Neural Networks

Instructor: Jesse Davis

Slides from: Pedro Domingos, Ray Mooney,
David Page, Jude Shavlik

Announcements

- Homework 1 has been graded
- Homework 2 is due now
- Homework 3 is available online
- Lecture notes are available online

Outline

- Homework 1 review
- Perceptron
- Multilayer neural networks

Problem 1: Results

- MAE ~ 0.695, RMSE ~ 0.884
- Baselines:
- User's average: MAE $=0.79$, RMSE $=0.99$
- Average rating (3.0): MAE $=0.90$, RMSE = 1.08
- Random guessing: MAE = 1.42, RMSE = 1.76
- Difference between best baselines and CF is seemingly small but translates to lots of $\$ \$$.

Problem 1: Optimizations

- Logical:
- Cache the mean prediction for each user
- Sort test records by user ID, cache Pearson's coefficients for use for subsequent users (remember: w(a,i) $=w(i, a)$)
- For each user, keep a sorted list of rated movies - allows $\mathrm{O}(\mathrm{n})$ identification of common movies between two users
- Technical:
- Multithread
- Eliminate as much output as possible
- Avoid typecasting (e.g., don't store Objects in maps)
- Use floats instead of doubles
- Use retail builds

Problem 2a: Solution

Image courtesy of Abdul Hyee Waqas

Problem 2a: Common Mistake

Problem 2b: Solution

Poin t	True Label	Predicted Label	Result
$(0,2)$	+	-	error
$(-1,1)$	-	+	error
$(1,1)$	-	+	error
$(-2,0)$	+	-	error
$(0,0)$	+	-	error
$(2,0)$	+	-	error
$(-1,-$	-	+	error
1$)$	-	+	error
$(1,-1)$	-	-	correct
$(0,-2)$	-		
Error	8/9		

Problem 2c: Simulate Backward Elimination

- Step 1: Try eliminating Y

Problem 2c: Simulate Backward Elimination

- Step 2: Try eliminating X

Poin	True Label	Predicted Label	Result
(.,2)	+	-	error
(.,1)		+	error
(.,1)		+	error
(.,0)	+	+	correct
(.,0)	+	+	correct
(.,0)	+	+	corr
(.,-1)		conflict	error
(.,-1)		conflict	error
(.,-2)			correct
Error $=5 / 9$			

Problem 2c: Simulate Backward Elimination

- Step 3: Decide which feature to drop (if any)

Drop X

Problem 2c: Simulate Backward Elimination

- Step 4: Try eliminating Y (again!)

Poin t	True Labe	Predicted Label	Result
(...)	+	conflict	error
(.,.)	-	conflict	error
(.,.)	-	conflict	error
(...)	+	conflict	error
(...)	+	conflict	error
(.,.)	+	conflict	error
(...)	-	conflict	error
(...)	-	conflict	error
(...)		conflict	error

Error = 1

Problem 2c: Simulate Backward Elimination

- Step 5: Decide which feature to drop (if any)

Can't drop anything else. Stop. Only X gets eliminated.

Problem 2c: Common Mistakes

- Forgetting to consider dropping Y after X is dropped - Counterintuitive in this case, but B.E. does it.
- Assuming that with no features, all points get the same label (+ or -)
- You could do that, but this is a hack.
- Assuming that different 3-NN sets always yield different predictions, resulting in conflicts (errors)
- Considering elimination of $\{X\}$, then $\{Y\}$, then $\{X, Y\}$
- B.E. doesn't consider all feature subsets - it eliminates one feature at a time

Problem 3: Solutions

A) $=A$

Problem 3: Common Mistake

Can't do this - the result is not a tree!

Also, finding identical subtrees in practice is very hard, and standard tree-learning algorithms don't do it.

