CSEP 546: Decision Trees and Experimental Methodology

Jesse Davis

Outline

- Decision Trees
- Representation
- Learning Algorithm
- Potential pitfalls
- Experimental Methodology

Decision Trees

- Popular hypothesis space
- Developed with learning in mind
- Deterministic
- Simple learning algorithm
- Handles noise well
- Produce comprehensible output

Decision Trees

- Effective hypothesis space
- Variable sized hypotheses
- Can represent any Boolean function
- Can represent both discrete and continuous features
- Equivalent to propositional DNF
- Classify learning algorithm as follows:
- Constructive search: Learn by adding nodes
- Eager
- Batch [though online algorithms exist]

Decision Tree Representation

Good day for tennis?
Leaves = classification
Arcs = choice of value

Decision tree is equivalent to logic in disjunctive normal form Play $\Leftrightarrow($ Sunny \wedge Normal $) \vee$ Overcast $\vee($ Rain \wedge Weak $)$

Numeric Attributes

How Do Decision Trees Partition Feature Space?

Decisions divide feature space into axis parallel rectangles and labels each one with one of the K classes

Decision Trees Provide

Variable-Size Hypothesis Space

- As the number of nodes (or tree depth) increases, the hypothesis space grows
- Depth 1 (decision "stumps"): Any Boolean function over one variable
- Depth 2:
- Any Boolean function over two variables
- Some Boolean functions over three variables e.g., $\left(x_{1} \wedge x_{2}\right) \vee\left(!x_{1} \wedge!x_{3}\right)$
- Etc.

Decision Trees Can Represent Any Boolean Function

```
Input Output
a) 00
b) \(01+\)
c) 10 +
d) 11
-
```


However, in the worst case, the tree will require exponential many nodes

Objective of DT Learning

Goal: Find the decision tree that minimizes the error rate on the training data

- Solution 1: For each training example, create one root-to-leaf path
- Problem 1: Just memorizes the training data
- Solution 2: Find smallest tree that minimizes our error function
- Problem 2: This is NP-hard
- Solution 3: Use a greedy approximation

DT Learning as Search

- Nodes

Decision Trees:

1) Internal: Attribute-value test
2) Leaf: Class label

- Operators

Tree Refinement: Sprouting the tree

- Initial node

Smallest tree possible: a single leaf

- Heuristic?

Information Gain

- Goal?

Best tree possible (???)

Decision Tree Algorithm

BuildTree(TraingData) Split(TrainingData)

Split(D)

If (all points in D are of the same class) Then Return
For each attribute A
Evaluate splits on attribute A
Use best split to partition D into D1, D2 Split (D1)
Split (D2)

What is the Simplest Tree?

Day Outlook	Temp	Humid	Wind	Play?
d1 s			W	
d2 s	h	h	S	n
d3 o	h	h	W	y
d4 r	m	h	W	y
d5	c	n	W	y
d6 r	c	n	,	n
d7 o	C	n	S	y
d8 s	m	h	W	n
d9	c	n	W	y
d10 r	m	n	W	y
d11 s	m	n		y
d12 o	m	h	S	y
d13 o	h	n	W	y
d14 r	m	h	S	n

How good?

$$
\left[\begin{array}{l}
\text { Majority class: } \\
\text { correct on } 9 \text { examples } \\
\text { incorrect on } 5 \text { examples }
\end{array}\right.
$$

Which attribute should we use to split?

Choosing the Best Attribute

One way to choose the best attribute is to perform a 1-step lookahead search and choose the attribute that gives the lowest error rate on the training data.

ChooseBest Attribute(S)

choose j to minimize J_{j}, computed as follows:

$$
S_{0}=\operatorname{all}\langle\mathbf{x}, y\rangle \in S \text { with } x_{j}=0 ;
$$

$S_{1}=$ all $\langle\mathbf{x}, y\rangle \in S$ with $x_{j}=1$;
$y_{0}=$ the most common value of y in S_{0}
$y_{1}=$ the most common value of y in S_{1}
$J_{0}=$ number of examples $\langle\mathbf{x}, y\rangle \in S_{0}$ with $y \neq y_{0}$
$J_{1}=$ number of examples $\langle\mathbf{x}, y\rangle \in S_{1}$ with $y \neq y_{1}$
$J_{j}=J_{0}+J_{1}$ (total errors if we split on this feature)
return j

