# CSEP 546: Decision Trees and Experimental Methodology

Jesse Davis

# Outline

- Decision Trees
  - Representation
  - Learning Algorithm
  - Potential pitfalls

• Experimental Methodology

#### **Decision Trees**

- Popular hypothesis space
  - Developed with learning in mind
  - Deterministic
  - Simple learning algorithm
  - Handles noise well
  - Produce comprehensible output

#### **Decision Trees**

- Effective hypothesis space
  - Variable sized hypotheses
  - Can represent any Boolean function
  - Can represent both discrete and continuous features
  - Equivalent to propositional DNF
- Classify learning algorithm as follows:
  - Constructive search: Learn by adding nodes
  - Eager
  - Batch [though online algorithms exist]

#### **Decision Tree Representation**



Decision tree is equivalent to logic in disjunctive normal form Play  $\Leftrightarrow$  (Sunny  $\land$  Normal)  $\lor$  Overcast  $\lor$  (Rain  $\land$  Weak)

#### **Numeric Attributes**



# How Do Decision Trees Partition Feature Space?



Decisions divide feature space into axis parallel rectangles and labels each one with one of the K classes

# Decision Trees Provide Variable-Size Hypothesis Space

- As the number of nodes (or tree depth) increases, the hypothesis space grows
  - Depth 1 (decision "stumps"): Any Boolean function over one variable
  - Depth 2:
    - Any Boolean function over two variables
    - Some Boolean functions over three variables e.g., (x<sub>1</sub> ^ x<sub>2</sub>) v (!x<sub>1</sub> ^ !x<sub>3</sub>)
  - Etc.

# Decision Trees Can Represent Any Boolean Function





However, in the worst case, the tree will require exponential many nodes

# **Objective of DT Learning**

**Goal:** Find the decision tree that minimizes the error rate on the training data

- Solution 1: For each training example, create one root-to-leaf path
- Problem 1: Just memorizes the training data
- Solution 2: Find smallest tree that minimizes our error function
- Problem 2: This is NP-hard
- Solution 3: Use a greedy approximation

# **DT Learning as Search**

Nodes

Decision Trees:1) Internal: Attribute-value test2) Leaf: Class label

• Operators

Tree Refinement: Sprouting the tree

Initial node

Smallest tree possible: a single leaf

Heuristic?

Information Gain

• Goal?

Best tree possible (???)

#### **Decision Tree Algorithm**

BuildTree(TraingData) Split(TrainingData)

Split(D) If (all points in D are of the same class) Then Return For each attribute A Evaluate splits on attribute A Use best split to partition D into D1, D2 Split (D1) Split (D2)

# What is the Simplest Tree?

| Day (                | Jutlook | Temp | Humid | Wind | Play?  |
|----------------------|---------|------|-------|------|--------|
| d1                   | S       | h    | h     | W    | n      |
| d2                   | S       | h    | h     | S    | n      |
| d3<br>d4<br>d5<br>d6 | 0       | h    | h     | W    | У      |
| d4                   | r       | m    | h     | W    | ÿ      |
| d5                   | r       | С    | n     | W    | y<br>y |
|                      | r       | С    | n     | S    | n      |
| d7                   | Ο       | С    | n     | S    | У      |
| d8<br>d9             | S       | m    | h     | W    | n      |
| d9                   | S       | С    | n     | W    | У      |
| d10                  | r       | m    | n     | W    | ÿ      |
| d11                  | S       | m    | n     | S    | y<br>y |
| d12                  | 0       | m    | h     | S    | y<br>y |
| d13                  | Ο       | h    | n     | W    | ÿ      |
| d14                  | r       | m    | h     | S    | 'n     |

#### How good?

#### [9+, 5-] Majority class: correct on 9 examples incorrect on 5 examples



#### Which attribute should we use to split?

© Daniel S. Weld

#### Choosing the Best Attribute

One way to choose the best attribute is to perform a 1-step lookahead search and choose the attribute that gives the lowest error rate on the training data.