Problem 4: Solution

- A) 1
- \# of positive and negative examples are equal
- B) 0
- Given a2=true, \# of positive and negative examples are equal, and same for a2 = false
- Thus, knowing a2 doesn't reduce entropy in any way

Problem 5: Solution

Problem 5: Advice

- When building plots, pay attention to axes' scales and ranges
- E.g., for the ROC, both axes should be on the same scale - they have the same units of measurement
- When plotting probabilities, set axes' ranges to $[0,1.0]-$ extending them past 1.0 (e.g., to 1.2) doesn't make sense
- A little care will make your plots look much more convincing and professional

Outline

- Homework 1 review
- Perceptron
- Multilayer neural networks

Neural Networks

- Analogy to biological neural systems, the most robust learning systems we know
- Attempt to understand natural biological systems through computational modeling
- Massive parallelism allows for computational efficiency
- Intelligent behavior as an "emergent" property
- Large number of simple units
- Combine output of simple units
- As opposed to explicitly encoded symbolic rules and algorithms

Neural Network Learning

- Learning approach based on modeling adaptation in biological neural systems
- Perceptron: Initial algorithm for learning simple neural networks (single layer) developed in the 1950's
- Backpropagation: More complex algorithm for learning multi-layer neural networks developed in the 1980's

Real Neurons

- Cell structures
- Cell body
- Dendrites
- Axon
- Synaptic terminals

Neural Communication

- Electrical potential across cell membrane exhibits spikes called action potentials
- Spike originates in cell body, travels down axon, and causes synaptic terminals to release neurotransmitters
- Chemical diffuses across synapse to dendrites of other neurons
- Neurotransmitters: excititory or
 inhibitory
- If net input of neurotransmitters to a neuron is excititory and exceeds some threshold, it fires an action potential

Real Neural Learning

- Synapses change size and strength with experience
- Hebbian learning: When two connected neurons are firing at the same time, the strength of the synapse between them increases
- "Neurons that fire together, wire together."

Connectionist Models

- Consider humans:
- Neuron switching time ~ 0.001 seconds
- Number of neurons $\sim 10^{10}$
- Connections per neuron ~ 104-5
- Scene recognition ~ 0.1 seconds
- 100 inference steps seems insufficient to achieve this results

Massive parallel computation!

Properties of Neural Networks

- Many neuron-like threshold switching units
- Many weighted interconnections between units
- Highly parallel, distributed process
- Emphasis on tuning weights automatically

Perceptron Model

Model network as a graph with:

- Cells as nodes
- Synaptic connections as weighted edges
- Neuron fires if sum of inputs exceeds a predefined threshold

Perceptron

Vector Notation

$$
o(\vec{x})=\left\{\begin{array}{l}
1 \text { if } \vec{x} \cdot \vec{x}>0 \\
-1 \text { otherwise }
\end{array}\right.
$$

Neural Computation

- McCollough and Pitts (1943) showed how such model neurons could compute logical functions and be used to construct finite-state machines.
- Can be used to simulate logic gates:
- AND: Let all $w_{j i}$ be T_{j} / n, where n is the number of inputs.
- OR: Let all $w_{j i}$ be T_{j}
- NOT: Let threshold be 0, single input with a negative weight.
- Can build arbitrary logic circuits, sequential machines, and computers with such gates.
- Given negated inputs, two layer network can compute any boolean function using a two level AND-OR network.

Perceptron Training

Given: Set of examples, where we know the desired outputs as well as which inputs are active

Learn: Weights associated with each input such that the correct output is produced for each training example

Learning done by an iterative weight update

Perceptron Training Rule

- Weight update rule: $\mathrm{W}_{\mathrm{i}}=\mathrm{W}_{\mathrm{i}}+\eta\left(\mathrm{t}_{\mathrm{j}}-\mathrm{o}_{\mathrm{j}}\right) \mathrm{x}_{\mathrm{j}, \mathrm{i}}$
- W_{i} is the weight for input i
- η is the learning rate
- t_{j} is the true output for example j
- o_{j} is the predicted output for example j
- $\mathrm{x}_{\mathrm{j}, \mathrm{i}}$ is the value of feature i of example j
- Intuitively, this means
- If label is correct, do nothing
- If weights are too high, decrease them
- If weights are too low, increase them

Perceptron Training Algorithm

Set initial weights to random value Repeat

for each example X_{j}

compute current output o_{j}
compare o_{j} to t_{j}
if necessary, update weights
Until all examples are labeled correctly
Epoch

Linear Separability

Consider a perceptron, its output is

$$
1 \text { if } W_{1} X_{1}+W_{2} X_{2}+\ldots+W_{n} X_{n}>\Theta
$$

0 otherwise
In terms of feature space

$$
\begin{aligned}
& W_{1} x_{1}+W_{2} x_{2}=\Theta \quad y=m x+b \\
& x_{2}=\frac{\Theta-W_{1} x_{1}}{W_{2}}=\frac{-W_{1}}{W_{2}} x_{1}+\frac{\Theta}{W_{2}}
\end{aligned}
$$

