
1

Neural Networks

Instructor: Jesse Davis

Slides from: Pedro Domingos, Ray Mooney, 

David Page, Jude Shavlik



2

Announcements

 Homework 1 has been graded

 Homework 2 is due now

 Homework 3 is available online

 Lecture notes are available online



3

Outline

 Homework 1 review

 Perceptron

 Multilayer neural networks



Problem 1: Results

 MAE ~ 0.695, RMSE ~ 0.884

 Baselines:

 User‟s average: MAE = 0.79, RMSE = 0.99

 Average rating (3.0): MAE = 0.90, RMSE = 
1.08

 Random guessing: MAE = 1.42, RMSE = 
1.76

 Difference between best baselines and CF is 
seemingly small but translates to lots of $$.



Problem 1: Optimizations

 Logical:
 Cache the mean prediction for each user
 Sort test records by user ID, cache Pearson‟s coefficients for 

use for subsequent users (remember: w(a,i) = w(i,a))
 For each user, keep a sorted list of rated movies – allows 

O(n) identification of common movies between two users
 Technical:

 Multithread
 Eliminate as much output as possible
 Avoid typecasting (e.g., don‟t store Objects in maps)
 Use floats instead of doubles
 Use retail builds



Problem 2a: Solution

Image courtesy of Abdul Hyee Waqas



Problem 2a: Common Mistake



Problem 2b: Solution

Poin
t

True 
Label

Predicted 
Label

Result

(0,2) + - error

(-1,1) - + error

(1,1) - + error

(-2,0) + - error

(0,0) + - error

(2,0) + - error

(-1,-
1)

- +
error

(1,-1) - + error

(0,-2) - - correct

Error = 8/9



Problem 2c: Simulate Backward 
Elimination

 Step 1: Try eliminating Y
Poin
t

True 
Label

Predicted 
Label

Result

(0,.) + - error

(-1,.) - conflict error

(1,.) - conflict error

(-2,.) + - error

(0,.) + - error

(2,.) + - error

(-1,.) - conflict error

(1,.) - conflict error

(0,.) - + error

-1 1 2-2

X 
axis

(1x)(2x) (2x)(1x)
(2x)

(1x)

Error = 1



Problem 2c: Simulate Backward 
Elimination

 Step 2: Try eliminating X 
Poin
t

True 
Label

Predicted 
Label

Result

(.,2) + - error

(.,1) - + error

(.,1) - + error

(.,0) + + correct

(.,0) + + correct

(.,0) + + correct

(.,-1) - conflict error

(.,-1) - conflict error

(.,-2) - - correct

0

-1

1

2

-2

Y-axis

(1x)

(2x)

(3x)

(2x)

(1x)

Error = 5/9



 Step 3: Decide which feature to drop (if any)

Drop X

Problem 2c: Simulate Backward 
Elimination



Problem 2c: Simulate Backward 
Elimination

 Step 4: Try eliminating Y (again!)
Poin
t

True 
Label

Predicted 
Label

Result

(.,.) + conflict error

(.,.) - conflict error

(.,.) - conflict error

(.,.) + conflict error

(.,.) + conflict error

(.,.) + conflict error

(.,.) - conflict error

(.,.) - conflict error

(.,.) - conflict error

(4x)

(5x)

Error = 1



Problem 2c: Simulate Backward 
Elimination

 Step 5: Decide which feature to drop (if any)

Can‟t drop anything else. Stop.

Only X gets eliminated.



Problem 2c: Common Mistakes

 Forgetting to consider dropping Y after X is dropped

 Counterintuitive in this case, but B.E. does it.

 Assuming that with no features, all points get the same 
label (+ or -)

 You could do that, but this is a hack.

 Assuming that different 3-NN sets always yield different 
predictions, resulting in conflicts (errors)

 Considering elimination of {X}, then {Y}, then {X,Y}

 B.E. doesn‟t consider all feature subsets – it eliminates       
one feature at a time



Problem 3: Solutions

A

B

A

B

C

B

AC

A

B

C

C

D

D

A) B)

C) D)



Problem 3: Common Mistake

A

B

C

D

Can‟t do this – the result is 
not a tree!

Also, finding identical subtrees
in practice is very hard, and 
standard tree-learning 
algorithms don‟t do it.



