
1

Clustering

Instructor: Jesse Davis

Slides from: Colin Dewey, Pedro Domingos, Ray 

Mooney, David Page, Sofus Macskassy, Dan Weld
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Announcements

 No class final week

 Office hours June 1st from 5:30-7:30 or 8

 Homework 4 will be due @ midnight June 1st

 Andrey is out of town

 He has access to email at funny times

 Email both of us

 Clustering reading (Chapters 16+17): 
http://nlp.stanford.edu/IR-book/

 Lecture notes are available online

http://nlp.stanford.edu/IR-book/
http://nlp.stanford.edu/IR-book/
http://nlp.stanford.edu/IR-book/
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Definition: Shattering

 A hypothesis space is said to shatter a set of 
instances iff for every partition of the instances 
into positive and negative, there is a hypothesis 
that produces that partition

 Example: Consider 2 instances with a single 
real-valued feature being shattered by intervals
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VC Dimensions

The Vapnik-Chervonenkis dimension, VC(H). of 
hypothesis space H defined over instance space 
X is the size of the largest finite subset of X
shattered by H. If arbitrarily large finite subsets 
of X can be shattered then VC(H) = 
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Mitchell 7.5a
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Part 1: For VC-dim, show ONE configuration of examples 
that can be separated regardless of labels

Part 2: For VC-dim+1, show that for ANY configuration 
of examples, there exists a labeling of the examples that 
can’t be separated

VC-Dim of rectangles in 2-D space



Example Justification
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2

Part 1: Can classify 3 ex’s no matter how labeled

3

1,2 are 
same class

1,2,3 are 
same class

1,3 are 
same class
2,3 are 
same class

VC-dim of points in 2-D space, 
separated by single line

Therefore VC-dim at least 3



Example Justification
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Case 1: 3 or more points co-linear
Obviously can’t label

23
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Case 2: Other allignments
Form a regular polygon with points
Examples not connected get same label
Single line won’t be able to separate (XOR)
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Unsupervised Learning

 In supervised learning, we have data in the 
form of pairs <x,y>, where y=f(x). The 
goal is to approximate f

 In unsupervised learning, the data just 
contains x!

 The main goal is to find structure in the data

 The definition of ground truth is often missing 
(no clear error function, like in supervised 
learning)
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Uses of Unsupervised Learning

 Visualization of the data

 Data compression

 Density estimation: what distribution generated 
the data?

 Pre-processing step for supervised learning

 Partition data

 Novelty detection
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Unsupervised Learning: Clustering

 In many problems there are no class labels

 Humans: How do we form categories of 
objects?

 Humans are good at creating 
groups/categories/clusters from data

 Image analysis finding groups in data is very 
useful

 e.g., can find pixels with similar intensities

 e.g., can find images that are similar -> can 
automatically find classes/clusters of images
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What is Clustering

 Cluster: a collection of data objects

 Similar to one another within the same cluster

 Dissimilar to the objects in other clusters

 Cluster analysis: Grouping objects into clusters

 Clustering is unsupervised classification

 Clusterings are usually not right or wrong

 Different clusterings can reveal different things 
about the data

 More direct measure of goodness if it is a first step 
towards supervised learning, or data compression
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How is Clustering Used

 Clustering is grouping similar objects together

 To establish prototypes or detect outliers

 To simplify data for further analysis/learning

 To visualize data

 As a stand-alone tool to get insight into data 
distribution 

 As a preprocessing step for other algorithms
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Example: Two Clusters
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Example: Gene Expression
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(Green = up-regulated, Red = down-regulated)
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Clustering Applications

 Marketing: Help marketers discover distinct groups in 

their customer bases, and then use this knowledge to 

develop targeted marketing programs

 Land use: Identification of areas of similar land use in 

an earth observation database

 Insurance: Identifying groups of motor insurance policy 

holders with a high average claim cost

 Urban planning: Identifying groups of houses according 

to their house type, value, and geographical location

 Seismology: Observed earth quake epicenters should 

be clustered along continent faults
17



What Is a Good Clustering?