Hence, can only classify examples if a "line" (hyerplane) can separate them

The XOR Problem

Not linearly separable!!
Can't correctly classify

Perceptron Convergence Theorem

Perceptron \equiv no $\underline{H i d d e n ~ U n i t s ~}$

Can prove that weights will converge if

- The set examples is learnable, the perceptron training rule will eventually find the necessary weights
- Learning rate is sufficiently small

Gradient Descent

- Recall: $0=\mathrm{w}_{0}+\mathrm{w}_{1} \mathrm{x}_{1}+\ldots+\mathrm{w}_{\mathrm{n}} \mathrm{x}_{\mathrm{n}}$
- Question: How do we handle noise?
- Idea: Minimize squared error:

$$
E(w)=1 / 2 \sum\left(t_{i}-o_{i}\right)^{2}
$$

- Note: i ranges over data points

Perceptron Gradient Descent

- Hypothesis space: Set of weights
- Goal: Minimize the classification error on the training data
- Perceptron does gradient descent to find weights

Derivation

Error $\equiv 1 / 2 * \Sigma(\mathrm{t}-\mathrm{o})^{2}$
Network's output
Teacher's answer

$$
\begin{aligned}
& \Delta W_{i} \equiv-\eta \frac{\partial \mathrm{E}}{\partial W_{i}} \\
& \frac{\partial \mathrm{E}}{\partial \mathrm{~W}_{\mathrm{i}}}=\Sigma(\mathrm{t}-\mathrm{o}) \frac{\partial(\mathrm{t}-\mathrm{o})}{\partial \mathrm{W}_{i}}=-\Sigma(\mathrm{t}-\mathrm{o}) \frac{\partial 0}{\partial \mathrm{~W}_{\mathrm{i}}} \\
& \quad \text { Remember: } o=\mathrm{W} \cdot \overrightarrow{\mathrm{X}}
\end{aligned}
$$

Continuation of Derivation

$$
\begin{aligned}
\frac{\partial \mathrm{E}}{\partial \mathrm{~W}_{\mathrm{i}}} & =-\Sigma(\mathrm{t}-0) \frac{\partial\left(\mathrm{w}_{\mathrm{i}}^{*} \mathrm{x}_{\mathrm{i}}\right)}{\partial \mathrm{W}_{\mathrm{i}}} \\
& =-\Sigma(\mathrm{t}-0) \mathrm{x}_{\mathrm{i}}
\end{aligned}
$$

The Delta Rule

Gradient Descent

Batch vs. Incremental Gradient Descent

Batch Mode Gradient Descent:
Do until convergence

1. Compute the gradient $\nabla E_{D}[\vec{w}]$
2. $\vec{w} \leftarrow \vec{w}-\eta \nabla E_{D}[\vec{w}]$

Incremental Mode Gradient Descent:

Do until convergence
For each training example d in D

1. Compute the gradient $\nabla E_{d}[\vec{w}]$
2. $\vec{w} \leftarrow \vec{w}-\eta \nabla E_{d}[\vec{w}]$

$$
\begin{aligned}
E_{D}[\vec{w}] & \equiv \frac{1}{2} \sum_{d \in D}\left(t_{d}-o_{d}\right)^{2} \\
E_{d}[\vec{w}] & \equiv \frac{1}{2}\left(t_{d}-o_{d}\right)^{2}
\end{aligned}
$$

Incremental Gradient Descent can approximate Batch Gradient Descent arbitrarily closely if η made small enough

Perceptron Performance

- Linear threshold functions are restrictive (high bias) but still reasonably expressive; more general than:
- Pure conjunctive
- Pure disjunctive
- M-of-N (at least M of a specified set of N features must be present)
- In practice, converges fairly quickly for linearly separable data.
- Can effectively use even incompletely converged results when only a few outliers are misclassified.
- Experimentally, Perceptron does quite well on many benchmark data sets.