Problem 4: Solution

 A) 1

 # of positive and negative examples are 
equal

 B) 0 

 Given a2=true, # of positive and negative 
examples are equal, and same for a2 = false

 Thus, knowing a2 doesn‟t reduce entropy in 
any way



Problem 5: Solution

18

0   0.2  0.4   0.6  0.8  1.0

1.0

0.8

0.6

0.4

0.2

TPR

FPR



Problem 5: Advice

 When building plots, pay attention to axes‟ 
scales and ranges

 E.g., for the ROC, both axes should be on 
the same scale – they have the same units of 
measurement

 When plotting probabilities, set axes‟ ranges 
to     [0, 1.0] – extending them past 1.0 
(e.g., to 1.2) doesn‟t make sense

 A little care will make your plots look much 
more convincing and professional



20

Outline

 Homework 1 review

 Perceptron

 Multilayer neural networks



Neural Networks

 Analogy to biological neural systems, the most 
robust learning systems we know

 Attempt to understand natural biological 
systems through computational modeling

 Massive parallelism allows for computational 
efficiency

 Intelligent behavior as an “emergent” property
 Large number of simple units
 Combine output of simple units
 As opposed to explicitly encoded symbolic 

rules and algorithms

21



Neural Network Learning

 Learning approach based on modeling 
adaptation in biological neural systems

 Perceptron: Initial algorithm for learning simple 
neural networks (single layer) developed in the 
1950‟s

 Backpropagation: More complex algorithm for 
learning multi-layer neural networks developed 
in the 1980‟s

22



23

Real Neurons

 Cell structures

 Cell body

 Dendrites

 Axon

 Synaptic terminals



24

Neural Communication

 Electrical potential across cell membrane 
exhibits spikes called action potentials

 Spike originates in cell body, travels 
down axon, and causes synaptic 
terminals to release neurotransmitters

 Chemical diffuses across synapse to 

dendrites of other neurons

 Neurotransmitters: excititory or 

inhibitory

 If net input of neurotransmitters to a 
neuron is excititory and exceeds some 
threshold, it fires an action potential



25

Real Neural Learning

 Synapses change size and strength with 
experience

 Hebbian learning: When two connected 
neurons are firing at the same time, the 
strength of the synapse between them 
increases

 “Neurons that fire together, wire together.”



Connectionist Models

 Consider humans:

 Neuron switching time ~ 0.001 seconds

 Number of neurons ~1010

 Connections per neuron ~ 104-5

 Scene recognition ~ 0.1 seconds

 100 inference steps seems insufficient to 
achieve this results

Massive parallel computation!

26



Properties of Neural Networks

 Many neuron-like threshold switching units

 Many weighted interconnections between units

 Highly parallel, distributed process

 Emphasis on tuning weights automatically

27







Perceptron Model

Model network as a graph with:

 Cells as nodes 

 Synaptic connections as weighted edges 

 Neuron fires if sum of inputs exceeds a 
predefined threshold

30
input

o
u
tp

u
t

Tj
0

1



Perceptron

31

X1

X2

Xn

Σ

w1

w2

wn

…

w0

1

v= w0 + Σwixi
o = 1 if v > 0

-1 otherwise{

o(x1,…,xN)= 1 if w0 + w1x1+…+ wnxn > 0
-1 otherwise{

o(x ) = 1 if w x > 0
-1 otherwise{ .

Vector Notation



32

Neural Computation

 McCollough and Pitts (1943) showed how such model 
neurons could compute logical functions and be used 
to construct finite-state machines.

 Can be used to simulate logic gates:

 AND: Let all wji be Tj /n, where n is the number of inputs.

 OR: Let all wji be Tj

 NOT: Let threshold be 0, single input with a negative weight. 

 Can build arbitrary logic circuits, sequential machines, 
and computers with such gates.

 Given negated inputs, two layer network can compute 
any boolean function using a two level AND-OR 
network.



Perceptron Training

Given: Set of examples, where we know the 
desired outputs as well as which inputs     
are active

Learn: Weights associated with each input such 
that the correct output is produced for 
each training example

Learning done by an iterative weight update 

33



Perceptron Training Rule

 Weight update rule: Wi = Wi + η(tj-oj)xj,i

 Wi is the weight for input i

 η is the learning rate

 tj is the true output for example j

 oj is the predicted output for example j

 xj,i is the value of feature i of example j

 Intuitively, this means

 If label is correct, do nothing

 If weights are too high, decrease them

 If weights are too low, increase them
34



Perceptron Training Algorithm

Set initial weights to random value

Repeat

for each example Xj

compute current output oj

compare oj to tj
if necessary, update weights

Until all examples are labeled correctly

35

Epoch



Linear Separability

36

Consider a perceptron, its output is 

1 if W1X1+W2X2 + … + WnXn > Q

0 otherwise

In terms of feature space

W1X1 + W2X2 = Q

X2 =               = 
Q -W1X1

W2

-W1 Q

W2         W2
X1+

Hence, can only classify examples if a 
“line” (hyerplane) can separate them

y = mx + b

x1

x2



The XOR Problem

37

Input

0  0
0  1
1  0
1  1

Output

-
+
+
-

a)
b)
c)
d)

+

- +

-

0 1

1

X2

X1

Not linearly separable!! 
Can‟t correctly classify



Perceptron Convergence Theorem

Perceptron  no Hidden Units

Can prove that weights will converge if

 The set examples is learnable, the 
perceptron training rule will eventually find 
the necessary weights

 Learning rate is sufficiently small

38



Gradient Descent

 Recall: 0 = w0 + w1x1+…+ wnxn

 Question: How do we handle noise?