 A good clustering method will produce      

clusters with

 High intra-class similarity

 Low inter-class similarity 

 Precise definition of clustering quality is difficult

 Application-dependent

 Ultimately subjective
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Requirements for Clustering in
Data Mining

 Scalability

 Ability to deal with different types of attributes

 Discovery of clusters with arbitrary shape

 Minimal domain knowledge required to determine input 

parameters

 Ability to deal with noise and outliers

 Insensitivity to order of input records

 Robustness wrt high dimensionality

 Incorporation of user-specified constraints

 Interpretability and usability
19



The Clustering Problem

 Let x = (x1, x2,…, xd,) be a d-dimensional 
feature vector

 Let D be a set of x vectors,

 D = { x1, x2, ….. xN }

 Given data D, group the N vectors into K 
groups such that the grouping is “optimal”
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Basic Concept: Distances/Similarities

 Clustering methods use a distance (similarity) 
measure to assess the distance between

 a pair of instances

 a cluster and an instance

 a pair of clusters

 Given a distance value, can convert it into a 
similarity value: sim(i,j) = 1/[1+dist(i,j)]

 Not always straightforward to go the other way

 We’ll describe our algorithms in terms of 
distances
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Distances Between Instances

 Same we used for IBL (e.g, Lp norm)

 Euclidean distance (p = 2):

 Properties of a metric d(i,j):

 d(i,j)  0

 d(i,i) = 0

 d(i,j) = d(j,i)

 d(i,j)  d(i,k) + d(k,j)
22
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Basic Concept: Clusters Structure
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Hierarchical Flat



Basic Concept: Cluster Assignment

 Hard clustering: 
 Each item in only one cluster

 Soft clustering:
 Each item has a probability of membership in each 

cluster

 Disjunctive / overlapping clustering:
 An item can be in more than one cluster

24



Major Clustering Approaches

 Hierarchical: Create a hierarchical 
decomposition of the set of objects using some 
criterion

 Partitioning: Construct various partitions and 
then evaluate them by some criterion

 Model-based: Hypothesize a model for each 
cluster and find best fit of models to data

 Density-based: Guided by connectivity and 
density functions
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Hierarchical Clustering

 Can do top-down (divisive) or bottom-up 
(agglomerative)

 In either case, we maintain a matrix of distance 
(or similarity) scores for all pairs of

 Instances

 Clusters (formed so far)

 Instances and clusters
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Hierarchical Clustering: Dendogram
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Bottom-Up Hierarchical Clustering

Given: instances x1,…,xn

For i = 1 to n, ci = {xi}

C = {c1,…,cn}

j = n

While |C| > 1

j = j+1

(ca,cb) = argmin dist(cu,cv)

cj = ca U cv

add node to tree joining a and b

C = C – {ca,cb} U cj

Return tree with root node j
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Bottom-Up Example
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Distance Between Two Clusters

 The distance between two clusters can be 
determined in several ways

 Single link: distance of two most similar instances: 
dist(cu, cv) = min{dist(a, b) |  a∈cu, b∈cv}

 Complete link: distance of two least similar 
instances: dist(cu, cv) = max{dist(a, b) |  a∈cu, b∈cv}

 Average link: average distance between instances: 
dist(cu, cv) = avg{dist(a, b) |  a∈cu, b∈cv}
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Single Link

32

Cluster similarity = similarity of two most similar members



Complete Link

33

Cluster similarity = similarity of two least similar members



Average Link
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Note: Picture doesn’t show all connections

Cluster similarity = average similarity of all pairs



Efficient Distance Updates

 If we merged and cu and cv into cj, we can 
determine distance to each other cluster:

 Single link: 
dist(cj, ck) = min{dist(cu, ck) , dist(cv, ck)}

 Complete link: 
dist(cj, ck) = max{dist(cu, ck) , dist(cv, ck)}

 Average link:
dist(cj, ck) =

35

|cu| * dist(cu, ck) + |cv| * dist(cv, ck)} 

|cu| + |cv|



Computational Complexity

Naïve implementation has O(n3) time complexity,

where n is the number of instances

 Compute initial distances: O(n2) 

 Merge steps: O(n), each step 

 Update distance matrix: O(n) 

 Select next pair of clusters: O(n2) 
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Computational Complexity

