Learning Theory, SVMs and Using Unlabeled Data

Instructor: Jesse Davis

Slides from: Pedro Domingos, Ray Mooney, David Page, Jude Shavlik

- Homework 3 is due now
- Homework 4 is available
- Homework 2 is graded
- Andrey will be out of town
 - Access to email at funny times
 - Email both of us
- Lecture notes are available online

- Homework 2 review
- Computational learning theory
- Support vector machines
- Making use of unlabeled data

- For M = |V|, P = 1/|V|, Accuracy = 0.902
- Best M ~ 50 |V|, Accuracy = 0.906
- Most common omissions:
 - No code description (5 points)
 - No code comments (3 points)
 - Not reporting best parameter sets (4 points)
 - Reporting precision, recall, TPR, FPR, etc., but not accuracy (no penalty but annoyed me).

Problem 1: One More Serious Omission

Not using sums of logarithms instead of products of probabilities

Problem 1: Most Common Mistakes

Mistake	Accuracy at M = V P = 1/ V	Penalty	Comments
Ignoring word counts in test emails during classification.	0.906	5 points	Bad because you learned multinomial parameters but are used them in a "binomial" way
The above + using $P = 1/ V_{spam} $ or $P = 1 / (V_{spam} + V_{ham})$ when computing P(W spam)	Usually 0.908	7 points	
Implementing binomial Naïve Bayes	0.913	5 points	Not what the assignment asked

Problem 1: Good Observations

- True Negative Rate and False Positive Rate are more informative than accuracy in this application.
- Smoothing parameters have little effect in this particular case (don't generalize it!)
- Cool ideas about additional features (next time)

Problem 2a: Solution

- Straightforward:
 - Run FOIL
 - Get 10 points
- Learned rules are sometimes counterintuitive or incomplete:
 - Sister(A,B) :- Brother(B,A)

Problem 2b: Solution

- 12 named predicates + Equals
- 5 variables (A,B,C,E, and X the new variable)
- For each named predicate:
 - 5*5 1 = 24 positive literals resulting from substituting a combination of 2 (not necessarily distinct!) of the above variables, except (X,X).
 - 24 negative literals
- For Equals:
 - 4*4 = 16 positive literals resulting from substituting a combination of 2 (not necessarily distinct!) existing variables. X is not allowed to participate.
 - 16 negative literals
- Thus:
 - 2*(12*24 + 16) = 608 literals.

Problem 2b: Common Mistakes

- Question was about which literals are generated, not which are valid choices.
 - Can't exclude literals already in the rule (e.g., Wife(C,A))
 - Can't exclude predicates already in the rule (e.g., Daughter)
 - Can't exclude "silly" literals (e.g., Brother(A,A), Equals(B,B))
- Predicates (e.g., Wife, Brother) are not literals (e.g. Wife(A, C), Brother(E, B))

Problem 3: Solution

- A) 2^d or 2^{d-1} rules will be created (one for each leaf or one for each positive leaf)
- B) Each rule will have depth of the tree = d preconditions
- C) Number of decisions = #rules * #preconditions = d*2^d or d*2^{d-1}
- D) Sequential covering will be more prone to overfitting, because it makes more independent decisions

Problem 3: Common Mistake

- The number of leaves in a tree of depth d is 2^d, not 2^{d-1}
- Just because a decision tree is less robust to noise (mistakes at higher nodes affect these nodes' entire subtrees) doesn't mean it overfits more.
- In fact, it means the opposite ID3's decisions are less independent, so it's less prone to overfitting

Problem 4: Solution

- Let r = rabid, d = drool, a = attack
- Given: P(r)= 0.042, P(d|r) = 0.79, P(d|-r) = 0.06, P(a|r) = 0.97, P(a|-r) = 0.02, A and D are independent given Rabid
- A) P(r|d) = P(d|r)P(r) / P(d) = P(d|r)P(r) / (P(d|r)P(r) + P(d|-r)P(-r)) = 0.79*0.042 / (0.79*0.042 + 0.06*0.958) ~ 0.37
- B) P(r|a,d) = P(a,d|r)P(r) / P(a,d) = P(a|r)P(d|r)P(r) / (P(a|r)P(d|r)P(r) + P(a|-r)P(d|-r)P(-r)) ~ 0.97

Problem 4: Common Mistakes

- Attack and Drool are not independent in general only given Rabid
 - Thus, P(a,d) != P(a)P(d)
- Can't do P(a) = P(a|r) + P(a|-r) these will generally sum to > 1.

