subcluster under a leaf node

 If insertion causes subcluster diameter to 
exceed threshold, then create new subcluster
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CF-Tree Construction

 The new subcluster may cause its parent to 
exceed branching factor

 If so, split leaf node 

 Identifying the pair of subclusters with largest inter-
cluster distance

 Divide by proximity to these two subclusters

 If this split clause non-leaf node to exceed 
branching fact, then recursively split

 If the root node is split, then the height of the 
CF tree is increased by one
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Partitioning Algorithms

 Partitioning method: Construct a partition of a database 

D of n objects into a set of k clusters

 Given a k, find a partition of k clusters that optimizes 

the chosen partitioning criterion

 Global optimal: exhaustively enumerate all partitions

 Heuristic methods: k-means, k-medoids algorithms

 k-means (MacQueen, 1967): Each cluster is 

represented by the center of the cluster

 k-medoids or PAM (Partition around medoids) 

(Kaufman & Rousseeuw, 1987): Each cluster is 

represented by one of the objects in the cluster  55



Partitional Clusterings

 Divide instances into disjoint clusters

 Flat vs. tree structure

 Key issues:

 How many clusters should there be?

 How should clusters be represented?
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Partitional Clustering from a 
Hierarchical Clustering
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Can generate a partitional clustering from 
a hierarchical clustering by “cutting” the 
tree at some level

Cutting here
Gives 2 clusters

Cutting here
Gives 4 clusters



K-Means Clustering

 A commonly-used clustering algorithm

 Easy to implement

 Quick to run

 Assumes

 Objects are n-dimensional vectors

 Distance/similarity measure between these instances

 Goal: Partition the data in K disjoint subsets

 Ideally: Partition reflects the structure of the 
data
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K-Means Overview

 Inputs:

 A set of n-dimensional real vectors {x1,…, xm}

 K, the desired number of clusters

 Output: A mapping of the vectors into k clusters 
(disjoint subsets), C: {1,…,m} -> {1,…,k}

 The k cluster centers are in the same space as 
instances

 Each cluster is represented by a vector
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K-Means Algorithm

Let d be the distance measure between instances
Pick k random centroids, s1,…,sj

Until clustering converges or other stopping criterion:
For each instance xi:

Assign xi to the cluster cj s.t. d(xi, sj) is minimal

Update the centroid of each cluster
For each cluster cj

sj = (cj) 



Algorithmic Details

 Initializing the centroids

 Pick points randomly

 Pick points from data instances

 (cj) = [1/ |cj |] * [ Σi xi ]

 |cj | is number of examples assigned to cluster cj

 i cj , i.e., examples that are assigned to cluster cj

 Note: This is a vector [calculate the mean along 
each dimension]
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Seed Choice

 Results vary based on seed selection

 Some seeds can result in poor convergence 
rate, or convergence to sub-optimal clusterings

 Select good seeds using a heuristic or the 
results of another method

 Do many runs of k-means, each from a 
different random start configuration
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K-Means W/K=2
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Pick seeds

Reassign clusters

Compute centroids

x
x

Reasssign clusters

x
x xx Compute centroids

Reassign clusters

Converged!



K-Means Example
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X1= <4,1>
X2= <4,3>
X3= <6,2>
X4= <8,8>

C1= <3,2>
C2= <7,3>

X1

X2

0 1 2  3 4 5 6 7 8

0
 1

 2
  
3
 4

 5
 6

 7
 8

X3

X4

C1

C2

Distance function: Manhattan



K-Means Example
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X1= <4,1>
X2= <4,3>
X3= <6,2>
X4= <8,8>

C1= <3,2>
C2= <7,3>0 1 2  3 4 5 6 7 8

0
 1

 2
  
3
 4

 5
 6

 7
 8 Dist(X1,C1) = 2

Dist(X2,C1) = 2
Dist(X3,C1) = 3
Dist(X4,C1) = 11

Dist(X1,C2) = 5
Dist(X2,C2) = 3
Dist(X3,C2) = 2
Dist(X4,C2) = 6

Step 1a



K-Means Example
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X1= <4,1>
X2= <4,3>
X3= <6,2>
X4= <8,8>