 Single link: Can update and pick pair in O(n), 
which results in O(n2) algorithm 

 Complete and average link: Can do these steps 
in O(n log n), which yields an O(n2 log n) 
algorithm

37



Single Link

 Chaining:
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Single Link

 Chaining:
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Single Link

 Chaining:
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Single Link

 Chaining:

 Bottom line: 

 Simple, fast

 Often low quality
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Complete Link

 Worst case O(n3)

 Fast algorithm: Requires O(n2) space

 No chaining

 Bottom line: 

 Typically much faster than O(n3)

 Often good quality
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Divisive or Top-Down Clustering

Initialize: All items one cluster

Iterate: 

1. select a cluster cj (least coherent)

2. divide cj into two clusters

Halt: When have required # of clusters
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Note: Step 2 requires another clustering algorithm!



Top-Down Example
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Other Hierarchical
Clustering Methods

 Major weakness of agglomerative clustering methods

 Do not scale well: time complexity of at least O(n2), 
where n is the number of total objects

 Can never undo what was done previously

 Integration of hierarchical with distance-based 
clustering

 BIRCH: uses CF-tree and incrementally adjusts the 
quality of sub-clusters

 CURE: selects well-scattered points from the cluster 
and then shrinks them towards the center of the 
cluster by a specified fraction
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BIRCH

 BIRCH: Balanced Iterative Reducing and Clustering 
using Hierarchies (Zhang, Ramakrishnan & Livny, 1996)

 Incrementally construct a CF (Clustering Feature) tree

 Parameters: max diameter, max children

 Phase 1: scan DB to build an initial in-memory CF 
tree (each node: #points, sum, sum of squares)

 Phase 2: use an arbitrary clustering algorithm to 
cluster the leaf nodes of the CF-tree 

 Scales linearly: finds a good clustering with a single 
scan

 Weaknesses: handles only numeric data, sensitive to 
order of data records
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Definitions

 Centroid:

 Radius: average distance from member points 
to cluster centroid
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Cluster Feature Vector

 Given: X1,…,Xn, data points in a cluster where 
each with d-dimensions 

 We define CF = (N, LS, SS), where

 N: Number of data points

 LS: N
i=1   Xi

 SS: N
i=1   Xi

2

 Note: CFs are additive!

 E.g., CF1 + CF2 = (N1+N2, LS1+LS2, SS1+SS2) 
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Cluster Feature Example
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0 1 2 3 4 5 6 7 8 9 10

CF = (5, (16,30),(54,190))

(3,4)

(2,6)

(4,5)

(4,7)

(3,8)

LSx = 3 + 2 + 4 + 4 + 3 = 16

LSy = 4 + 6 + 5 + 7 + 8 = 30

SSx = 32 + 22 + 42 +42 + 32 = 54

SSy = 42 + 62 + 52 +72 + 82 = 190



Cluster Feature Tree

 A CF-tree is a height-balanced tree with two 
parameters: 
 Branching factor (non leaf nodes B, leaf nodes, L)

 Threshold T 

 Each non leaf node has the form [CFi, childi]

 Each leaf node has CF

 Set of CFs

 Two pointers: prev and next

 Diameter of a subcluster under a leaf node can 
not exceed the threshold T
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CF Tree

CF1

child1

CF3

child3

CF2

child2

CF6

child6

CF11

child1

CF13

child3

CF12

child2

CF15

child5

CF1 CF2 CF6
prev next CF1 CF2 CF4

prev next

B = 7

L = 6

Root

Non-leaf node

Leaf node Leaf node

Note: Dropped subscripts on leaf nodes due to space



CF-Tree Construction

 Scan data set and insert the incoming data 
instances into the CF tree one by one

 Each instance is inserted into the closest 
subcluster under a leaf node

 If insertion causes subcluster diameter to 
exceed threshold, then create new subcluster
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CF-Tree Construction

 The new subcluster may cause its parent to 
exceed branching factor

 If so, split leaf node 

 Identifying the pair of subclusters with largest inter-
cluster distance

 Divide by proximity to these two subclusters

 If this split clause non-leaf node to exceed 
branching fact, then recursively split