 Idea: Minimize squared error:

 Note: i ranges over data points

39

E(w) = ½ Σ (ti-oi)
2



Perceptron Gradient Descent 

 Hypothesis space: Set of weights

 Goal: Minimize the classification error on the 
training data

 Perceptron does gradient descent to find weights

40

weights

training
data
error
rate



Derivation

41

Error  ½ * Σ( t – o )2

Network‟s output

Teacher‟s answer 
 E

 Wi

ΔWj  - η

= Σ(t – o) 
 E

 Wi

 (t – o)

 Wi

= - Σ(t – o)
 o

 W i

Remember: o = W·X



© Jude Shavlik 2006
David Page 2007

CS 760 – Machine Learning (UW-
Madison) Lecture #16, Slide 42

Continuation of Derivation

 E

 Wi

= - Σ(t – o) 
 Wi

(w i * x i)

= - Σ(t – o) xi

So    ΔWi = η Σ (t – o) xi The Delta Rule

Stick in formula 
for output









46

Perceptron Performance

 Linear threshold functions are restrictive (high bias) but 
still reasonably expressive; more general than:
 Pure conjunctive

 Pure disjunctive

 M-of-N  (at least M of a specified set of N features must be 
present)

 In practice, converges fairly quickly for linearly 
separable data.

 Can effectively use even incompletely converged results 
when only a few outliers are misclassified.

 Experimentally, Perceptron does quite well on many 
benchmark data sets. 





48

Perceptron Limits

 System obviously cannot learn concepts it 
cannot represent

 Minksy and Papert (1969) wrote a book 
analyzing the perceptron and demonstrating 
many functions it could not learn

 These results discouraged further research on 
neural nets; and symbolic AI became the 
dominate paradigm



Naïve Bayes Revisited

 Perceptrons are the simplest neural network

 Its output is just a function of weighted sum 
of its inputs

 Perceptrons and logisitic regression are 
basically the same [see new Mitchell chapter]

 Several variants of each

 Similar to SVMs [covered later]

49



Naïve Bayes and Perceptrons

50

Xf,v =
1 if feature f has value v
0 otherwise{

Also note that:  a0=1, a1=a 

P(f = v) = P(f =v | +) * P(+) + P(f =v | -) * P(-)

(assuming discrete-valued features)



Naïve Bayes and Perceptrons

51

Πf Πv P(f=v |+)Xf,v * P(+)
P(+ | Xf,v) =

[Πf Πv P(f=v |+)Xf,v * P(+)] +
[Πf Πv P(f=v |-)Xf,v * P(-)] 

[Πf Πv P(f=v |-)Xf,v * P(-)] 

[Πf Πv P(f=v |+)Xf,v * P(+)] 

1

1 +

P(+ | Xf,v) =

Clever trick: Multiply all 
conditional probabilitiesTest example 

feature vector



Naïve Bayes and Perceptrons

52

Note: Πf Πv P(f=v |-)Xf,v = eΣf,v log[P(f =v |-) Xf,v] 

[P(-)] 

[P(+)] 

1

1 +

P(+ | Xf,v) =

eΣf,v Log
[P(f = v |-)] Xf,v

[P(f = v |+)] Xf,v

Rewrite Naïve Bayes equations as: 



Naïve Bayes and Perceptrons

53

-Wf,v = Log
[P(f = v |-)] 

[P(f = v |+)] 

-Θ = Log
[P(-)] 

[P(+)] 

1

1 + e

P(+ | Xf,v) =
-[(Σf,v wf,v*xf,v)- Θ]

weights

Bias/Threshold Greater ≥ 0.5 if 
weighted sum of 

features greater than Θ



Example Encoding of Naïve Bayes as 
a Perceptron

54

S

Color=red

sum

Color=blue

Color=green

Size=big

Size=small

weight

weight

-1

Initial threshold, the 

evidence must overcome 

to guess positive

sum
e

-
1

1Xcolor,red

[P(size = small |-)] 

[P(size = small |+)] 
Log

[P(-)] 

[P(+)]
Log

[P(color= red |-)] 

[P(color = red |+)] 
Log



Naïve Bayes vs. Perceptron

Implement NB as a perceptron w/sigmoidal output

 Weights and bias are set by equations on previous 
slides

Note: Perceptron learner may pick different

weights

 Representation is same for NB and perceptron

 Learning algorithm is different

 Many equivalent scoring hypothesis may exist [i.e., 
separating hyperplanes]