Summary

Perceptron training rule guaranteed to succeed if

- Training examples are linearly separable
- Sufficiently small learning rate η

Linear unit training rule uses gradient descent

- Guaranteed to converge to hypothesis with minimum squared error
- Given sufficiently small learning rate η
- Even when training data contains noise
- Even when training data not separable by H

Perceptron Limits

- System obviously cannot learn concepts it cannot represent
- Minksy and Papert (1969) wrote a book analyzing the perceptron and demonstrating many functions it could not learn
- These results discouraged further research on neural nets; and symbolic AI became the dominate paradigm

Naïve Bayes Revisited

- Perceptrons are the simplest neural network
- Its output is just a function of weighted sum of its inputs
- Perceptrons and logisitic regression are basically the same [see new Mitchell chapter]
- Several variants of each
- Similar to SVMs [covered later]

Naïve Bayes and Perceptrons

$X_{f, v}=\left\{\begin{array}{l}1 \text { if feature } f \text { has value } v \\ 0 \text { otherwise }\end{array}\right.$

Also note that: $a^{0}=1, a^{1}=a$

$$
P(f=v)=P(f=v \mid+) * P(+)+P(f=v \mid-) * P(-)
$$

(assuming discrete-valued features)

Naïve Bayes and Perceptrons

Test example feature vector

Clever trick: Multiply all conditional probabilities

$$
\begin{array}{r}
P\left(+\mid X_{f, v}\right)=\frac{\Pi_{f} \Pi_{v} P(f=v \mid+)^{X_{f, v}} * P(+)}{\left[\Pi_{f} \Pi_{v} P(f=v \mid+)^{X_{f, v}} * P(+)\right]+} \\
{\left[\Pi_{f} \Pi_{v} P(f=v \mid-)^{X_{f}, v} * P(-)\right]}
\end{array}
$$

$$
1
$$

$$
1+\frac{\left[\Pi_{f} \Pi_{\mathrm{v}} \mathrm{P}(\mathrm{f}=\mathrm{v} \mid-)^{\mathrm{X}_{\mathrm{f}, \mathrm{v}}} * \mathrm{P}(-)\right]}{\left[\Pi_{\mathrm{f}} \Pi_{\mathrm{v}} \mathrm{P}(\mathrm{f}=\mathrm{v} \mid+)^{\mathrm{X}_{\mathrm{f}, \mathrm{v}}} * \mathrm{P}(+)\right]}
$$

Naïve Bayes and Perceptrons

Note: $\Pi_{f} \Pi_{\mathrm{v}} \mathrm{P}(\mathrm{f}=\mathrm{v} \mid-)^{\mathrm{X}_{\mathrm{f}, \mathrm{v}}}=\mathrm{e}^{\Sigma \mathrm{f}, \mathrm{v}} \log \left[\mathrm{P}(\mathrm{f}=\mathrm{v} \mid-)_{\mathrm{f}, \mathrm{v}]}\right.$

Rewrite Naïve Bayes equations as:

$$
P\left(+\mid X_{f, v}\right)=\frac{1}{1+\frac{[P(-)]}{[P(+)]} e^{\Sigma f, v} \log \frac{\left[P(f=v(-)] X_{i v v}\right.}{[P(f=v \mid+)]_{i, v}}}
$$

Naïve Bayes and Perceptrons

weights

$$
\begin{aligned}
& -W_{f, v}=\log \frac{[P(f=v-1-]]}{[P(f=v \mid++]} \\
& -\Theta=\log \frac{[P(-)]}{[P(t)]}
\end{aligned}
$$

Bias/Threshold

$$
P\left(+\mid X_{f, v}\right)=\frac{1 \quad \text { features grea }}{\left.\left.1+e^{-\left[\left(\Sigma_{f, v}\right.\right.} W_{f, v}{ }^{*} X_{f, v}\right)-\Theta\right]}
$$

Example Encoding of Naïve Bayes as a Perceptron

Naïve Bayes vs. Perceptron

Implement NB as a perceptron w/sigmoida/ output

- Weights and bias are set by equations on previous slides

Note: Perceptron learner may pick different weights

- Representation is same for NB and perceptron
- Learning algorithm is different
- Many equivalent scoring hypothesis may exist [i.e., separating hyperplanes]