 If the root node is split, then the height of the 
CF tree is increased by one
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Partitioning Algorithms

 Partitioning method: Construct a partition of a database 

D of n objects into a set of k clusters

 Given a k, find a partition of k clusters that optimizes 

the chosen partitioning criterion

 Global optimal: exhaustively enumerate all partitions

 Heuristic methods: k-means, k-medoids algorithms

 k-means (MacQueen, 1967): Each cluster is 

represented by the center of the cluster

 k-medoids or PAM (Partition around medoids) 

(Kaufman & Rousseeuw, 1987): Each cluster is 

represented by one of the objects in the cluster  55



Partitional Clusterings

 Divide instances into disjoint clusters

 Flat vs. tree structure

 Key issues:

 How many clusters should there be?

 How should clusters be represented?
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Partitional Clustering from a 
Hierarchical Clustering
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Can generate a partitional clustering from 
a hierarchical clustering by “cutting” the 
tree at some level

Cutting here
Gives 2 clusters

Cutting here
Gives 4 clusters



K-Means Clustering

 A commonly-used clustering algorithm

 Easy to implement

 Quick to run

 Assumes

 Objects are n-dimensional vectors

 Distance/similarity measure between these instances

 Goal: Partition the data in K disjoint subsets

 Ideally: Partition reflects the structure of the 
data
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K-Means Overview

 Inputs:

 A set of n-dimensional real vectors {x1,…, xm}

 K, the desired number of clusters

 Output: A mapping of the vectors into k clusters 
(disjoint subsets), C: {1,…,m} -> {1,…,k}

 The k cluster centers are in the same space as 
instances

 Each cluster is represented by a vector
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K-Means Algorithm

Let d be the distance measure between instances
Pick k random centroids, s1,…,sj

Until clustering converges or other stopping criterion:
For each instance xi:

Assign xi to the cluster cj s.t. d(xi, sj) is minimal

Update the centroid of each cluster
For each cluster cj

sj = (cj) 



Algorithmic Details

 Initializing the centroids

 Pick points randomly

 Pick points from data instances

 (cj) = [1/ |cj |] * [ Σi xi ]

 |cj | is number of examples assigned to cluster cj

 i cj , i.e., examples that are assigned to cluster cj

 Note: This is a vector [calculate the mean along 
each dimension]
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Seed Choice

 Results vary based on seed selection

 Some seeds can result in poor convergence 
rate, or convergence to sub-optimal clusterings

 Select good seeds using a heuristic or the 
results of another method

 Do many runs of k-means, each from a 
different random start configuration
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K-Means W/K=2
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Pick seeds

Reassign clusters

Compute centroids

x
x

Reasssign clusters

x
x xx Compute centroids

Reassign clusters

Converged!



K-Means Example
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X1= <4,1>
X2= <4,3>
X3= <6,2>
X4= <8,8>

C1= <3,2>
C2= <7,3>

X1

X2

0 1 2  3 4 5 6 7 8

0
 1

 2
  
3
 4

 5
 6

 7
 8

X3

X4

C1

C2

Distance function: Manhattan



K-Means Example
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X1= <4,1>
X2= <4,3>
X3= <6,2>
X4= <8,8>

C1= <3,2>
C2= <7,3>0 1 2  3 4 5 6 7 8

0
 1

 2
  
3
 4

 5
 6

 7
 8 Dist(X1,C1) = 2

Dist(X2,C1) = 2
Dist(X3,C1) = 3
Dist(X4,C1) = 11

Dist(X1,C2) = 5
Dist(X2,C2) = 3
Dist(X3,C2) = 2
Dist(X4,C2) = 6

Step 1a



K-Means Example
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X1= <4,1>
X2= <4,3>
X3= <6,2>
X4= <8,8>