Choosing the Best Attribute: Example

	Input	Output
a)	000	+
b)	001	-
c)	010	+
d)	011	+
e)	100	-
f)	101	+
g)	110	-
h)	111	-

Choosing the Best Attribute: Example

This metric may not work well as it does not always detect cases where we are making progress towards the goal

A Better Metric From Information Theory

Intuition: Disorder is bad and homogeneity is good

Entropy (disorder) is bad Homogeneity is good

- Let S be a set of examples
- Entropy $(\mathrm{S})=-\mathrm{P} \log _{2}(\mathrm{P})-\mathrm{N} \log _{2}(\mathrm{~N})$
- P is proportion of pos example
$-\mathbf{N}$ is proportion of neg examples
$-0 \log 0=0$
- Example: S has 9 pos and 5 neg Entropy $([9+, 5-])=-(9 / 14) \log _{2}(9 / 14)-(5 / 14) \log _{2}(5 / 14)$

$$
=0.940
$$

Information Gain

- Measure of expected reduction in entropy
- Resulting from splitting along an attribute
$\operatorname{Gain}(\mathrm{S}, \mathrm{A})=\operatorname{Entropy}(\mathrm{S})-\quad \sum\left(\left|\mathrm{S}_{\mathrm{v}}\right| /|\mathrm{S}|\right) \operatorname{Entropy}\left(\mathrm{S}_{\mathrm{v}}\right)$

$$
\mathrm{v} \in \operatorname{Values}(\mathrm{~A})
$$

Where Entropy $(\mathrm{S})=-\mathrm{P} \log _{2}(\mathrm{P})-\mathrm{N} \log _{2}(\mathrm{~N})$

Example: "Good day for tennis"

- Attributes of instances
- Outlook $=\{$ rainy (r), overcast (o), sunny (s) $\}$
- Temperature $=\{\operatorname{cool}(c)$, medium (m), hot (h) $\}$
- Humidity $=\{$ normal (n), high (h) $\}$
- Wind $=\{$ weak (w), strong (s) $\}$
- Class value
- Play Tennis? = \{don't play (n), play (y)\}
- Feature = attribute with one value
- E.g., outlook = sunny
- Sample instance
- outlook=sunny, temp=hot, humidity=high, wind=weak

Experience: "Good day for tennis"

Day	Outlook	Temp	Humid	Wind	PlayTennis?
d1	s	h	h	W	n
d2	S	h	h	S	n
d3	0	h	h	W	y
d4	r	m	h	W	y
d5	r	c	n	W	y
d6	r	c	n	S	n
d7	0	c	n	S	y
d8	S	m	h	W	n
d9	S	c	n	W	y
d10	r	m	n	w	y
d11	S	m	n	S	y
d12	o	m	h	S	y
d13	O	h	n	W	y
d14	r	m	h	S	n

Gain of Splitting on Wind

Evaluating Attributes

Resulting Tree

Good day for tennis?

Recurse

Good day for tennis?

One Step Later

Good day for tennis?

Recurse Again

Good day for tennis?

One Step Later: Final Tree

Good day for tennis?

Issues

- Missing data
- Real-valued attributes
- Many-valued features
- Evaluation
- Overfitting

Missing Data 1

Day	Temp	Humid	Wind	Tennis?
d1	h	h	weak	n
d2	h	h	s	n
d8	m	h	weak	n
d9	c	?	weak	yes
d11	m	n	s	yes

Assign most common value at this node
 $$
?=>h
$$

Day	Temp	Humid	Wind	Tennis?
d1	h	h	weak	n
d2	h	h	s	n
d 8	m	h	weak	n
d9	c	?	weak	yes
d11	m	n	s	yes

Assign most common value for class
 $$
?=>n
$$

Missing Data 2

Day	Temp	Humid	Wind	Tennis?
d 1	h	h	weak	n
d 2	h	h	s	n
d 8	m	h	weak	n
d 9	c	$?$	weak	yes
d 11	m	n	s	yes

- 75\% h and 25\% n
- Use in gain calculations
- Further subdivide if other missing attributes
- Same approach to classify test ex with missing attr
- Classification is most probable classification
- Summing over leaves where it got divided

Real-Valued Features

- Discretize?

Wind	25	12	12	1	11	10	10	8	7	7	7	7	6	6	5
Play	n	y	y	n	y	n	n	y	y	y	y	y	y	n	

- Threshold split using observed values?