#### CHOOSEBESTATTRIBUTE(S)

choose j to minimize  $J_j$ , computed as follows:

 $S_0 = \text{all } \langle \mathbf{x}, y \rangle \in S \text{ with } x_j = 0;$   $S_1 = \text{all } \langle \mathbf{x}, y \rangle \in S \text{ with } x_j = 1;$   $y_0 = \text{the most common value of } y \text{ in } S_0$   $y_1 = \text{the most common value of } y \text{ in } S_1$   $J_0 = \text{number of examples } \langle \mathbf{x}, y \rangle \in S_0 \text{ with } y \neq y_0$   $J_1 = \text{number of examples } \langle \mathbf{x}, y \rangle \in S_1 \text{ with } y \neq y_1$   $J_j = J_0 + J_1 \text{ (total errors if we split on this feature)}$ **return** j

#### Choosing the Best Attribute: Example



#### Choosing the Best Attribute: Example



This metric may not work well as it does not always detect cases where we are making progress towards the goal

#### A Better Metric From Information Theory



Intuition: Disorder is bad and homogeneity is good



© Daniel S. Weld

Entropy (disorder) is bad Homogeneity is good

- Let S be a set of examples
- Entropy(S) =  $-P \log_2(P) N \log_2(N)$ 
  - P is proportion of pos example
  - -N is proportion of neg examples
  - $-0 \log 0 == 0$
- Example: S has 9 pos and 5 neg Entropy([9+, 5-]) = -(9/14)  $\log_2(9/14) - (5/14)\log_2(5/14) = 0.940$

#### Information Gain

- Measure of expected *reduction* in entropy
- Resulting from splitting along an attribute

 $Gain(S,A) = Entropy(S) - \sum_{v \in Values(A)} (|S_v| / |S|) Entropy(S_v)$ 

Where  $Entropy(S) = -P \log_2(P) - N \log_2(N)$ 

# Example: "Good day for tennis"

- Attributes of instances
  - Outlook = {rainy (r), overcast (o), sunny (s)}
  - Temperature = {cool (c), medium (m), hot (h)}
  - Humidity = {normal (n), high (h)}
  - Wind = {weak (w), strong (s)}
- Class value
  - Play Tennis? = {don't play (n), play (y)}
- Feature = attribute with one value
  - E.g., outlook = sunny
- Sample instance
  - outlook=*sunny*, temp=*hot*, humidity=*high*, wind=*weak*

| Experience: "Good day for tennis" |        |      |       |        |             |
|-----------------------------------|--------|------|-------|--------|-------------|
| Day O                             | utlook | Temp | Humic | l Wind | PlayTennis? |
| d1                                | S      | h    | h     | W      | n           |
| d2                                | S      | h    | h     | S      | n           |
| d3                                | 0      | h    | h     | W      | У           |
| d4                                | r      | m    | h     | W      | У           |
| d5                                | r      | C    | n     | W      | У           |
| d6                                | r      | C    | n     | S      | n           |
| d7                                | 0      | C    | n     | S      | У           |
| d8                                | S      | m    | h     | W      | n           |
| d9                                | S      | C    | n     | W      | У           |
| d10                               | r      | m    | n     | W      | У           |
| d11                               | S      | m    | n     | S      | У           |
| d12                               | 0      | m    | h     | S      | У           |
| d13                               | 0      | h    | n     | W      | У           |
| d14                               | r      | m    | h     | S      | n           |