C1= <3,2>
C2= <7,3>0 1 2  3 4 5 6 7 8

0
 1

 2
  
3
 4

 5
 6

 7
 8 Dist(X1,C1) = 2

Dist(X2,C1) = 2
Dist(X3,C1) = 3
Dist(X4,C1) = 11

Dist(X1,C2) = 5
Dist(X2,C2) = 3
Dist(X3,C2) = 2
Dist(X4,C2) = 6

0 1 2  3 4 5 6 7 8

0
 1

 2
  
3
 4

 5
 6

 7
 8

C1=

C2=

4 + 4 1 + 3
2 2, ><

6 + 8 2 + 8
2 2, ><

= <4,2>

= <7,5>

Step 1b



K-Means Example
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X1= <4,1>
X2= <4,3>
X3= <6,2>
X4= <8,8>

C1= <4,2>
C2= <7,5>0 1 2  3 4 5 6 7 8

0
 1

 2
  
3
 4

 5
 6

 7
 8 Dist(X1,C1) = 1

Dist(X2,C1) = 1
Dist(X3,C1) = 2
Dist(X4,C1) = 10

Dist(X1,C2) = 7
Dist(X2,C2) = 5
Dist(X3,C2) = 4
Dist(X4,C2) = 4

Step 2a



K-Means Example
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X1= <4,1>
X2= <4,3>
X3= <6,2>
X4= <8,8>

C1= <4,2>
C2= <7,5>0 1 2  3 4 5 6 7 8

0
 1

 2
  
3
 4

 5
 6

 7
 8 Dist(X1,C1) = 1

Dist(X2,C1) = 1
Dist(X3,C1) = 2
Dist(X4,C1) = 10

Dist(X1,C2) = 7
Dist(X2,C2) = 7
Dist(X3,C2) = 4
Dist(X4,C2) = 4

C1=

C2=

4 + 4 + 6 1 + 3 + 2
3 3, ><

8 8
1 1, ><

= <4.67,2>

= <8,8>0 1 2  3 4 5 6 7 8

0
 1

 2
  
3
 4

 5
 6

 7
 8

Step 2b



K-Means Example
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X1= <4,1>
X2= <4,3>
X3= <6,2>
X4= <8,8>

C1= <4.67,2>
C2= <8,8>0 1 2  3 4 5 6 7 8

0
 1

 2
  
3
 4

 5
 6

 7
 8 Dist(X1,C1) = 1.67

Dist(X2,C1) = 1.67
Dist(X3,C1) = 1.67
Dist(X4,C1) = 10.33

Dist(X1,C2) = 11
Dist(X2,C2) = 9
Dist(X3,C2) = 8
Dist(X4,C2) = 0

Step 3a



K-Means Example
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X1= <4,1>
X2= <4,3>
X3= <6,2>
X4= <8,8>

C1= <4.67,2>
C2= <8,8>0 1 2  3 4 5 6 7 8

0
 1

 2
  
3
 4

 5
 6

 7
 8 Dist(X1,C1) = 1.67

Dist(X2,C1) = 1.67
Dist(X3,C1) = 1.67
Dist(X4,C1) = 10.33

Dist(X1,C2) = 11
Dist(X2,C2) = 9
Dist(X3,C2) = 8
Dist(X4,C2) = 0

Assignment are unchanged -> converged

Note: Not showing centroid recomputatoin

Step 3b



Time Complexity

 Distance between two instances: O(n),
where n is the dimensionality of the vectors

 Reassigning clusters: O(km) distance 
computations, or O(kmn)

 Computing centroids: Each instance vector gets 
added once to some centroid: O(nm)

 Assume these two steps are each done once for 
I iterations:  O(Iknm)

 Linear in all relevant factors, with fixed number 
of iterations, more efficient than O(m2) HAC
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Comments on the K-Means Method

 Strengths

 Relatively efficient: O(Ikmn), where m is # objects, k is     
# clusters, and I  is # iterations. Normally, k, I << m

 Often terminates at a local optimum. The global optimum
may be found using techniques such as simulated 
annealing and genetic algorithms

 Weaknesses

 Applicable only when mean is defined (what about 
categorical data?)