A) Is D independent of E? No, info flows through C.

Problem 5b: Solution

B) Is A independent of B given C?

No, the "explaining away" phenomenon.

Problem 5c: Solution

C) Is E independent of B given C?

Yes, C blocks the only information flow path.

E) Is E independent of D given B? No, info flows through C.

- Homework 2 review
- Computational learning theory
- Support vector machines
- Making use of unlabeled data

Types of Results

- Learning in the limit: Is the learner guaranteed to converge to the correct hypothesis in the limit as the number of training examples increases indefinitely?
- Sample Complexity: How many training examples are needed for a learner to construct (with high probability) a highly accurate concept?
- Computational Complexity: How much computational resources (time and space) are needed for a learner to construct (with high probability) a highly accurate concept?
 - High sample complexity implies high computational complexity, since learner at least needs to read the input data.
- Mistake Bound: Learning incrementally, how many training examples will the learner misclassify before constructing a highly accurate concept.

Learning in the Limit

Given a continuous stream of examples

- Learner predicts class for each example then is told the correct answer
- Does the learner eventually converge to a correct concept?
- No limit on the number of examples required or computational demands
- Must eventually learn the concept exactly
 - Do not need to explicitly recognize this convergence point

Learning in the Limit

- By simple enumeration, concepts from any known finite hypothesis space are learnable in the limit
 - Know hypothesis space can represent the concept
 - Eliminate hypothesis that are inconsistent with the data
- Typically requires an exponential (or doubly exponential) number of examples and time

Learning in the Limit vs. PAC Model

- Learning in the limit model is too strong.
 - Requires learning correct exact concept
- Learning in the limit model is too weak
 - Allows unlimited data and computational resources.
- PAC Model
 - Only requires learning a *Probably Approximately Correct* Concept: Learn a decent approximation most of the time.
 - Requires polynomial sample complexity and computational complexity.

- The only reasonable expectation of a learner is that with *high probability* it learns a *close approximation* to the target concept.
- In the PAC model, we specify two small parameters, ε and δ, and require that with probability at least (1 δ) a system learn a concept with error at most ε.

- Overfitting happens because training error is bad estimate of generalization error
 - Can we infer something about generalization error from training error?
- Overfitting happens when learned doesn't see "enough" examples
 - Can we estimate how many examples are enough?

Problem Setting

<u>Given</u>

Set of possible instances X

- Set of possible hypothesis H
- Set of target concepts $c \in C$
- Training instances are generated by an unknown Distribution D over X

<u>Observe</u>

some sequence of training data $S = (x_i, c(x_i)),$ for some $c \in C$

<u>Do</u>

Learner outputs some $h \in H$ that approximates c Evaluated on future instances drawn from D

True Error of a Hypothesis

Instance space X

Definition: The **true error** (denoted $error_{\mathcal{D}}(h)$) of hypothesis h with respect to target concept c and distribution \mathcal{D} is the probability that h will misclassify an instance drawn at random according to \mathcal{D} .

$$error_{\mathcal{D}}(h) \equiv \Pr_{x \in \mathcal{D}}[c(x) \neq h(x)]$$

Two Notions of Error

Training error of hypothesis h with respect to target concept c

• How often $h(x) \neq c(x)$ over training instances

True error of hypothesis h with respect to c

• How often $h(x) \neq c(x)$ over future random instances

Our concern:

- Can we bound the true error of h given the training error of h?
- First consider when training error of h is zero

Version Spaces

Version Space $VS_{H,D}$: Subset of hypotheses in H consistent with training data D

(r = training error, error = true error)