#### Gain of Splitting on Wind

| Values (wind) weals strong                                   | Day | Wind | Tennis? |
|--------------------------------------------------------------|-----|------|---------|
| Values(wind)=weak, strong                                    | d1  | weak | n       |
| S = [9+, 5-]                                                 | d2  | S    | n       |
| $S_{weak} = [6+, 2-]$                                        | d3  | weak | yes     |
| $S_{\text{weak}} = [6+, 2-]$<br>$S_{\text{s}} = [3+, 3-]$    | d4  | weak | yes     |
|                                                              | d5  | weak | yes     |
|                                                              | d6  | S    | n       |
| Gain(S, wind)                                                | d7  | S    | yes     |
| = Entropy(S) - $\sum ( S_v  /  S )$ Entropy(S <sub>v</sub> ) | d8  | weak | n       |
|                                                              | d9  | weak | yes     |
| $v \in \{weak, s\}$                                          | d10 | weak | yes     |
| $-$ Entropy(S) $\frac{8}{14}$ Entropy(S)                     | d11 | S    | yes     |
| = Entropy(S) - $8/14$ Entropy(S <sub>weak</sub> )            | d12 | S    | yes     |
| $- \frac{6}{14} \operatorname{Entropy}(S_{s})$               | d13 | weak | yes     |
| = 0.940 - (8/14) 0.811 - (6/14) 1.00                         | d14 | S    | n       |
| = .048                                                       |     |      |         |

#### **Evaluating Attributes**



#### **Resulting Tree**



#### Recurse



#### **One Step Later**



#### **Recurse Again**



#### **One Step Later: Final Tree**



#### Issues

- Missing data
- Real-valued attributes
- Many-valued features
- Evaluation
- Overfitting

#### Missing Data 1

| Day | Temp | Humid | Wind | Tennis? |
|-----|------|-------|------|---------|
| d1  | h    | h     | weak | n       |
| d2  | h    | h     | S    | n       |
| d8  | m    | h     | weak | n       |
| d9  | c    | ?     | weak | yes     |
| d11 | m    | n     | S    | yes     |

#### Assign most common value at this node ?=>h

| Day | Temp | Humid | Wind | Tennis? |
|-----|------|-------|------|---------|
| d1  | h    | h     | weak | n       |
| d2  | h    | h     | S    | n       |
| d8  | m    | h     | weak | n       |
| d9  | с    | ?     | weak | yes     |
| d11 | m    | n     | S    | yes     |

Assign most common value for class ?=>n

# Missing Data 2

| Day | Temp | Humid | Wind | Tennis? |
|-----|------|-------|------|---------|
| d1  | h    | h     | weak | n       |
| d2  | h    | h     | S    | n       |
| d8  | m    | h     | weak | n       |
| d9  | С    | ?     | weak | yes     |
| d11 | m    | n     | S    | yes     |



- 75% h and 25% n
- Use in gain calculations
- Further subdivide if other missing attributes
- Same approach to classify test ex with missing attr
  - Classification is most probable classification
  - Summing over leaves where it got divided

#### **Real-Valued Features**

• Discretize?

Wind25 12 12 12 11 10 10 8 7 7 7 7 6 6 5Playnyynyyyyyyn

• Threshold split using observed values?

Wind82576610125771210711Playnnyyynynyyyyn

Wind 25 12 12 11 10 10 8 7 7 7 7 6 6 5 Play n y y n y n n y y y y y n

> >= 12 >= 10 Gain = 0.0004 Gain = 0.048

#### **Real-Valued Features**

#### <u>Note</u> <u>Cannot discard</u> numeric feature after use in one portion of d-tree



#### **Many-Valued Attributes**

#### FAVORS FEATURES WITH <u>HIGH BRANCHING</u> FACTORS (i.e,. many possible values)

Extreme Case:



<u>At most one example per leaf</u> and all I(.,.) scores for leafs equals zero, so gets perfect score! But generalizes very poorly (i.e., memorizes data)

© Jude Shavlik 2006, David Page 2007

# Fix: Method 1

## Convert all features to binary

e.g., Color = {Red, Blue, Green}

From 1 *N*-valued feature to *N* binary features



#### Used in Neural Nets and SVMs

D-tree readability probably less, but not necessarily

## Fix 2: Gain Ratio

Gain Ratio(S,A) = Gain(S,A)/SplitInfo(S,A)

$$SplitInfo = \sum (|S_v| / |S|) Log_2(|S_v|/|S|)$$
$$v \in Values(A)$$

SplitInfo ≅ entropy of S wrt values of A
 (Contrast with entropy of S wrt target value)
 ↓ attribs with many uniformly distrib values
 e.g. if A splits S uniformly into n sets
 SplitInformation = log<sub>2</sub>(n)... = 1 for Boolean

# Evaluation

• Question: How well will an algorithm perform on unseen data?