Wind 82576610125771210711
Play n n y y y n y $n y y y y n$

Wind 25121211101087777665
Play n y y n y n ny y y y y y n

$$
\begin{array}{ll}
>=12 & >=10 \\
\text { Gain =0.0004 } & \text { Gain }=0.048
\end{array}
$$

Real-Valued Features

Note

Cannot discard
numeric feature after use in one portion of d-tree

Many-Valued Attributes

FAVORS FEATURES WITH HIGH BRANCHING FACTORS
(i.e,. many possible values)

Extreme Case:

At most one example per leaf and all I(.,.) scores for leafs equals zero, so gets perfect score! But generalizes very poorly (i.e., memorizes data)

Fix: Method 1

Convert all features to binary
e.g., Color = \{Red, Blue, Green $\}$

From 1 N -valued feature to N binary features

```
Color = Red?
Color = Blue?
Color = Green?
```


\{True, False\}

Used in Neural Nets and SVMs
D-tree readability probably less, but not necessarily

Fix 2: Gain Ratio

Gain Ratio(S,A) $=\operatorname{Gain}(\mathrm{S}, \mathrm{A}) / \operatorname{SplitInfo}(\mathrm{S}, \mathrm{A})$
SplitInfo $=\sum\left(\left|S_{v}\right| /|S|\right) \log _{2}\left(\left|S_{v}\right| /|S|\right)$

$$
\mathrm{v} \in \operatorname{Values}(\mathrm{~A})
$$

SplitInfo \cong entropy of S wrt values of A

(Contrast with entropy of S wrt target value)
\Downarrow attribs with many uniformly distrib values
e.g. if A splits S uniformly into n sets

SplitInformation $=\log _{2}(\mathrm{n}) . . .=1$ for Boolean

Evaluation

- Question: How well will an algorithm perform on unseen data?
- Cannot score based on training data
- Estimate will be overly optimistic about algorithm's performance

Evaluation: Cross Validation

- Partition examples into k disjoint sets
- Now create k training sets
- Each set is union of all equiv classes except one
- So each set has ($k-1$)/k of the original training data

Cross-Validation (2)

- Leave-one-out
- Use if < 100 examples (rough estimate)
- Hold out one example, train on remaining examples
- M of N fold
- Repeat M times
- Divide data into N folds, do N fold cross-validation

Overfitting in Decision Trees

Consider adding a noisy training example:
Sunny, Hot, Normal, Strong, PlayTennis=No
What effect on tree?

Overfitting

Accuracy

On training data
On test data

Number of Nodes in Decision tree

Overfitting Definition

- DT is overfit when exists another DT' and
- DT has smaller error on training examples, but
- DT has bigger error on test examples
- Causes of overfitting
- Noisy data, or
- Training set is too small
- Solutions
- Reduced error pruning
- Early stopping
- Rule post pruning

Reduced Error Pruning

- Split data into train and validation set

- Repeat until pruning is harmful
- Remove each subtree and replace it with majority class and evaluate on validation set
- Remove subtree that leads to largest gain in accuracy

Reduced Error Pruning Example

Validation set accuracy $=0.75$

Reduced Error Pruning Example

Validation set accuracy $=0.80$

Reduced Error Pruning Example

Reduced Error Pruning Example

Validation set accuracy $=0.70$

Reduced Error Pruning Example

Use this as final tree

Early Stopping

Number of Nodes in Decision tree

Post Rule Pruning

- Split data into train and validation set
- Prune each rule independently
- Remove each pre-condition and evaluate accuracy
- Pick pre-condition that leads to largest improvement in accuracy
- Note: ways to do this using training data and statistical tests

Conversion to Rule

Outlook $=$ Sunny \wedge Humidity $=$ High \Rightarrow Don’t play
Outlook $=$ Sunny \wedge Humidity $=$ Normal \Rightarrow Play
Outlook $=$ Overcast \Rightarrow Play

Example

Outlook $=$ Sunny \wedge Humidity $=$ High \Rightarrow Don’t play
Validation set accuracy $=0.68$

Outlook $=$ Sunny \Rightarrow Don't play Validation set accuracy $=0.65$
\rightarrow Humidity $=$ High \Rightarrow Don't play Validation set accuracy $=0.75$

Keep this rule

15 Minute Break

Outline

- Decision Trees
- Experimental Methodology
- Methodology overview
- How to present results
- Hypothesis testing

Experimental Methodology: A Pictorial Overview

collection of classified examples

Using Tuning Sets

- Often, an ML system has to choose when to stop learning, select among alternative answers, etc.
- One wants the model that produces the highest accuracy on future examples ("overfitting avoidance")
- It is a "cheat" to look at the test set while still learning
- Better method
- Set aside part of the training set
- Measure performance on this "tuning" data to estimate future performance for a given set of parameters
- Use best parameter settings, train with all training data (except test set) to estimate future performance on new examples

Proper Experimental Methodology Can Have a Huge Impact!