Consistent Learners

- A learner L using a hypothesis H and training data D is said to be a consistent learner if it always outputs a hypothesis with zero error on D whenever H contains such a hypothesis.
- By definition, a consistent learner must produce a hypothesis in the version space for *H* given *D*.
- Therefore, to bound the number of examples needed by a consistent learner, we just need to bound the number of examples needed to ensure that the version-space contains no hypotheses with unacceptably high error

ε-Exhausted Version Space

- The version space, VS_{H,D}, is said to be *ε*exhausted iff every hypothesis in it has true error less than or equal to ε
- In other words, there are enough training examples to guarantee than any consistent hypothesis has error at most ε
- One can never be sure that the version-space is ε-exhausted, but one can bound the probability that it is not

How Many Examples Are Enough?

Theorem 7.1 (Haussler, 1988): If the hypothesis space *H* is finite, and *D* is a sequence of *m* ≥ 1 independent random examples for some target concept *c*, then for any 0≤ ε ≤ 1, the probability that the version space VS_{H,D} is *not* ε-exhausted is less than or equal to: *|H|e^{-εm}*

- $H_{\text{bad}} = \{h_1, \dots, h_k\}$ is the subset of H w/true error > ϵ
- The VS is not ε-exhausted if any of these are consistent with all *m* examples
- A single $h_i \in H_{bad}$ is consistent with
 - **one** example with probability: $P(consist(h_{i}e_{j})) \le 1 \epsilon$
 - **all** *m* independent random examples with probability: $P(consist(h_{i},D)) \le (1 - \varepsilon)^m$
- The probability that **any** $h_i \in H_{bad}$ is consistent with all *m* examples is:

 $P(\text{consist}(H_{bad}, D)) = P(\text{consist}(h_1, D) \lor \cdots \lor \text{consist}(h_k, D))$

- Since the probability of a disjunction of events is *at most* the sum of the probabilities of the individual events:
 - $P(consist(H_{badr}D)) \le |H_{bad}|(1-\epsilon)^m$
 - $P(consist(H_{badr}D)) \le |H|e^{-\varepsilon m}$
- Since: $|H_{bad}| \le |H|$ and $(1-\varepsilon)^m \le e^{-\varepsilon m}$, $0 \le \varepsilon \le 1$, $m \ge 0$ Q.E.D

Sample Complexity Analysis

- Let δ be an upper bound on the probability of *not* exhausting the version space
 - $|H|e^{-\epsilon m} \le \delta$
 - $e^{-\epsilon m} \leq \delta/|H|$
 - $-\epsilon m \leq \ln(\delta/|H|)$
 - *m* ≥ -ln(δ/|H|)/ε
 - *m* ≥ ln(|H|/δ)/ε
 - $m \ge [\ln(1/\delta) + \ln|H|]/\epsilon$

PAC Learning Definition

- A concept is PAC learnable if:
 - For <u>any</u> target c in C and any distribution D on X
 - <u>Given</u> at least N = poly($|c|, 1/\epsilon, 1/\delta$) examples drawn randomly, independently from X
 - <u>Do</u> with probability 1δ , return an h in C whose accuracy is at least 1ε
 - In other words, Prob[error(h, c) > ε] < δ, In time polynomial in [data]

Sample Complexity Results

- Any consistent learner, given at least [ln(1/δ) + ln[H]]/ε examples will produce a PAC result
- Just determine the size of a hypothesis space for learning specific classes of concepts.
- This gives a *sufficient* number of examples for PAC learning, but *not* a *necessary* number
- Several approximations like that used to bound the probability of a disjunction make this a gross over-estimate in practice

Sample Complexity: Conjunctions

Consider conjunctions over *n* boolean features

- 3ⁿ since each feature can appear positively, appear negatively, or not appear
- Therefore $|H| = 3^{n_r}$
- Sufficient number of examples is: $[\ln(1/\delta) + n \ln 3]/\epsilon$
- Concrete examples:
 - $\delta = \epsilon = 0.05$, n = 10 gives 280 examples
 - $\delta = 0.01$, $\epsilon = 0.05$, n = 10 gives 312 examples
 - $\delta = \epsilon = 0.01$, n = 10 gives 1,560 examples
 - $\delta = \epsilon = 0.01$, n = 50 gives 5,954 examples