- Cannot score based on training data
  - Estimate will be overly optimistic about algorithm's performance

# **Evaluation: Cross Validation**

- Partition examples into *k* disjoint sets
- Now create k training sets
  - Each set is union of all equiv classes except one
  - So each set has (k-1)/k of the original training data



# Cross-Validation (2)

- Leave-one-out
  - Use if < 100 examples (rough estimate)</p>
  - Hold out one example, train on remaining examples
- M of N fold
  - Repeat M times
  - Divide data into N folds, do N fold cross-validation

#### **Overfitting in Decision Trees**



Consider adding a noisy training example: Sunny, Hot, Normal, Strong, PlayTennis=No What effect on tree?



#### Number of Nodes in Decision tree

# **Overfitting Definition**

- DT is *overfit* when exists another DT' and

   DT has *smaller* error on training examples, but
   DT has *bigger* error on test examples
- Causes of overfitting
  - Noisy data, or
  - Training set is too small
- Solutions
  - Reduced error pruning
  - Early stopping
  - Rule post pruning

# **Reduced Error Pruning**

• Split data into train and validation set



- Repeat until pruning is harmful
  - Remove each subtree and replace it with majority class and evaluate on validation set
  - Remove subtree that leads to largest gain in accuracy



Validation set accuracy = 0.75



#### Validation set accuracy = 0.80





Validation set accuracy = 0.70



#### Use this as final tree



#### Number of Nodes in Decision tree

# Post Rule Pruning

- Split data into train and validation set
- Prune each rule independently
  - Remove each pre-condition and evaluate accuracy
  - Pick pre-condition that leads to largest improvement in accuracy
- Note: ways to do this using training data and statistical tests

# **Conversion to Rule**



Outlook = Sunny  $\land$  Humidity = High  $\Rightarrow$  Don't play Outlook = Sunny  $\land$  Humidity = Normal  $\Rightarrow$  Play Outlook = Overcast  $\Rightarrow$  Play

# Example

 $Outlook = Sunny \land Humidity = High \Longrightarrow Don't play$ 

Validation set accuracy = 0.68

 $\rightarrow$  Outlook = Sunny  $\Rightarrow$  Don't play Validation set accuracy = 0.65

 $\rightarrow$  Humidity = High  $\Rightarrow$  Don't play Validation set accuracy = 0.75

Keep this rule

## 15 Minute Break

# Outline

• Decision Trees

- Experimental Methodology
  - Methodology overview
  - How to present results
  - Hypothesis testing

# Experimental Methodology: A Pictorial Overview

collection of classified examples



# Using <u>Tuning</u> Sets

- Often, an ML system has to choose when to stop learning, select among alternative answers, etc.
- One wants the model that produces the highest accuracy on **future** examples ("overfitting avoidance")
- It is a "cheat" to look at the test set while still learning
- Better method
  - Set aside part of the training set
  - Measure performance on this "tuning" data to estimate future performance for a given set of parameters
  - Use best parameter settings, train with all training data (except test set) to estimate future performance on new examples

## Proper Experimental Methodology Can Have a Huge Impact!

A 2002 paper in *Nature* (a major, major journal) needed to be corrected due to "training on the testing set"

Original report : 95% accuracy (5% error rate) Corrected report (which still is buggy): 73% accuracy (27% error rate)

Error rate increased over 400%!!!

# Parameter Setting

Notice that each train/test fold may get <u>different</u> parameter settings!