C1= <3,2>
C2= <7,3>0 1 2  3 4 5 6 7 8

0
 1

 2
  
3
 4

 5
 6

 7
 8 Dist(X1,C1) = 2

Dist(X2,C1) = 2
Dist(X3,C1) = 3
Dist(X4,C1) = 11

Dist(X1,C2) = 5
Dist(X2,C2) = 3
Dist(X3,C2) = 2
Dist(X4,C2) = 6

0 1 2  3 4 5 6 7 8

0
 1

 2
  
3
 4

 5
 6

 7
 8

C1=

C2=

4 + 4 1 + 3
2 2, ><

6 + 8 2 + 8
2 2, ><

= <4,2>

= <7,5>

Step 1b



K-Means Example
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X1= <4,1>
X2= <4,3>
X3= <6,2>
X4= <8,8>

C1= <4,2>
C2= <7,5>0 1 2  3 4 5 6 7 8

0
 1

 2
  
3
 4

 5
 6

 7
 8 Dist(X1,C1) = 1

Dist(X2,C1) = 1
Dist(X3,C1) = 2
Dist(X4,C1) = 10

Dist(X1,C2) = 7
Dist(X2,C2) = 5
Dist(X3,C2) = 4
Dist(X4,C2) = 4

Step 2a



K-Means Example
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X1= <4,1>
X2= <4,3>
X3= <6,2>
X4= <8,8>

C1= <4,2>
C2= <7,5>0 1 2  3 4 5 6 7 8

0
 1

 2
  
3
 4

 5
 6

 7
 8 Dist(X1,C1) = 1

Dist(X2,C1) = 1
Dist(X3,C1) = 2
Dist(X4,C1) = 10

Dist(X1,C2) = 7
Dist(X2,C2) = 7
Dist(X3,C2) = 4
Dist(X4,C2) = 4

C1=

C2=

4 + 4 + 6 1 + 3 + 2
3 3, ><

8 8
1 1, ><

= <4.67,2>

= <8,8>0 1 2  3 4 5 6 7 8

0
 1

 2
  
3
 4

 5
 6

 7
 8

Step 2b



K-Means Example
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X1= <4,1>
X2= <4,3>
X3= <6,2>
X4= <8,8>

C1= <4.67,2>
C2= <8,8>0 1 2  3 4 5 6 7 8

0
 1

 2
  
3
 4

 5
 6

 7
 8 Dist(X1,C1) = 1.67

Dist(X2,C1) = 1.67
Dist(X3,C1) = 1.67
Dist(X4,C1) = 10.33

Dist(X1,C2) = 11
Dist(X2,C2) = 9
Dist(X3,C2) = 8
Dist(X4,C2) = 0

Step 3a



K-Means Example
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X1= <4,1>
X2= <4,3>
X3= <6,2>
X4= <8,8>

C1= <4.67,2>
C2= <8,8>0 1 2  3 4 5 6 7 8

0
 1

 2
  
3
 4

 5
 6

 7
 8 Dist(X1,C1) = 1.67

Dist(X2,C1) = 1.67
Dist(X3,C1) = 1.67
Dist(X4,C1) = 10.33

Dist(X1,C2) = 11
Dist(X2,C2) = 9
Dist(X3,C2) = 8
Dist(X4,C2) = 0

Assignment are unchanged -> converged

Note: Not showing centroid recomputatoin

Step 3b



Time Complexity

 Distance between two instances: O(n),
where n is the dimensionality of the vectors

 Reassigning clusters: O(km) distance 
computations, or O(kmn)

 Computing centroids: Each instance vector gets 
added once to some centroid: O(nm)

 Assume these two steps are each done once for 
I iterations:  O(Iknm)

 Linear in all relevant factors, with fixed number 
of iterations, more efficient than O(m2) HAC
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Comments on the K-Means Method

 Strengths

 Relatively efficient: O(Ikmn), where m is # objects, k is     
# clusters, and I  is # iterations. Normally, k, I << m

 Often terminates at a local optimum. The global optimum
may be found using techniques such as simulated 
annealing and genetic algorithms

 Weaknesses

 Applicable only when mean is defined (what about 
categorical data?)