A 2002 paper in Nature (a major, major journal) needed to be corrected due to "training on the testing set"

Original report : 95\% accuracy (5\% error rate)
Corrected report (which still is buggy):
73% accuracy (27% error rate)
Error rate increased over 400\%!!!

Parameter Setting

Notice that each train/test fold may get different parameter settings!

- That's fine (and proper)
I.e. , a "parameterless"* algorithm internally sets parameters for each data set it gets

Using Multiple Tuning Sets

- Using a single tuning set can be unreliable predictor, plus some data "wasted" Hence, often the following is done:

1) For each possible set of parameters,
a) Divide training data into train' and tune sets, using N -fold cross validation
b) Score this set of parameter value, average tune set accuracy
2) Use best set of parameter settings and all (train' + tune) examples
3) Apply resulting model to test set

Tuning a Parameter - Sample Usage

Step1: Try various values for k (e.g., neighborhood size/distance function in k-NN Use 10 train/tune splits for each k

Tune set accuracy (ave. over 10 runs)=92\%

Tune set accuracy (ave. over 10 runs) $=97 \%$

Tune set accuracy
(ave. over 10 runs) $=80 \%$

Step2: Pick best value for k (eg. $k=2$), Then train using all training data
Step3: Measure accuracy on test set

What to Do for the FIELDED System?

- Do not use any test sets
- Instead only use tuning sets to determine good parameters
- Test sets used to estimate future performance
- You can report this estimate to your "customer," then use all the data to retrain a "product" to give them

What's Wrong with This?

1. Do a cross-validation study to set parameters
2. Do another cross-validation study, using the best parameters, to estimate future accuracy

- How will this relate to the "true" future accuracy?
- Likely to be an overestimate

What about

1. Do a proper train/tune/test experiment
2. Improve your algorithm; goto 1
(Machine Learning's "dirty little" secret!)

Why Not Learn After Each Test Example?

- In "production mode," this would make sense (assuming one received the correct label)
- In "experiments," we wish to estimate Probability we'll label the next example correctly need several samples to accurately estimate

Outline

- Decision Trees
- Experimental Methodology
- Methodology overview
- How to present results
- Hypothesis testing

Scatter Plots

- Compare Two Algo's on Many Datasets

Evaluation Metrics

Called a confusion matrix or contingency table

	Predicted True	Predicted False		
Actually True	TP	FN		
Actually False	FP	TN		The number of times true is
:---				
"confused" with false by the algorithm				

ROC Curves

- ROC: Receiver Operating Characteristics
- Started during radar research during WWII
- Judging algorithms on accuracy alone may not be good enough when getting a positive wrong costs more than getting a negative wrong (or vice versa)
- Eg, medical tests for serious diseases
- Eg, a movie-recommender (ala' NetFlix) system

Evaluation Metrics

True positive rate (tpr) $=\frac{T P}{T P+F N}$
False positive rate $(\mathrm{fpr})=\frac{\mathrm{FP}}{\mathrm{TN}+\mathrm{FP}}$

	Predicted True	Predicted False
Actually True	TP	FN
Actually False	FP	TN

ROC Curves Graphically

Creating an ROC Curve - the Standard Approach

- You need an ML algorithm that outputs NUMERIC results such as prob(example is +)
- You can use ensembles (later) to get this from a model that only provides Boolean outputs
- Eg, have 100 models vote \& count votes

Algorithm for Creating ROC Curves

Step 1: Sort predictions on test set
Step 2: Locate a threshold between examples with opposite categories

Step 3: Compute TPR \& FPR for each threshold of Step 2

Step 4: Connect the dots

Plotting ROC Curves
 - Example

> ROC's and Many Models (not in the ensemble sense)

- It is not necessary that we learn one model and then threshold its output to produce an ROC curve
- You could learn different models for different regions of ROC space
- For example, see Goadrich, Oliphant, \& Shavlik ILP '04 and MLJ ‘06