That's fine (and proper)

I.e., a "parameterless"\* algorithm internally sets parameters for **each data set** it gets

# Using Multiple Tuning Sets

- Using a single tuning set can be unreliable predictor, plus some data "wasted" Hence, often the following is done:
  - 1) For each possible set of parameters,
    - a) Divide <u>training</u> data into **train'** and **tune** sets, using **N-fold cross validation**
    - b) Score this set of parameter value, average **tune** set accuracy
  - 2) Use **best** set of parameter settings and <u>all</u> (train' + tune) examples
  - 3) Apply resulting model to **test** set

# Tuning a Parameter - Sample Usage

Step1: Try various values for k (e.g., neighborhood size/distance function in k-NN



Step2: Pick best value for k (eg. k = 2), Then train using <u>all training data</u> Step3: Measure accuracy on **test set** 

# What to Do for the FIELDED System?

- Do **not** use any **test** sets
- Instead only use tuning sets to determine good parameters
  - Test sets used to estimate future performance
  - You can report this estimate to your "customer," then use all the data to retrain a "product" to give them

# What's Wrong with This?

- 1. Do a cross-validation study to <u>set parameters</u>
- 2. Do <u>another</u> cross-validation study, using the best parameters, to <u>estimate future accuracy</u>
  - How will this relate to the "true" future accuracy?
  - Likely to be an <u>overestimate</u>

What about

- 1. Do a proper train/tune/test experiment
- Improve your algorithm; goto 1 (Machine Learning's "dirty little" secret!)

# Why Not Learn After <u>Each</u> Test Example?

- In "production mode," this would make sense (assuming one received the correct label)
- In "experiments," we wish to estimate <u>Probability we'll label the next example correctly</u> need <u>several samples</u> to accurately estimate

# Outline

• Decision Trees

- Experimental Methodology
  - Methodology overview
  - How to present results
  - Hypothesis testing

## Scatter Plots - Compare Two Algo's on Many Datasets



CS 760 - Machine Learning (UW-Madison)

## **Evaluation Metrics**

## Called a confusion matrix or contingency table

| Predicted | Predicted  |
|-----------|------------|
| True      | False      |
| ТР        | FN         |
|           |            |
| FP        | TN         |
|           |            |
|           | True<br>TP |

The number of times true is "confused" with false by the algorithm

# **ROC Curves**

- ROC: Receiver Operating Characteristics
- Started during radar research during WWII
- Judging algorithms on accuracy alone may not be good enough when <u>getting a positive wrong costs</u> more than <u>getting a negative wrong</u> (or vice versa)
  - Eg, medical tests for serious diseases
  - Eg, a movie-recommender (ala' NetFlix) system

## **Evaluation Metrics**



|          | Predicted | Predicted |
|----------|-----------|-----------|
|          | True      | False     |
| Actually | ТР        | FN        |
| True     |           |           |
| Actually | FP        | TN        |
| False    |           |           |

# **ROC Curves Graphically**



# Creating an ROC Curve - the Standard Approach

- You need an ML algorithm that outputs NUMERIC results such as prob(example is +)
- You can use <u>ensembles</u> (later) to get this from a model that only provides Boolean outputs

– Eg, have 100 models vote & count votes

#### Algorithm for Creating ROC Curves

Step 1: Sort predictions on test set

Step 2: Locate a threshold between examples with opposite categories

Step 3: Compute TPR & FPR for each threshold of Step 2

Step 4: Connect the dots

# Plotting ROC Curves - Example



© Jude Shavlik 2006 David Page 2007 ROC's and Many Models (<u>not</u> in the ensemble sense)

- It is not necessary that we learn <u>one</u> model and then threshold its output to produce an ROC curve
- You could learn <u>different models</u> for <u>different</u> <u>regions</u> of ROC space
- For example, see Goadrich, Oliphant, & Shavlik ILP '04 and MLJ '06

## Area Under ROC Curve

A common metric for experiments is to <u>numerically integrate</u> the ROC Curve



AUC = Wilcoxon-Mann-Whitney Statistic

© Jude Shavlik 2006 David Page 2007

CS 760 – Machine Learning (UW-Madison)

## ROC's & Skewed Data

- One strength of ROC curves is that they are a good way to deal with skewed data (|+| >> |-|) since the axes are fractions (rates) independent of the # of examples
- You must be careful though!
- Low FPR \* (many negative ex)
   = sizable number of FP
- Possibly more than # of TP



#### ROC vs. Recall-Precision

You can get very different visual results on the same data



The reason for this is that there may be lots of -ex's (eg, might need to include 100 neg's to get 1 more pos)

## **Two Highly Skewed Domains**

#### Is an abnormality on a mammogram benign or malignant?

Do these two identities refer to the same person?