Outline

- Homework 1 review
- Perceptron
- Multilayer neural networks

Multi-Level Neural Networks

- Neural Networks can represent complex decision boundaries
- Variable size
- Deterministic
- Continuous Parameters
- Learning Algorithms for neural networks
- Local Search. The same algorithm as for sigmoid threshold units
- Eager
- Batch or Online

Multi-Level Neural Networks

CS 760 - Machine Learning (UW-

Hidden Units

One View

Allow a system to create its own internal representation - for which problem solving is easy A perceptron

CS 760 - Machine Learning (UW-
Madison)

Multi-Level Neural Networks

- A typical multi-layer network consists of:
- Input
- Hidden
- Output
- Typically, each layer is fully connected to next layer
- Activation of neurons feeds forward
- Usually, the network structure (units and interconnections) is specified by the designer
- Learning problem: Find a good set of weights

Multi-Level Neural Networks

- Multi-layer networks can represent arbitrary functions
- One layer with enough hidden units (possibly $2^{\mathbb{N}}$ for Boolean functions), can record input
- Single hidden layer: Compute any Boolean function
- The weights determine the function compute
- An effective learning algorithm for such networks was thought to be difficult
Question: How to provide an error signal to the interior units?

Idea: Still Use Gradient Descent

- Despite limitations, gradient descent is works well in practice
- How can we apply it to a multi layer network?
- Gradient descent requires output of a unit to be a differentiable function
- Linear threshold function is not differentiable, so we'll use the sigmoid function

Sigmoid Function

output $_{\mathrm{j}}=\mathrm{F}\left(\right.$ weight $_{\mathrm{i}, \mathrm{j}} \times$ output $\left._{\mathrm{i}}\right)$
$F\left(\right.$ input $\left._{i}\right)=\frac{1}{1+e^{-\left(\text {input }_{i}-\text { bias }_{i}\right)}}$

Backpropogation

- Backpropagation generalizes the perceptron rule
- Derivation involves partial derivatives
- Rumelhart, Parker, and Le Cun (and Bryson \& Ho, 1969 + Werbos, 1974) independently developed (1985) a technique for learning weights of hidden units

WARNING!
 Calculus / Linear Algebra Ahead!!!

FRANK AND ERNEST By Bob Thaves

Weight Space

- Given a neural-network layout, the weights are free parameters that define a space
- Each point in this Weight Space specifies a network
- Associated with each point is an error rate, \mathbf{E}, over the training data
- Backprop performs gradient descent in weight space

Gradient Descent Weight Space

Gradient Descent Rule

$$
\nabla \mathrm{E}(\overrightarrow{\mathrm{~W}}) \equiv\left[\frac{\partial \mathrm{E}}{\partial \mathrm{w}_{0}}, \frac{\partial \mathrm{E}}{\partial \mathrm{w}_{1}}, \quad \frac{\partial \mathrm{E}}{\partial \mathrm{w}_{2}}, \ldots \ldots, \frac{\partial \mathrm{E}}{\partial \mathrm{w}_{\mathrm{N}}}\right]
$$

Gradient: N+1 dimensional vector (slope in weight space)
Goal: Reduce errors
How: Go "down hill"
Take a finite step in weight space:

$$
\begin{aligned}
& \Delta \vec{W}=-\eta \nabla E(\vec{W}) \\
& \text { or } \Delta W_{i}=-\eta \frac{\partial E}{\partial w_{i}}
\end{aligned}
$$

Online vs. Batch Gradient Descent

- Technically, we should look at the error gradient for the entire training set, before taking a step in weight space ("batch" Backprop)
- However, as presented, we take a step after each example ("on-line" Backprop)
- Much faster convergence
- Can reduce overfitting (since on-line Backprop is "noisy" gradient descent)

Online vs. Batch Gradient Descent

BATCH - add Δw vectors for every training example, then 'move' in weight space.