Sample Complexity of Learning Arbitrary Boolean Functions

Any boolean function over n boolean features

- E.g., DNF or decision trees.
- There are 2²ⁿ of these,
- Sufficient number of examples is: $[\ln(1/\delta) + 2^n \ln 2]/\epsilon$
- Concrete examples:
 - δ=ε=0.05, *n*=10 gives 14,256 examples
 - δ=ε=0.05, *n*=20 gives 14,536,410 examples
 - $\delta = \epsilon = 0.05$, *n*=50 gives 1.561×10^{16} examples

- So far, we assumed that $c \in H$
- Agnostic learning: don't assume that $c \in H$
- What can we say here
 - Assume one hypothesis h, with m independently chosen examples, use Hoeffding bound
 - $P(error_{D}(h) > P(error_{D}(h) + \epsilon) \le e^{-2m\epsilon^{2}}$
- Then for all hypothesis:
 - $P[(h \in H)(error_{D}(h) > P(error_{D}(h) + \epsilon)] \le |H|e^{-2m\epsilon^{2}}$

- Sample complexity:
 - $m \ge [1/2ε^2][\ln(1/\delta) + \ln|H|]$
- m depends logarithmically on H and $1/\delta$
- m grows on the square of 1/ɛ as opposed to linearly as before

Handling Infinite Hypothesis Spaces

- The previous analysis was restricted to finite hypothesis spaces
- Some infinite hypothesis spaces (such as those including real-valued thresholds or parameters) are more expressive than others.
 - Rule allowing one threshold on a continuous feature (length<3cm)
 - Rule allowing two thresholds (1cm<length<3cm)</p>
- Need some measure of the expressiveness of infinite hypothesis spaces.

Handling Infinite Hypothesis Spaces

- The Vapnik-Chervonenkis (VC) dimension, denoted VC(H), measures expressivity of infinite hypothesis spaces
- Analagous to In | H |, there are bounds for sample complexity using VC(H).
- VC-dim = given a hypothesis space H, the VC-dim is the size of the largest set of examples that can be completely fit by H, no matter how the examples are labeled

VC-Dimension Impact

- If the number of examples << VC-dim, then <u>memorizing training is trivial</u> and generalization likely to be poor
- If the number of examples >> VC-dim, then the algorithm <u>must generalize</u> to do well on the training set and will likely do well in the future

Definition: Shattering

- A hypothesis space is said to shatter a set of instances iff for every partition of the instances into positive and negative, there is a hypothesis that produces that partition
- Example: Consider 2 instances with a single real-valued feature being shattered by intervals

Definition: Shattering

But 3 instances cannot be shattered by a single interval

• Since there are 2^m partitions of *m* instances, in order for *H* to shatter instances: $|H| \ge 2^m$.

H is set of lines in 2D

Can cover <u>1 ex</u> no matter how labeled

Can cover <u>2 ex's</u> no matter how labeled

Can cover <u>2 ex's</u> no matter how labeled

Can cover 2 ex's no matter how labeled

Can cover 2 ex's no matter how labeled

Can cover <u>3 ex's</u> no matter how labeled

1,2 are same class 1,2,3 are same class 1,3 are same class 2,3 are same class

Notice $|H| = \infty$ but VC-dim = 3 For N-dimensions and N-1 dim hyperplanes, VC-dim = N + 1

What about collinear points?