#### **Diagnosing Breast Cancer**

[Real Data: Davis et al. IJCAI 2005]



#### **Diagnosing Breast Cancer**

[Real Data: Davis et al. IJCAI 2005]



## **Predicting Aliases**

[Synthetic data: Davis et al. ICIA 2005]



## **Predicting Aliases**

[Synthetic data: Davis et al. ICIA 2005]



## Four Questions about PR space and ROC space

- Q1: If a curve dominates in one space will it dominate in the other?
- Q2: What is the "best" PR curve?
- Q3: How do you interpolate in PR space?
- Q4: Does optimizing AUC in one space optimize it in the other space?

#### **Definition:** Dominance



#### A1: Dominance Theorem

For a fixed number of positive and negative examples, one curve dominates another curve in ROC space if and only if the first curve dominates the second curve in PR space



## Q2: What is the "best" PR curve?

- The "best" curve in ROC space for a set of points is the convex hull [Provost et al '98]
  - It is achievable
  - It maximizes AUC
- Q: Does an analog to convex hull exist in PR space?
- A2: Yes! We call it the **Achievable PR Curve**

#### **Convex Hull**



#### **Convex Hull**



## A2: Achievable Curve



## A2: Achievable Curve



#### Constructing the Achievable Curve

Given: Set of PR points, fixed number positive and negative examples

- Translate PR points to ROC points
- Construct convex hull in ROC space
- Convert the curve into PR space

Corollary:

By dominance theorem, the curve in PR space dominates all other legal PR curves you could construct with the given points

## Q3: Interpolation



FPR

TPR

- Interpolation in ROC space is easy
- Linear connection between points

Linear Interpolation Not Achievable in PR Space

• **Precision** interpolation is counterintuitive [Goadrich, et al., ILP 2004]

| ТР   | FP   | TP Rate | FP Rate | Recall | Prec |
|------|------|---------|---------|--------|------|
| 500  | 500  | 0.50    | 0.06    | 0.50   | 0.50 |
| 750  | 4750 | 0.75    | 0.53    | 0.75   | 0.14 |
| 1000 | 9000 | 1.00    | 1.00    | 1.00   | 0.10 |

**Example Counts** 

**ROC Curves** 

PR Curves



Q: For each extra TP covered, how many FPs do you cover?









# Optimizing AUC

 Interest in learning algorithms that optimize Area Under the Curve (AUC)
 [Ferri et al. 2002, Cortes and Mohri 2003, Joachims 2005,

Prati and Flach 2005, Yan et al. 2003, Herschtal and Raskutti 2004]

- Q: Does an algorithm that optimizes AUC-ROC also optimize AUC-PR?
- A: No. Can easily construct counterexample

## Outline

• Decision Trees

- Experimental Methodology
  - Methodology overview
  - How to present results
  - Hypothesis testing

# Alg 1 vs. Alg 2

- Alg 1 has accuracy 80%, Alg 2 82%
- Is this difference significant?
- Depends on how many test cases these estimates are based on
- The test we do depends on how we arrived at these estimates

## The Binomial Distribution

 Distribution over the number of successes in a fixed number n of independent trials (with same probability of success p in each)

$$\Pr(x) = \binom{n}{x} p^{x} (1-p)^{n-x}$$



© Jude Shavlik 2006 David Page 2007

## Leave-One-Out: Sign Test

- Suppose we ran leave-one-out cross-validation on a data set of 100 cases
- Divide the cases into (1) Alg 1 won, (2) Alg 2 won, (3) Ties (both wrong or both right); Throw out the ties
- Suppose 10 ties and 50 wins for Alg 1
- Ask: Under (null) binomial(90,0.5), what is prob of 50+ or 40- successes?