ON-LINE - "move" after each example (aka, stochastic gradient descent)

* Final locations in \vec{W} space need not be the same for BATCH and ON-LINE
* Note $\Delta \mathrm{w}_{\mathrm{i}, \mathrm{BATCH}} \neq \Delta \mathrm{w}_{\mathrm{i}, \text { On-LINE, }}$ for $\mathrm{i}>1$

BP Calculations

Assume one layer of hidden units (std. topology)

1. Error $\equiv 1 / 2 \Sigma\left(\text { Teacher }_{i}-\text { Output }_{\mathrm{i}}\right)^{2}$
2. $=1 / 2 \Sigma\left(\right.$ Teacher $_{\mathrm{i}}-\mathrm{F}\left(\left[\Sigma \mathrm{W}_{\mathrm{i}, \mathrm{j}} \times \text { Output }_{\mathrm{j}}\right]\right)^{2}$
3. $=1 / 2 \Sigma\left(\text { Teacher }_{\mathrm{i}}-\mathrm{F}\left(\left[\Sigma \mathrm{W}_{\mathrm{i}, \mathrm{j}} \times \mathrm{F}\left(\Sigma \mathrm{W}_{\mathrm{j}, \mathrm{k}} \times \text { Output }_{\mathrm{k}}\right)\right]\right)\right)^{2}$

Determine

$$
\begin{array}{cll}
-\frac{\partial \text { Error }}{\partial \mathrm{Wj}, \mathrm{k}}= & \text { (use equation 2) } & * \begin{array}{l}
\text { See Table } 4.2 \\
\text { in Mitchell for } \\
\text { results }
\end{array} \\
-\frac{\partial \text { Error }^{\partial \text { net }_{j}}=}{} & \text { (use equation 3) } & \\
\text { Recall: } \Delta \mathrm{W}_{\mathrm{i}, \mathrm{j}}=-\eta\left(\partial \mathrm{E} / \partial \mathrm{W}_{\mathrm{i}, \mathrm{j}}\right) \mathrm{X}_{\mathrm{i}, \mathrm{j}}
\end{array}
$$

Terminology

net ${ }_{j}$ sum of weight inputs to j

Differentiating the Sigmoid

$$
\begin{aligned}
& \sigma(x)=\frac{1}{1+e^{-x}} \\
& \frac{\partial \sigma(x)}{\partial x}=\sigma(x)(1-\sigma(x))
\end{aligned}
$$

Update: Output Units

$$
\begin{aligned}
\frac{\partial \text { Error }}{\partial \mathrm{W}_{\mathrm{j}, \mathrm{k}}} & =\frac{\partial \text { Error }}{\partial \mathrm{o}_{\mathrm{k}}} \frac{\partial \mathrm{o}_{\mathrm{k}}}{\partial \mathrm{~W}_{\mathrm{j}, \mathrm{k}}} \\
\frac{\partial \text { Error }}{\partial \mathrm{o}_{\mathrm{k}}} & =1 / 2 \Sigma\left(\mathrm{t}_{\mathrm{a}}-o_{\mathrm{a}}\right)^{2} \\
& =1 / 2\left(\mathrm{t}_{\mathrm{k}}-o_{\mathrm{k}}\right)^{2} \\
& =1 / 22\left(\mathrm{t}_{\mathrm{k}}-o_{\mathrm{k}}\right) \frac{\partial\left(\mathrm{t}_{\mathrm{k}}-o_{k}\right)}{\partial \mathrm{o}_{\mathrm{k}}} \\
& =-\left(\mathrm{t}_{\mathrm{k}}-o_{k}\right)
\end{aligned}
$$

Update: Output Units

$$
\begin{aligned}
\frac{\partial \text { Error }}{\partial \mathrm{W}_{\mathrm{j}, \mathrm{k}}} & =\frac{\partial \text { Error }}{\partial \mathrm{o}_{\mathrm{k}}} \frac{\partial \mathrm{o}_{\mathrm{k}}}{\partial \mathrm{~W}_{\mathrm{j}, \mathrm{k}}} \\
\frac{\partial \text { Error }}{\partial \mathrm{o}_{\mathrm{k}}} & =-\left(\mathrm{t}_{\mathrm{k}}-\mathrm{o}_{\mathrm{k}}\right) \\
\frac{\partial \mathrm{o}_{\mathrm{j}}}{\partial \mathrm{~W}_{\mathrm{j}, \mathrm{k}}} & =o_{\mathrm{k}}\left(1-\mathrm{o}_{\mathrm{k}}\right) \\
\frac{\partial \text { Error }}{\partial \mathrm{W}_{\mathrm{j}, \mathrm{k}}} & =-\mathrm{o}_{\mathrm{k}}\left(1-\mathrm{o}_{\mathrm{k}}\right)\left(\mathrm{t}_{\mathrm{k}}-\mathrm{o}_{\mathrm{k}}\right) \\
\Delta \mathrm{W}_{\mathrm{j}, \mathrm{k}} & =-\eta\left(\partial \mathrm{E} / \partial \mathrm{W}_{\mathrm{j}, \mathrm{k}}\right) \mathrm{x}_{\mathrm{j}, \mathrm{k}}
\end{aligned}
$$