 Need to specify k, the number of clusters, in advance

 Trouble with noisy data and outliers

 Not suitable to discover clusters with non-convex shapes
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Model-Based Clustering

 Basic idea: Clustering as probability estimation

 One model for each cluster

 Generative model:

 Probability of selecting a cluster

 Probability of generating an object in cluster

 Find max. likelihood or MAP model

 Missing information: Cluster membership

 Use EM algorithm

 Quality of clustering: Likelihood of test objects



EM Clustering

 In k-means, instances are assigned to exactly 
one cluster

 We can do “soft” k-means with an Expectation 
Maximization algorithm

 Each cluster represented by a distribution

 E step: Determine how likely it is that each 
that each cluster generated each instance

 M step: Adjust cluster parameters to 
maximize likelihood
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Mixtures of Gaussians

 Cluster model: Normal distribution (mean, covariance)

 Assume: diagonal covariance, known variance,            
same for all clusters

 Max. likelihood: mean = avg. of samples

 But what points are samples of a given cluster?

 Estimate prob. that point belongs to cluster

 Mean = weighted avg. of points, weight = prob.

 But to estimate probs. we need model

 “Chicken and egg” problem: use EM algorithm
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EM Algorithm for Mixtures

 Initialization: Choose means at random

 E step:

 For all points and means, compute Prob(point|mean)

 Prob(mean|point) =
Prob(mean) Prob(point|mean) / Prob(point)

 M step:

 Each mean = Weighted avg. of points

 Weight = Prob(mean|point)

 Repeat until convergence



Representing Clusters

 Represent clusters with a Gaussian

 Where

 μj is the mean

 σ2 is the variance

 Nj(xi) = probability(xi| μj)
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Nj(xi) = (2πσ2)0.5

1 e σ

(xi- μj)

2

1-
2



EM Clustering: Hidden Variables

 On each iteration of k-means clustering, we 
had to assign each instance to a cluster

 In the EM approach, we’ll use hidden variables 
to represent this idea

 For each instance xi we have a set of hidden 
variables zi1,…,zik

 We can think of zij as being 1 if is a member of 
cluster j and 0 otherwise

79



E-Step

 Recall that zij is a hidden variable which is 1 if 
Nj generated xi and 0 otherwise

 In the E-step, we compute hij, the expected 
value of this hidden variable

80

hij = Σl Pl * Nl(xi)

Pj * Nj(xi)



M-Step

 Given the expected values hij, we re-estimate 
the means of the Gaussians and the cluster 
probabilities

81

Pj =
Σi hij

n

μj =
Σi xi * hij

Σi hij

Note: i goes over examples



EM Clustering Example

 Consider a one-dimensional clustering problem:

 x1 = -4

 x2 = -3

 x3 = -1

 x4 = 3

 x5 = 5

 Settings

 μ1 = 0, μ2 = 2, both have σ = 2

 Density function is: f(x, μ) =

 Initially, we set P1 = P2 = 0.5
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(8π)0.5

1
e 2

(x- μ)

2

-1

2



EM Clustering Example

 f(-4, μ1) = 0.0269

 f(-3, μ1) = 0.0646

 f(-1, μ1) = 0.176

 f(3, μ1) = 0.0646

 f(5, μ1) = 0.00874

 f(-4, μ2) = 0.0022

 f(-3, μ2) = 0.00874

 f(-1, μ2) = 0.0646

 f(3, μ2) = 0.176 

 f(5, μ2) = 0.0646
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F(-4, μ1)=
(8π)0.5

1
e 2

(4-0)

2

1-
2



EM Clustering Example: E Step

 h11 = 0.924

 h21 = 0.881

 h31 = 0.732

 h41 = 0.268

 h51 = 0.119

 h12 = 0.076

 h22 = 0.119

 h32 = 0.268

 h42 = 0.732

 h52 = 0.881
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h11 =
P1 * f(x1, μ1) + P2 * f(x1, μ2)

P1 * f(x1, μ1) =
0.5*0.0269+0.5*0.0022

0.5 * .0269
= 0.924



EM Clustering Example: M Step
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μ1 =
-4*0.924 + -3*0.881 + -1*0.732 + 3*0.268 + 5*0.119