## What about 10-fold?

- Difficult to get significance from sign test of 10 cases
- We're throwing out the numbers (accuracy estimates) for each fold, and just asking which is larger
- Use the numbers... t-test... designed to test for a difference of means

## Paired Student t-tests

- Given
  - 10 training/test sets
  - 2 ML algorithms
  - Results of the 2 ML algo's on the 10 test-sets
- Determine
  - Which algorithm is better on this problem?
  - Is the difference <u>statistically significant</u>?

#### Paired Student *t*-Tests (cont.)

#### **Example**

|              | Accuracies on Testsets |    |    |     |    |
|--------------|------------------------|----|----|-----|----|
| Algorithm 1: | 80%                    | 50 | 75 | ••• | 99 |
| Algorithm 2: | 79                     | 49 | 74 | ••• | 98 |
| δ:           | +1                     | +1 | +1 |     | +1 |

 Algorithm 1's mean is better, but the two std. Deviations will clearly overlap

But algorithm1 is always better than algorithm 2

## The Random Variable in the *t*-Test

#### Consider random variable

| δ <sub>i</sub> = | Algo A's              |       | Algo B's              |
|------------------|-----------------------|-------|-----------------------|
|                  | test-set <sub>i</sub> | minus | test-set <sub>i</sub> |
|                  | error                 |       | error                 |

Notice we're "factoring out" test-set <u>difficulty</u> by looking at <u>relative</u> performance In general, one tries to explain variance in results across experiments Here we're saying that Variance = f(Problem difficulty) + g(Algorithm strength)

 $\delta$ 

#### More on the Paired t-Test

Our <u>NULL HYPOTHESIS</u> is that the two ML algorithms have <u>equivalent average accuracies</u>

 That is, differences (in the scores) are due to the "random fluctuations" about the mean of zero

We compute the probability that the observed  $\delta$  arose from the null hypothesis

- If this probability is <u>low</u> we <u>reject</u> the null hypo and say that the two algo's appear different
- 'Low' is usually taken as  $prob \le 0.05$

## The Null Hypothesis Graphically



## Some Jargon: P-values

<u>*P*-Value</u> = Probability of getting one's results or greater, given the NULL HYPOTHESIS



CS 760 – Machine Learning (UW-Madison)

#### "Accepting" the Null Hypothesis

# Note: even if the *p*-value is high, we can<u>not</u> assume the null hypothesis is *true*

Eg, if we flip a coin twice and get one head, can we statistically infer the coin is <u>fair</u>?

Vs. if we flip a coin 100 times and observe 10 heads, we can statistically infer coin is <u>unfair because that</u> is very unlikely to happen with a fair coin

How would we show a coin *is* fair?

© Jude Shavlik 2006 David Page 2007

CS 760 – Machine Learning (UW-Madison)

## Performing the t-Test

- Easiest way: Excel:
  - ttest(array1, array2, 2, 1)
  - Returns p-value

## Assumptions of the t-Test

- Test statistical is normally distributed
  - Reasonable if we are looking at classifier accuracy
  - Not reasonable if we are looking at AUC
    - Use Wilcoxon signed-rank test

Independent sample of test-examples
 Violate this with 10-fold cross-validation

## Next Class

- Homework 1 is due!
- Bayesian learning
  - Bayes rule
  - MAP hypothesis
- Bayesian networks
  - Representation
  - Learning
  - Inference

## Summary

- Decision trees are a very effective classifier
  - Comprehensible to humans
  - Constructive, deterministic, eage
  - Make axis-parallel cuts through feature space

- Having the right experimental methodology is crucial
  - Don't train on the test data!!
  - Many different ways to present results

## end