Update: Hidden Units

$$
\begin{aligned}
& =\sum-\delta_{k} \frac{\partial n e t_{k}}{\partial n e t_{j}} \\
& =\sum-\delta_{k} \frac{\partial \text { net }_{k}}{\partial \mathrm{o}_{\mathrm{j}}} \frac{\partial \mathrm{o}_{\mathrm{j}}}{\partial \text { net }_{\mathrm{j}}} \\
& =\sum-\delta_{\mathrm{k}} \mathrm{w}_{\mathrm{j}, \mathrm{k}} \frac{\partial \mathrm{o}_{\mathrm{j}}}{\partial \mathrm{net}_{\mathrm{j}}} \\
& =\sum-\delta_{\mathrm{k}} \mathrm{w}_{\mathrm{j}, \mathrm{k}} \mathrm{o}_{\mathrm{j}}\left(1-\mathrm{o}_{\mathrm{j}}\right) \\
& =-\mathrm{o}_{\mathrm{j}}\left(1-\mathrm{o}_{\mathrm{j}}\right) \sum \delta_{\mathrm{k}} \mathrm{w}_{\mathrm{j}, \mathrm{k}}
\end{aligned}
$$

Backpropagation Algorithm

Set initial weights to random value Repeat for each example X_{j}

1. compute current output o_{j}
2. For each output unit k : $\delta_{k}=o_{k}\left(1-o_{k}\right)\left(t_{k}-o_{k}\right)$
3. For each hidden unit $h: \delta_{h}=o_{h}\left(1-o_{h}\right) \Sigma_{k} w_{i, j} \delta_{k}$
4. Update each network weight $\mathrm{w}_{\mathrm{i}, \mathrm{j}}$

$$
\begin{aligned}
& w_{i, j}=w_{i, j}+\Delta w_{i, j} \eta \\
& \text { where } \Delta w_{i, j}=\eta \delta_{j} x_{i, j}
\end{aligned}
$$

Until train set error rate is small enough

Notes

- Initiate weights \& bias to small random values for example in [-0.3, 0.3]
- Randomize order of training examples
- Propagate activity forward to output units

$$
\text { out }_{\mathrm{j}}=\mathrm{F}\left(\Sigma \mathrm{w}_{\mathrm{i}, \mathrm{j}} \times \text { out }_{\mathrm{i}}\right)
$$

- Measure accuracy on test set to estimate generalization (future accuracy)

Learning Rate

- This is a subtle art
- Too small: Days instead of minutes to converge
- Too large: Diverges (MSE gets larger and larger while the weights increase and usually oscillate)
- The learning rate influences the ability to escape local optima
- Very often, different learning rates are used for units in different layers
- Each unit has its own optimal learning rate
- The -just right value is hard to find

Adjusting η on-the-Fly

0 . Let $\eta=0.25$

1. Measure ave. error over k examples

- call this $\mathbf{E}_{\text {before }}$

2. Adjust wgts according to neural-net learning algorithm being used
3. Measure ave error on same k examples

- call this $\mathbf{E}_{\text {after }}$

Adjusting η (cont.)

4. If $\mathrm{E}_{\text {after }}>\mathrm{E}_{\text {before, }}$ then $\eta \leftarrow \eta * 0.99$ else $\eta \leftarrow \eta^{*} 1.01$
5. Go to 1

Note: k can be all training examples but could be a subset

CS 760 - Machine Learning (UW-
Madison)

Including a "Momentum" Term in Backprop

To speed up convergence, often another term is added to the weight-update rule

$$
\Delta W_{i, j}(t)=\frac{-\eta \partial E}{\partial W_{i, j}}+\beta \underbrace{\beta \Delta W_{i, j}(t-1)}_{\begin{array}{c}
\text { The previous } \\
\text { Thange in } \\
\text { weight }
\end{array}}
$$

CS 760 - Machine Learning (UW-
Madison)