 Need to specify k, the number of clusters, in advance

 Trouble with noisy data and outliers

 Not suitable to discover clusters with non-convex shapes
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Model-Based Clustering

 Basic idea: Clustering as probability estimation

 One model for each cluster

 Generative model:

 Probability of selecting a cluster

 Probability of generating an object in cluster

 Find max. likelihood or MAP model

 Missing information: Cluster membership

 Use EM algorithm

 Quality of clustering: Likelihood of test objects



EM Clustering

 In k-means, instances are assigned to exactly 
one cluster

 We can do “soft” k-means with an Expectation 
Maximization algorithm

 Each cluster represented by a distribution

 E step: Determine how likely it is that each 
that each cluster generated each instance

 M step: Adjust cluster parameters to 
maximize likelihood
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Mixtures of Gaussians

 Cluster model: Normal distribution (mean, covariance)

 Assume: diagonal covariance, known variance,            
same for all clusters

 Max. likelihood: mean = avg. of samples

 But what points are samples of a given cluster?

 Estimate prob. that point belongs to cluster

 Mean = weighted avg. of points, weight = prob.

 But to estimate probs. we need model

 “Chicken and egg” problem: use EM algorithm
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EM Algorithm for Mixtures

 Initialization: Choose means at random

 E step:

 For all points and means, compute Prob(point|mean)

 Prob(mean|point) =
Prob(mean) Prob(point|mean) / Prob(point)

 M step:

 Each mean = Weighted avg. of points

 Weight = Prob(mean|point)

 Repeat until convergence



Representing Clusters

 Represent clusters with a Gaussian

 Where

 μj is the mean

 σ2 is the variance

 Nj(xi) = probability(xi| μj)
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Nj(xi) = (2πσ2)0.5

1 e σ

(xi- μj)
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EM Clustering: Hidden Variables

 On each iteration of k-means clustering, we 
had to assign each instance to a cluster

 In the EM approach, we’ll use hidden variables 
to represent this idea

 For each instance xi we have a set of hidden 
variables zi1,…,zik

 We can think of zij as being 1 if is a member of 
cluster j and 0 otherwise
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E-Step

 Recall that zij is a hidden variable which is 1 if 
Nj generated xi and 0 otherwise

 In the E-step, we compute hij, the expected 
value of this hidden variable
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hij = Σl Pl * Nl(xi)

Pj * Nj(xi)



M-Step

 Given the expected values hij, we re-estimate 
the means of the Gaussians and the cluster 
probabilities
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Pj =
Σi hij

n

μj =
Σi xi * hij

Σi hij

Note: i goes over examples



EM Clustering Example

 Consider a one-dimensional clustering problem:

 x1 = -4

 x2 = -3

 x3 = -1

 x4 = 3

 x5 = 5

 Settings

 μ1 = 0, μ2 = 2, both have σ = 2

 Density function is: f(x, μ) =

 Initially, we set P1 = P2 = 0.5
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(8π)0.5

1
e 2

(x- μ)

2

-1

2



EM Clustering Example

 f(-4, μ1) = 0.0269

 f(-3, μ1) = 0.0646

 f(-1, μ1) = 0.176

 f(3, μ1) = 0.0646

 f(5, μ1) = 0.00874

 f(-4, μ2) = 0.0022

 f(-3, μ2) = 0.00874

 f(-1, μ2) = 0.0646

 f(3, μ2) = 0.176 

 f(5, μ2) = 0.0646
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F(-4, μ1)=
(8π)0.5

1
e 2

(4-0)

2

1-
2



EM Clustering Example: E Step

 h11 = 0.924

 h21 = 0.881

 h31 = 0.732

 h41 = 0.268

 h51 = 0.119

 h12 = 0.076

 h22 = 0.119

 h32 = 0.268

 h42 = 0.732

 h52 = 0.881
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h11 =
P1 * f(x1, μ1) + P2 * f(x1, μ2)

P1 * f(x1, μ1) =
0.5*0.0269+0.5*0.0022

0.5 * .0269
= 0.924



EM Clustering Example: M Step
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μ1 =
-4*0.924 + -3*0.881 + -1*0.732 + 3*0.268 + 5*0.119