If \exists <u>some</u> set of d examples that H can fully fit \forall labellings of these d examples then VC(H) \geq d

The Vapnik-Chervonenkis dimension, VC(*H*). of hypothesis space *H* defined over instance space *X* is the size of the largest finite subset of *X* shattered by *H*. If arbitrarily large finite subsets of *X* can be shattered then VC(*H*) = ∞

- An unbiased hypothesis space shatters the entire instance space
- The larger the subset of X that can be shattered, the more expressive the hypothesis space is, i.e. the less biased
- If at least one subset of X of size d exists that can be shattered then $VC(H) \ge d$. If no subset of size d can be shattered, then VC(H) < d
- Finite hypothesis space: VC-Dim $\leq \log_2|H|$

Sample Complexity from VC Dimension

How many randomly drawn examples suffice to guarantee error of at most ϵ with probability at least $(1 - \delta)$?

$$m \ge \frac{1}{\epsilon} (4\log_2(2/\delta) + 8VC(H)\log_2(13/\epsilon))$$

- Teacher shows input I
- ML algorithm guesses output O
- Teacher shows correct answer
- Can we upper bound the <u>number</u> of errors the learner will make?

<u>Example</u> Learn a conjunct from *N* predicates and their negations

- 1. Initial $h = p_1 \land \neg p_1 \land \dots \land p_n \land \neg p_n$
- 2. For each + ex, remove the remaining terms that do not match

Worst case # of mistakes? 1 + N

- 1. First + ex will remove *N* terms from h_{initial}
- Each subsequent error on a + will remove at least one more term (never make a mistake on - ex's)

- Homework 2 review
- Computational learning theory
- Support vector machines
- Making use of unlabeled data

What is a Support Vector Machine

- A subset of the examples (the support vectors)
- A vector of weights for them
- A similarity function K(xi,xj) (the kernel)

• Predict:
$$o_q = sign(\Sigma_j a_j o_j K(x_{j}, x_q))$$

- So SVMs are a form of instance based learning
- However, SVMs are usually presented as a generalization of a perceptron
- What the relationship between instance-based learning the perceptron?

•
$$< x, w > = \Sigma w_i x_i$$

- r<x,w> = <rw,w> [r is a real]
- < <x+y,w> = <x,w> + <y,w>

Vector Notation $o(x) = \begin{cases} 1 & \text{if } < w \\ -1 & \text{otherwise} \end{cases}$

Perceptron Training Rule

- Assume that $o_j = \{-1, +1\}$
- Weight update rule: $w_i = w_i + \eta(t_j o_j)x_{j,i}$
 - η =1/2
 - If $o_j = +1$ then $w_i = w_i + x_{j,i}$
 - If $o_j = -1$ then $w_i = w_i x_{j,i}$
- Rewrite as: $w_i = w_i + o_j x_{j,i}$
- $w_i = \Sigma_j a_j o_j x_{j,i}$

Dual Form of Perceptron

•
$$w_i = \Sigma_j a_j o_j x_{j,i}$$

• Label = $\langle w, x_q \rangle + w_0$

• Label =
$$\Sigma_j a_j o_j < x_j, x_q > + w_0$$

 Called the dual form because the example appears only within a dot product

Perceptron: Linear Separator

Binary classification can be viewed as the task of separating classes in feature space:

Which of the linear separators is optimal?

Idea: Classification Margin

- Support vectors: Examples closest to the hyperplane
- Margin ρ is the distance between support vectors

Maximum Margin Classification

- Intuitive this feels safest
- Implication: Only support vectors matter

•
$$< w_r > + w_0 = 1$$

- $< W_{,}x_{b} > + W_{0} = -1$
- $x_r = x_b + | * w$
- $|x_r x_b| = M$

- $< w_r > + w_0 = 1$
- $< w_{,}x_{b} > + w_{0} = -1$
- $x_r = x_b + 1 * w$
- $|x_r x_b| = M$
- $w < x_b + | * w > + w_0 = 1$

- $< w_r > + w_0 = 1$
- $< w_{,}x_{b} > + w_{0} = -1$
- $x_r = x_b + 1 * w$
- $|x_r x_b| = M$
- $w < x_b + |*w > + w_0 = 1$
- $\langle w, x_b \rangle + w_0 + \langle w, |*w \rangle = 1$
- -1 + | < w, w > = 1

•
$$< w_r > + w_0 = 1$$

•
$$< w_{,}x_{b} > + w_{0} = -1$$

•
$$x_r = x_b + 1 * w$$

•
$$|x_r - x_b| = M$$

•
$$w < x_b + |*w > + w_0 = 1$$

•
$$< w, x_b > + w_0 + < w, |*w > = 1$$

I = 2 / <w,w>

- Goal: Maximize the margin
- Objective: minimize <w,w>

Quadratic optimization problem:

Find **w** and *b* such that $\Phi(\mathbf{w}) = \mathbf{w} \mathbf{w} \text{ is minimized}$ and for all $(\mathbf{x}_{ii}, y_{i}), i=1...n:y_i (\langle \mathbf{w}, \mathbf{x}_{i} \rangle + w_0) \geq 1$

Solving the Optimization Problem

- Need to optimize a *quadratic* function subject to *linear* constraints.
- Quadratic optimization problems are a wellknown class of mathematical programming problems for which several (non-trivial) algorithms exist
- Not a part of this class

Soft Margin Classification

- If the training set is not linearly separable?
- Slack variables ξ_i allows misclassification of difficult/noisy examples

Soft Margin Classification Mathematically

Modified formulation incorporates slack variables:

Find **w** and b such that

 $\Phi(\mathbf{w}) = \mathbf{w} \mathbf{w} + C \Sigma \xi_i$ is minimized

and for all (\mathbf{x}_{i}, y_{i}) , $i=1..n: y_{i}(\langle \mathbf{w}, \mathbf{x}_{i} \rangle + w_{0}) \geq 1 - \xi_{i}$, $\xi_{i} \geq 0$

Parameter C can be viewed as a way to control overfitting: it "trades off" the relative importance of maximizing the margin and fitting the training data.

Datasets that are linearly separable with some noise work out great:

X

0

How about... mapping data to a higherdimensional space:

Non-linear SVMs: Feature spaces

 General idea: Original feature space can always be mapped to some higher-dimensional feature space where the training set is separable:

The "Kernel Trick"

- The linear classifier relies on inner product between vectors K(x_i,x_j)=x_ix_j
- If map every datapoint into high-dimensional space via some transformation $\Phi: \mathbf{X} \to \phi(\mathbf{X})$, the inner product: $K(\mathbf{x}_{i},\mathbf{x}_{j}) = \mathbf{\phi}(\mathbf{x}_{i}) \mathbf{\phi}(\mathbf{x}_{j})$
- A kernel function is a function that is equivalent to an inner product in some feature space.
- Kernel function *implicitly* maps data to a highdimensional space (without the need to compute each φ(x) explicitly).

Another View of SVMs

- Take the perceptron
- Replace dot product with arbitrary similarity function
- Now you have a much more powerful learner
- Kernel matrix: K(x, x') for $x, x' \in Data$
- If a symmetric matrix K is positive semi-definite (i.e., has non-negative eigenvalues), then K(x, x') is still a dot product, but in a transformed space:

$$K(x, x') = \phi(x) \cdot \phi(x')$$

- Also guarantees convex weight optimization problem
- Very general trick

Bounds

Margin bound:

Bound on VC dimension decreases with margin

Leave-one-out bound:

$$E[error_{\mathcal{D}}(h)] \le \frac{E[\# \text{ support vectors}]}{\# \text{ examples}}$$

- Dual problem: Weights on examples (vs. features)
- Maximize the margin
- Kernel trick

- Homework 2 review
- Computational learning theory
- Support vector machines
- Making use of unlabeled data

Using Unlabeled Data

Q: Where does labeled data come from??

- Some tasks, people are willing to label
 - Netflix, amazon, etc.
 - Spam
 - Medical diagnoses
- Often, we have to get people to label data
 - Web ranking
 - Document classification

Problem: Labeling data is expensive!