Online, Batch and Momentum

The "momentum term" variant of backprop can be written as
$\underset{\text { at time } t}{\text { The weights }} \boldsymbol{\rightharpoonup} \xrightarrow[w_{t}]{ }=-\eta \sum_{i=0}^{t} \beta^{i} \nabla \overrightarrow{w_{t-i}}$

So we're doing an "exponentially decaying" weighted sum of the individual gradients

Sort of a cross between pure batch \& pure on-line

Convergence of Backpropagation

Gradient descent to some local minimum

- Perhaps not global minimum...
- Add momentum
- Stochastic gradient descent
- Train multiple nets with different inital weights

Nature of convergence

- Initialize weights near zero
- Therefore, initial networks near-linear
- Increasingly non-linear functions possible as training progresses

Expressiveness of Neural Nets

Boolean functions:

- Every Boolean function can be represented by network with single hidden layer
- But might require exponential (in number of inputs) hidden units

Continuous functions:

- Every bounded continuous function can be approximated with arbitrarily small error, by network with one hidden layer
- Any function can be approximated to arbitrary accuracy by a network with two hidden layers

Design Choices

- Overfitting: too many parameters compared to the amount of data available
- Choosing the number of hidden units:
- Too few do not allow the concept to be learned
- Too many lead to slow learning and overfitting
- n binary inputs: $\log \mathrm{n}$ is a good heuristic choice
- Choosing the number of layers
- Always start with one hidden layer
- Never go beyond 2 hidden layers, unless the task structure suggests something different

Overfitting in Neural Nets

Overfitting Avoidance

Penalize large weights:

$$
E(\vec{w}) \equiv \frac{1}{2} \sum_{d \in D} \sum_{k \in \text { outputs }}\left(t_{k d}-o_{k d}\right)^{2}+\gamma \sum_{i, j} w_{j i}^{2}
$$

Train on target slopes as well as values:
$E(\vec{w}) \equiv \frac{1}{2} \sum_{d \in D} \sum_{k \in \text { outputs }}\left[\left(t_{k d}-o_{k d}\right)^{2}+\mu \sum_{j \in \text { inputs }}\left(\frac{\partial t_{k d}}{\partial x_{d}^{j}}-\frac{\partial o_{k d}}{\partial x_{d}^{j}}\right)^{2}\right]$

Weight sharing
Early stopping

Interpretability

- Multilayer neural networks are difficult for humans to understand
- One idea:
- Attempt to extract a decision or rule set from a learned neural network
- Train the decision tree to mimic the decisions made by the learned neural network
- Present decision tree to user

KBANN: Incorporating Background Knowledge

- Cup \leftarrow Stable, Liftable, OpenVessel
- Stable \leftarrow BottomIsFlat
- Liftable \leftarrow Graspable, Light
- Graspable \leftarrow HasHandle
- OpenVessel \leftarrow HasConcavity,ConcavityPointsUp

Knowledge: Network Topology

Application: Face Recognition

- Given: Sets of photos
- Task: Recognize DIRECTION of face
- Framework: Different people, poses, "glasses", different

Design Decision

- Input Encoding:
- Just pixels? (subsampled? averaged?)
- or perhaps lines/edges?
- Output Encoding:
- Single output ([0, 1/n] = \#1, . .)
- Set of n-output (take highest value)
- Network structure: \# of layers
- Connections (training time vs accuracy)
- Learning Parameters: Stochastic?
- Initial values of weights?
- Learning rate h, Momentum a, . . .
- Size of Validation Set, . . .

Images

Subsample: 30×32 pixels: 4×4 blocks get mean activation and normalize $[0,1]$

Network Structure

0.1: Inactive 0.9: Active

When Use A Neural Network

- Input is high-dimensional discrete or realvalued (e.g. raw sensor input)
- Output is discrete, real valued, or a vector of values
- Possibly noisy data
- Training time is unimportant
- Form of target function is unknown
- Human readability of result is unimportant
- Output computation has to be fast

Next Class

- Model Ensembles [Dietterich, AI Magazine article, section 2 only]
- Genetic algorithms [read Mitchell, Chapter 9]

Summary

- Peceptrons: Linear decision boundary
- Multilayer networks: Very expressive
- Learning: Find weights
- Gradient descent
- Backpropagation

Questions?