0.924 + 0.881 + 0.732 + 0.268 + 0.119
= -1.94

μ2 =
-4*0.076 + -3*0.119 + -1*0.268 + 3*0.732 + 5*0.881

0.076 + 0.119 + 0.268 + 0.732 + 0.881
= 3.39

μ1 =
Σi xi * hi1

Σi hi1

μ2 =
Σi xi * hi2

Σi hi2

P2 =
0.076 + 0.119 + 0.268 + 0.732 + 0.881

5

Σi hi2

n
= = 0.42

P1 =
Σi hi1

n
= = 0.58

0.924 + 0.881 + 0.732 + 0.268 + 0.119

5



EM Clustering

 Will converge to a local maximum

 Sensitive to initial means of clusters

 Have to choose the number of clusters in 
advance

 k-means is a special case of EM clustering
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Evaluating Cluster Results

 Given random data without any “structure”, 
clustering algorithms will still return clusters

 The gold standard: do clusters correspond to 
natural categories?

 Do clusters correspond to categories we care 
about? (there are lots of ways to partition the 
world)
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Approaches to Cluster Evaluation

 External validation

 e.g. do genes clustered together have some 
common function?

 Internal validation

 How well does clustering optimize intra-cluster 
similarity and inter-cluster dissimilarity?

 relative validation

 How does it compare to other clusterings?

 e.g. with a probabilistic method (such as EM) we 
can ask: how probable does held-aside data look as 
we vary the number of clusters.
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Outline

 Homework 4: VC-Dimension problem

 Clustering

 Unsupervised learning, clustering intro

 Hierarchical clustering

 Partitional clustering

 Model-based clustering

 Applications
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Low Quality of Web Searches

 System perspective:

 small coverage of Web (<16%)

 dead links and out of date pages

 limited resources

 IR perspective  (relevancy of doc ~ similarity to 
query):

 very short queries

 huge database

 novice users
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Document Clustering

 User receives many (200 - 5000) documents 
from Web search engine

 Group documents in clusters 

 by topic

 Present clusters as interface
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Q: Need Way to Compare Queries 
and Documents

 Vector space model:
 How to determine important words in a document?

 How to determine the degree of importance of a 
term within a document and within the entire 
collection?

 How to determine the degree of similarity between a 
document and the query?

 In the case of the web, what is a collection and what 
are the effects of links, formatting information, etc.?
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Vector-Space Model

 Assume t distinct terms remain after 
preprocessing: vocabulary

 These “orthogonal” terms form a vector space

Dimension = t = |vocabulary| 

 Each term, i,  in a document or query, j, is 
given a real-valued weight, wij.

 Both documents and queries are expressed as       
t-dimensional vectors:

dj = (w1j, w2j, …, wtj)
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Graphical Representation
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Example:

D1 = 2T1 + 3T2 + 5T3

D2 = 3T1 + 7T2 +   T3

Q = 0T1 + 0T2 +  2T3

T3

T1

T2

D1 = 2T1+ 3T2 + 5T3

D2 = 3T1 + 7T2 +  T3

Q = 0T1 + 0T2 + 2T3

7

32

5

• Is D1 or D2 more similar to Q?
• How to measure the degree 

of similarity? Distance? Angle? 
Projection?



Document Collection

 Vector space model represents a collection of n
documents by a term-document matrix

 Each entry: “weight” of a term in the document
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T1 T2 ….      Tt

D1 w11 w21 …      wt1

D2 w12 w22 …      wt2

: :      :               :
: :      :               :
Dn w1n w2n …      wtn



Term Weights: Term Frequency

 More frequent terms in a document are more 
important, i.e. more indicative of the topic

fij = frequency of term i in document j

 May want to normalize term frequency (tf)  by 
dividing by the frequency of the most common 
term in the document:

tfij = fij / maxi{fij}
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Term Weights: 
Inverse Document Frequency

 Terms that appear in many different documents 
are less indicative of overall topic

df i = document frequency of term i

= number of documents containing term i

idfi = inverse document frequency of term i, 

= log2 (N/ df i)  (N: number of documents)

 An indication of a term’s discrimination power

 Log used to dampen the effect relative to tf
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TF-IDF Weighting

 A typical combined term importance indicator is 
tf-idf weighting:

wij =  tfij idfi =  tfij log2 (N/ dfi)

 A term occurring frequently in the document 
but rarely in the rest of the collection is given 
high weight