Using Unlabeled Data

- Learning methods need labeled data
 Lots of <x, f(x)> pairs
 - Hard to get... (who wants to label data?)
- But unlabeled data is usually plentiful...Could we use this instead?????
 - Semi-supervised learning
 - Active learning

Cotraining

- Have *little* labeled data + *lots* of unlabeled
- Each instance has two parts:
 - x = [x1, x2]
 - x1, x2 conditionally independent given f(x)
- Each half can be used to classify instance
 ∃f1, f2 such that f1(x1) ~ f2(x2) ~ f(x)
- Both f1, f2 are learnable

Unlabeled Instances

Lots of Labeled Instances

- Can apply A₁ to generate as much training data as one wants
 - If x₁ is conditionally independent of x₂ / f(x),
 - then the error in the labels produced by A₁
 - will look like random noise to A₂ !!!
- Thus *no limit* to quality of the hypothesis A₂ can make

Unlabeled Instances

Lots of Labeled Instances

Learning to classify web pages as course pages

- x1 = bag of words on a page
- x2 = bag of words from all anchors pointing to a page
- Naïve Bayes classifiers
 - 12 labeled pages
 - 1039 unlabeled

	Page-based classifier	Hyperlink-based classifier	Combined classifier
Supervised training	12.9	12.4	11.1
Co-training	6.2	11.6	5.0

Percentage error

Thought Experiment

suppose you're the leader of an Earth convoy sent to colonize planet Mars

people who ate the round people who ate the spiked Martian fruits found them *tasty!* Martian fruits *died*!

Poison vs. Yummy Fruits

problem: there's a range of spiky-to-round fruit shapes on Mars:

you need to learn the "threshold" of roundness where the fruits go from poisonous to safe.

and... you need to determine this risking as few colonists' lives as possible!

Testing Fruit Safety...

this is just a binary search, so ...

under the PAC model, assume we need $O(1/\epsilon)$ i.i.d. instances to train a classifier with error ϵ . using the binary search approach, we only needed $O(\log_2 1/\epsilon)$ instances!

Relationship to Active Learning

- key idea: the learner can choose training data
 on Mars: whether a fruit was poisonous/safe
 in general: the true label of some instance
- **goal:** reduce the training costs
 - on Mars: the number of "lives at risk"
 - *in general*: the number of "queries"

Active Learning Scenarios

membership query synthesis

most common in NLP applications

Pool-Based Active Learning Cycle

Learning Curves

Who Uses Active Learning?

SIEMENS

Microsoft

Sentiment analysis for blogs; Noisy relabeling – Prem Melville Biomedical NLP & IR; Computeraided diagnosis – *Balaji Krishnapuram* MS Outlook voicemail plug-in [Kapoor et al., IJCAI'07]; "A variety of prototypes that are in use EMbilgHotankertörmpthat/welfec using active learning in earnest on many problem areas... I really can't provide any more details than that.

How to Select Queries?

 let's try generalizing our binary search method using a *probabilistic* classifier:

Query examples learner is most uncertain about

- Closest to 0.5 prob
- Closest to decision surface

[Seung et al., COLT'92]

Query-By-Committee (QBC)

- train a committee C = $\{\theta_1, \theta_2, ..., \theta_C\}$ of classifiers on the labeled data in L
- query instances in U for which the committee is in most *disagreement*
- **key idea:** reduce the model *version space*
 - expedites search for a model during training

QBC: Design Decisions

How to build a committee:

- "sample" models from P(θ|L) [Dagan & Engelson, ICML'95; McCallum & Nigam, ICML'98]
- standard ensembles (e.g., bagging, boosting) [Abe & Mamitsuka, ICML'98]
- How to measure disagreement:
 - "XOR" committee classifications
 - view vote distribution as probabilities, use uncertainty measures (e.g., entropy)

Alternative Query Types

- so far, we assumed queries are *instances*
 - e.g., for document classification the learner queries *documents*
- can the learner do better by asking different types of questions?
 - *multiple-instance* active learning
 - *feature* active learning

Feature Active Learning

- in NLP tasks, we can often intuitively label features
 - the feature word "puck" indicates the class hockey
 - the feature word "*strike*" indicates the class
 baseball
- tandem learning exploits this by asking both instance-label and feature-relevance queries [Raghavan et al., JMLR'06]
 - e.g., "is *puck* an important discriminative feature?"

Clustering

- Learning theory:
 - Several ways to analyze a problem's complexity
 - Bounds on generalization error
- SVMs:
 - Maximum the margin
 - Kernel trick
- Unlabeled data:
 - Semi-supervised learning
 - Active learning