Area Under ROC Curve

A common metric for experiments is to numerically integrate the ROC Curve

AUC = Wilcoxon-Mann-Whitney Statistic

ROC's \& Skewed Data

- One strength of ROC curves is that they are a good way to deal with skewed data
 independent of the \# of examples
- You must be careful though!
- Low FPR * (many negative ex)
$=$ sizable number of FP
- Possibly more than \# of TP

Evaluation Metrics: Precision and Recall

$$
\begin{aligned}
\text { Recall } & =\frac{T P}{T P+F N} \\
\text { Precision } & =\frac{T P}{T P+F P}
\end{aligned}
$$

	Predicted True	Predicted False
Actually True	TP	FN
Actually False	FP	TN

ROC vs. Recall-Precision

You can get very different visual results on the same data

The reason for this is that there may be lots of - ex's (eg, might need to include 100 neg's to get 1 more pos)

Two Highly Skewed Domains

Do these two identities refer to the same person?

Diagnosing Breast Cancer

[Real Data: Davis et al. IJCAI 2005]

Diagnosing Breast Cancer

[Real Data: Davis et al. IJCAI 2005]

Predicting Aliases

[Synthetic data: Davis et al. ICIA 2005]

Predicting Aliases

[Synthetic data: Davis et al. ICIA 2005]

Four Questions about PR space and ROC space

- Q1: If a curve dominates in one space will it dominate in the other?
- Q2: What is the "best" PR curve?
- Q3: How do you interpolate in PR space?
- Q4: Does optimizing AUC in one space optimize it in the other space?

Definition: Dominance

A1: Dominance Theorem

For a fixed number of positive and negative examples, one curve dominates another curve in ROC space if and only if the first curve dominates the second curve in PR space

Q2: What is the "best" PR curve?

- The "best" curve in ROC space for a set of points is the convex hull [Provost et al'98]
- It is achievable
- It maximizes AUC

Q: Does an analog to convex hull exist in PR space?
A2: Yes! We call it the Achievable PR Curve

Convex Hull

Convex Hull

ROC Space

A2: Achievable Curve

A2: Achievable Curve

Constructing the Achievable Curve

Given: Set of PR points, fixed number positive and negative examples

- Translate PR points to ROC points
- Construct convex hull in ROC space
- Convert the curve into PR space

Corollary:
By dominance theorem, the curve in PR space dominates all other legal PR curves you could construct with the given points

Q3: Interpolation

FPR

- Interpolation in ROC space is easy
- Linear connection between points

Linear Interpolation Not Achievable in PR Space

- Precision interpolation is counterintuitive [Goadrich, et al., ILP 2004]

TP	FP	TP Rate	FP Rate	Recall	Prec			
500	500	0.50	0.06	0.50	0.50			
750	4750	0.75	0.53	0.75	0.14			
1000	9000	1.00	1.00	1.00	0.10			
Example Counts Curves					PR Curves			

Example Interpolation

	$T P$	$F P$	$R E C$	PREC
A	5	5	0.25	0.5
B	10	30	0.5	0.25

Q: For each extra TP covered, how many FPs do you cover?

$$
\text { A: } \frac{F P_{B}-F P_{A}}{T P_{B}-T P_{A}}
$$

A dataset with 20 positive and 2000 negative examples

Example Interpolation

	TP	FP	REC	PREC
A	5	5	0.25	0.5
B	10	30	0.5	0.25

A dataset with 20 positive and 2000 negative examples

Example Interpolation

	TP	FP	REC	PREC
A	5	5	0.25	0.5
.	6	10	0.3	0.375
B	10	30	0.5	0.25

A dataset with 20 positive and 2000 negative examples

Example Interpolation

	TP	FP	REC	PREC
A	5	5	0.25	0.5
.	6	10	0.3	0.375
.	7	15	0.35	0.318
.	8	20	0.4	0.286
.	9	25	0.45	0.265
B	10	30	0.5	0.25

A dataset with 20 positive and 2000 negative examples

Optimizing AUC

- Interest in learning algorithms that optimize Area Under the Curve (AUC)
[Ferri et al. 2002, Cortes and Mohri 2003, Joachims 2005, Prati and Flach 2005, Yan et al. 2003, Herschtal and Raskutti 2004]
- Q: Does an algorithm that optimizes AUC-ROC also optimize AUC-PR?
- A: No. Can easily construct counterexample

Outline

- Decision Trees
- Experimental Methodology
- Methodology overview
- How to present results
- Hypothesis testing