0.924 + 0.881 + 0.732 + 0.268 + 0.119
= -1.94

μ2 =
-4*0.076 + -3*0.119 + -1*0.268 + 3*0.732 + 5*0.881

0.076 + 0.119 + 0.268 + 0.732 + 0.881
= 3.39

μ1 =
Σi xi * hi1

Σi hi1

μ2 =
Σi xi * hi2

Σi hi2

P2 =
0.076 + 0.119 + 0.268 + 0.732 + 0.881

5

Σi hi2

n
= = 0.42

P1 =
Σi hi1

n
= = 0.58

0.924 + 0.881 + 0.732 + 0.268 + 0.119

5



EM Clustering

 Will converge to a local maximum

 Sensitive to initial means of clusters

 Have to choose the number of clusters in 
advance

 k-means is a special case of EM clustering
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Evaluating Cluster Results

 Given random data without any “structure”, 
clustering algorithms will still return clusters

 The gold standard: do clusters correspond to 
natural categories?

 Do clusters correspond to categories we care 
about? (there are lots of ways to partition the 
world)
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Approaches to Cluster Evaluation

 External validation

 e.g. do genes clustered together have some 
common function?

 Internal validation

 How well does clustering optimize intra-cluster 
similarity and inter-cluster dissimilarity?

 relative validation

 How does it compare to other clusterings?

 e.g. with a probabilistic method (such as EM) we 
can ask: how probable does held-aside data look as 
we vary the number of clusters.
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 Homework 4: VC-Dimension problem

 Clustering

 Unsupervised learning, clustering intro

 Hierarchical clustering

 Partitional clustering

 Model-based clustering

 Applications
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Low Quality of Web Searches

 System perspective:

 small coverage of Web (<16%)

 dead links and out of date pages

 limited resources

 IR perspective  (relevancy of doc ~ similarity to 
query):

 very short queries

 huge database

 novice users
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Document Clustering

 User receives many (200 - 5000) documents 
from Web search engine

 Group documents in clusters 

 by topic

 Present clusters as interface
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Q: Need Way to Compare Queries 
and Documents

 Vector space model:
 How to determine important words in a document?

 How to determine the degree of importance of a 
term within a document and within the entire 
collection?

 How to determine the degree of similarity between a 
document and the query?

 In the case of the web, what is a collection and what 
are the effects of links, formatting information, etc.?
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Vector-Space Model

 Assume t distinct terms remain after 
preprocessing: vocabulary

 These “orthogonal” terms form a vector space

Dimension = t = |vocabulary| 

 Each term, i,  in a document or query, j, is 
given a real-valued weight, wij.

 Both documents and queries are expressed as       
t-dimensional vectors:

dj = (w1j, w2j, …, wtj)
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Graphical Representation
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Example:

D1 = 2T1 + 3T2 + 5T3

D2 = 3T1 + 7T2 +   T3

Q = 0T1 + 0T2 +  2T3

T3

T1

T2

D1 = 2T1+ 3T2 + 5T3

D2 = 3T1 + 7T2 +  T3

Q = 0T1 + 0T2 + 2T3

7

32

5

• Is D1 or D2 more similar to Q?
• How to measure the degree 

of similarity? Distance? Angle? 
Projection?



Document Collection

 Vector space model represents a collection of n
documents by a term-document matrix

 Each entry: “weight” of a term in the document
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T1 T2 ….      Tt

D1 w11 w21 …      wt1

D2 w12 w22 …      wt2

: :      :               :
: :      :               :
Dn w1n w2n …      wtn



Term Weights: Term Frequency

 More frequent terms in a document are more 
important, i.e. more indicative of the topic

fij = frequency of term i in document j

 May want to normalize term frequency (tf)  by 
dividing by the frequency of the most common 
term in the document:

tfij = fij / maxi{fij}
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Term Weights: 
Inverse Document Frequency

 Terms that appear in many different documents 
are less indicative of overall topic

df i = document frequency of term i

= number of documents containing term i

idfi = inverse document frequency of term i, 

= log2 (N/ df i)  (N: number of documents)

 An indication of a term’s discrimination power

 Log used to dampen the effect relative to tf
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TF-IDF Weighting

 A typical combined term importance indicator is 
tf-idf weighting:

wij =  tfij idfi =  tfij log2 (N/ dfi)

 A term occurring frequently in the document 
but rarely in the rest of the collection is given 
high weight