 Many other ways of determining term weights 
have been proposed

 Experimentally, tf-idf works well
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TF-IDF Example

101

Given a document containing terms with given 
frequencies:

A(3), B(2), C(1)

Assume collection contains 10,000 documents and 

document frequencies of these terms are:

A(50), B(1300), C(250)

Then:

A:  tf = 3/3;  idf = log2(10000/50) = 7.6;     tf-idf = 7.6

B:  tf = 2/3;  idf = log2 (10000/1300) = 2.9; tf-idf = 2.0

C:  tf = 1/3;  idf = log2 (10000/250) = 5.3;   tf-idf = 1.8



Query Vector

 Query vector is typically treated as a document 
and also tf-idf weighted

 Alternative is for the user to supply weights for 
the given query terms
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Similarity Measures

 Inner product: sim(dj,q) = Σ wij * wiq

 wij = weight of term i in doc j

 wiq is weight of term i in query

 Cosine similarity: sim(dj,q) =

 Measures the cosine of the angle between two 
vectors

 Inner product normalized by the vector lengths

103

Σi (wij)
2 Σi (wiq)

2

Σi wij * wiq



Cosine Similarity Visually
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2

t3

t1

t2

D1

D2

Q

1

Take cosine of this
angle as similarity 
between query and 
document



Comparison 

 D1 = 2T1 + 3T2 + 5T3

 D2 = 3T1 + 7T2 +  1T3      

 Q = 0T1 + 0T2 +  2T3

 Weighted inner product

 sim(D1 , Q) = 2*0 + 3*0 + 5*2  = 10

 sim(D2 , Q) = 3*0 + 7*0 + 1*2  =  2

 Cosine

 sim(D1 , Q) = 10 / (4+9+25)(0+0+4) = 0.81

 sim(D2 , Q) =  2 / (9+49+1)(0+0+4) = 0.13
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D1 is 6 times better than D2 using cosine similarity 
but only 5 times better using inner product.



Comments On Vector Space Model

 Simple, mathematically based approach

 Considers both local (tf) and global (idf) word 
occurrence frequencies

 Provides partial matching and ranked results.

 Tends to work quite well in practice despite 
obvious weaknesses

 Allows efficient implementation for large 
document collections
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Weakness with Vector Space Model

 Missing semantic information (e.g. word sense)

 Missing syntactic information (e.g. phrase 
structure, word order, proximity information)

 Assumption of term independence (e.g. ignores 
synonomy)
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Analyzing Microarray Data

 Microarrays allow us to measure gene 
expression 

 Central Dogma: 

 Genes encode proteins

 DNA transcribed into messenger RNA

 mRNA translated into proteins

 Triplet code (codons)
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How Microarrays Work
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Probes (DNA)

GeneChip Surface

Hybridization

Labeled Sample (RNA)



Two Views of Microarray Data

 Data points are genes

 Represented by expression levels across 
different samples (ie, features=samples)

 Goal: categorize new genes

 Data points are samples (eg, patients)

 Represented by expression levels of different 
genes (ie, features=genes)

 Goal: categorize new samples
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Unsupervised Learning Task

 Given: a set of microarray experiments under 
different conditions

 Do: cluster the genes, where a gene described 
by its expression levels in  different 
experiments
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Example
(Green = up-regulated, Red = down-regulated)

G
e
n
e
s

Experiments (Samples)



Unsupervised Learning Task 2

 Given: a set of microarray experiments 
(samples) corresponding to different conditions 
or patients

 Do: cluster the experiments
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Examples

 Cluster samples from mice subjected to a 
variety of toxic compounds 
(Thomas et al., 2001)

 Cluster samples from cancer patients, 
potentially to discover different subtypes of a 
cancer

 Cluster samples taken at different 
time points
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Summary

 Unsupervised learning technique: Gain insight 

into the data

 Clustering approaches

 Hierarchical methods

 Partitioning methods

 Model-based methods

 Used in many applications

 Information retrieval

 Bioinformatics
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Next Class

 Association rule mining

 Reading: 
http://infolab.stanford.edu/~ullman/mining/assocrules.pdf
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http://infolab.stanford.edu/~ullman/mining/assocrules.pdf


Questions?
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