Alg 1 vs. Alg 2

- Alg 1 has accuracy 80\%, Alg 2 82\%
- Is this difference significant?
- Depends on how many test cases these estimates are based on
- The test we do depends on how we arrived at these estimates

The Binomial Distribution

- Distribution over the number of successes in a fixed number n of independent trials (with same probability of success p in each)

$$
\operatorname{Pr}(x)=\binom{n}{x} p^{x}(1-p)^{n-x}
$$

Leave-One-Out: Sign Test

- Suppose we ran leave-one-out cross-validation on a data set of 100 cases
- Divide the cases into (1) Alg 1 won, (2) Alg 2 won, (3) Ties (both wrong or both right); Throw out the ties
- Suppose 10 ties and 50 wins for Alg 1
- Ask: Under (null) binomial(90,0.5), what is prob of 50+ or 40- successes?

What about 10-fold?

- Difficult to get significance from sign test of 10 cases
- We're throwing out the numbers (accuracy estimates) for each fold, and just asking which is larger
- Use the numbers... t-test... designed to test for a difference of means

Paired Student t-tests

- Given
- 10 training/test sets
- 2 ML algorithms
- Results of the 2 ML algo's on the 10 test-sets
- Determine
- Which algorithm is better on this problem?
- Is the difference statistically significant?

Paired Student t-Tests (cont.)

Example

Accuracies on Testsets
Algorithm 1:
80\% $50 \quad 75$
99
Algorithm 2:
$79 \quad 4974$
98
$\delta:$
:
$+1 \quad+1 \quad+1$

- Algorithm 1's mean is better, but the two std. Deviations will clearly overlap
- But algorithm1 is always better than algorithm 2

The Random Variable in the t-Test

Consider random variable

$$
\begin{array}{lll}
\delta_{i}= & \text { Algo A's } & \text { Algo B's } \\
& \text { test-set }_{i} \quad \text { minus } \\
& \text { error }
\end{array} \quad \begin{aligned}
& \text { test-set }{ }_{i} \\
& \text { error }
\end{aligned}
$$

Notice we're "factoring out" test-set difficulty by looking at relative performance
In general, one tries to explain variance
in results across experiments
Here we're saying that
Variance $=\mathbf{f}($ Problem difficulty $)+\mathbf{g}($ Algorithm strength $)$

More on the Paired t-Test

Our NULL HYPOTHESIS is that the two ML algorithms have equivalent average accuracies

- That is, differences (in the scores) are due to the "random fluctuations" about the mean of zero

We compute the probability that the observed δ arose from the null hypothesis

- If this probability is low we reject the null hypo and say that the two algo's appear different
- 'Low' is usually taken as prob ≤ 0.05

The Null Hypothesis Graphically

1.

$1 / 2(1-M)$ probability mass
in each tail (ie, M inside)
Typically $M=0.95$
Assume zero mean and use the sample's variance
(sample = experiment)

Does our measured δ lie in the regions indicated by arrows? If so, reject null hypothesis, since it is unlikely we'd get such a δ by chance

Some Jargon: P-values

$\underline{P-V a l u e}=$ Probability of getting one's results or greater, given the NULL HYPOTHESIS
(We usually want $\mathrm{P} \leq 0.05$ to be confident that a difference is statistically significant)

NULL HYPO DISTRIBUTION

"Accepting" the Null Hypothesis

Note: even if the p-value is high, we cannot assume the null hypothesis is true

Eg, if we flip a coin twice and get one head, can we statistically infer the coin is fair?

Vs. if we flip a coin 100 times and observe 10 heads, we can statistically infer coin is unfair because that is very unlikely to happen with a fair coin

How would we show a coin is fair?

Performing the t -Test

- Easiest way: Excel:
- ttest(array1, array2, 2, 1)
- Returns p-value

Assumptions of the t-Test

- Test statistical is normally distributed
- Reasonable if we are looking at classifier accuracy
- Not reasonable if we are looking at AUC
- Use Wilcoxon signed-rank test
- Independent sample of test-examples
- Violate this with 10 -fold cross-validation

Next Class

- Homework 1 is due!
- Bayesian learning
- Bayes rule
- MAP hypothesis
- Bayesian networks
- Representation
- Learning
- Inference

Summary

- Decision trees are a very effective classifier
- Comprehensible to humans
- Constructive, deterministic, eage
- Make axis-parallel cuts through feature space
- Having the right experimental methodology is crucial
- Don't train on the test data!!
- Many different ways to present results
end