 Many other ways of determining term weights 
have been proposed

 Experimentally, tf-idf works well
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TF-IDF Example

101

Given a document containing terms with given 
frequencies:

A(3), B(2), C(1)

Assume collection contains 10,000 documents and 

document frequencies of these terms are:

A(50), B(1300), C(250)

Then:

A:  tf = 3/3;  idf = log2(10000/50) = 7.6;     tf-idf = 7.6

B:  tf = 2/3;  idf = log2 (10000/1300) = 2.9; tf-idf = 2.0

C:  tf = 1/3;  idf = log2 (10000/250) = 5.3;   tf-idf = 1.8



Query Vector

 Query vector is typically treated as a document 
and also tf-idf weighted

 Alternative is for the user to supply weights for 
the given query terms
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Similarity Measures

 Inner product: sim(dj,q) = Σ wij * wiq

 wij = weight of term i in doc j

 wiq is weight of term i in query

 Cosine similarity: sim(dj,q) =

 Measures the cosine of the angle between two 
vectors

 Inner product normalized by the vector lengths
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Σi (wij)
2 Σi (wiq)

2

Σi wij * wiq



Cosine Similarity Visually
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2

t3

t1

t2

D1

D2

Q

1

Take cosine of this
angle as similarity 
between query and 
document



Comparison 

 D1 = 2T1 + 3T2 + 5T3

 D2 = 3T1 + 7T2 +  1T3      

 Q = 0T1 + 0T2 +  2T3

 Weighted inner product

 sim(D1 , Q) = 2*0 + 3*0 + 5*2  = 10

 sim(D2 , Q) = 3*0 + 7*0 + 1*2  =  2

 Cosine

 sim(D1 , Q) = 10 / (4+9+25)(0+0+4) = 0.81

 sim(D2 , Q) =  2 / (9+49+1)(0+0+4) = 0.13
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D1 is 6 times better than D2 using cosine similarity 
but only 5 times better using inner product.



Comments On Vector Space Model

 Simple, mathematically based approach

 Considers both local (tf) and global (idf) word 
occurrence frequencies

 Provides partial matching and ranked results.

 Tends to work quite well in practice despite 
obvious weaknesses

 Allows efficient implementation for large 
document collections
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Weakness with Vector Space Model

 Missing semantic information (e.g. word sense)

 Missing syntactic information (e.g. phrase 
structure, word order, proximity information)

 Assumption of term independence (e.g. ignores 
synonomy)
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Analyzing Microarray Data

 Microarrays allow us to measure gene 
expression 

 Central Dogma: 

 Genes encode proteins

 DNA transcribed into messenger RNA

 mRNA translated into proteins

 Triplet code (codons)
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How Microarrays Work
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Probes (DNA)

GeneChip Surface

Hybridization

Labeled Sample (RNA)



Two Views of Microarray Data

 Data points are genes

 Represented by expression levels across 
different samples (ie, features=samples)

 Goal: categorize new genes

 Data points are samples (eg, patients)

 Represented by expression levels of different 
genes (ie, features=genes)

 Goal: categorize new samples
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Unsupervised Learning Task

 Given: a set of microarray experiments under 
different conditions

 Do: cluster the genes, where a gene described 
by its expression levels in  different 
experiments
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Example
(Green = up-regulated, Red = down-regulated)

G
e
n
e
s

Experiments (Samples)



Unsupervised Learning Task 2

 Given: a set of microarray experiments 
(samples) corresponding to different conditions 
or patients

 Do: cluster the experiments
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Examples

 Cluster samples from mice subjected to a 
variety of toxic compounds 
(Thomas et al., 2001)

 Cluster samples from cancer patients, 
potentially to discover different subtypes of a 
cancer

 Cluster samples taken at different 
time points
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Summary

 Unsupervised learning technique: Gain insight 

into the data

 Clustering approaches

 Hierarchical methods

 Partitioning methods

 Model-based methods

 Used in many applications

 Information retrieval

 Bioinformatics
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Next Class

 Association rule mining

 Reading: 
http://infolab.stanford.edu/~ullman/mining/assocrules.pdf
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http://infolab.stanford.edu/~ullman/mining/assocrules.pdf


Questions?

117