55



56

Outline

 Homework 1 review

 Perceptron

 Multilayer neural networks



Multi-Level Neural Networks

 Neural Networks can represent complex 
decision boundaries

 Variable size

 Deterministic

 Continuous Parameters

 Learning Algorithms for neural networks

 Local Search. The same algorithm as for sigmoid 
threshold units

 Eager

 Batch or Online

57



© Jude Shavlik 2006
David Page 2007

CS 760 – Machine Learning (UW-
Madison) Lecture #16, Slide 58

Multi-Level Neural Networks

Output units

Input units

Hidden units

error
weight

Activation



© Jude Shavlik 2006
David Page 2007

CS 760 – Machine Learning (UW-
Madison) Lecture #16, Slide 59

Hidden Units

One View
Allow a system to create its own internal 
representation – for which problem 
solving is easy A perceptron



Multi-Level Neural Networks

 A typical multi-layer network consists of:

 Input

 Hidden

 Output 

 Typically, each layer is fully connected to next layer

 Activation of neurons feeds forward

 Usually, the network structure (units and 
interconnections) is specified by the designer

 Learning problem: Find a good set of weights

60



Multi-Level Neural Networks

 Multi-layer networks can represent arbitrary 
functions

 One layer with enough hidden units (possibly 2N for 
Boolean functions), can record input

 Single hidden layer: Compute any Boolean function

 The weights determine the function compute

 An effective learning algorithm for such 
networks was thought to be difficult

61

Question: How to provide an error signal 
to the interior units?



Idea: Still Use Gradient Descent 

 Despite limitations, gradient descent is works 
well in practice

 How can we apply it to a multi layer network?

 Gradient descent requires output of a unit to be 
a differentiable function

 Linear threshold function is not differentiable, 
so we‟ll use the sigmoid function

62



Sigmoid Function

63

bias

o
u
tp

u
t

inputbias

o
u
tp

u
t

input

output j= F(Sweight i,j x output i)

F(input i) = 
1

1+e -(input i – bias i)

i



Backpropogation

 Backpropagation generalizes the perceptron rule

 Derivation involves partial derivatives

 Rumelhart, Parker, and Le Cun (and Bryson & Ho, 1969 
+ Werbos, 1974) independently developed (1985) a 
technique for learning weights of hidden units

64

 E
 Wi,j

error signal



© Jude Shavlik 2006
David Page 2007

CS 760 – Machine Learning (UW-
Madison) Lecture #16, Slide 65

WARNING!
Calculus / Linear Algebra Ahead!!!



Weight Space

 Given a neural-network layout, the weights are 
free parameters that define a space

 Each point in this Weight Space specifies a 
network

 Associated with each point is an error rate, E, 
over the training data

 Backprop performs gradient descent in weight 
space

66



Gradient Descent Weight Space

67

E

W1

 E

 w

 W1

 W2 



Gradient Descent Rule

68

E(w)  [                 ]
E

w0

E
w1

E
w2

E
wN

,    ,     ,  …  … …   , _

Gradient: N+1 dimensional vector (slope in weight space)

Goal: Reduce errors

How: Go “down hill”

Take a finite step in weight space:

W2

w = -   E ( w )

or wi = - 
E
wi

E

W1

 E

w



Online vs. Batch Gradient Descent

 Technically, we should look at the error 
gradient for the entire training set, before 
taking a step in weight space 
(“batch” Backprop)

 However, as presented, we take a step after 
each example (“on-line” Backprop)

 Much faster convergence

 Can reduce overfitting (since on-line Backprop is 
“noisy” gradient descent)

69



Online vs. Batch Gradient Descent

70

BATCH – add w 
vectors for every
training example, then
„move‟ in weight space.

ON-LINE – “move” 
after each example 
(aka, stochastic gradient 
descent)

E

Swi

w1

w3

w2

w

w1

w2

w3

* Note wi,BATCH  wi, ON-LINE, for i > 1

E

w

* Final locations in    space need not be the same for BATCH and ON-LINE   w



© Jude Shavlik 2006
David Page 2007

CS 760 – Machine Learning (UW-
Madison) Lecture #16, Slide 71

Assume one layer of hidden units (std. topology)

1. Error  ½ S ( Teacheri – Output i ) 2

2. = ½ S(Teacheri – F( [SWi,j x Output j] )
2

3. = ½ S(Teacheri – F( [SWi,j x F (SWj,k x Outputk)]))
2

Determine

BP Calculations

 Error
 Wj,k

 Error
 netj

=     (use equation 2)

=      (use equation 3)

* See Table 4.2 
in Mitchell for   
results

wi,j = -  ( E /  wi,j ) xi,j

i j     k

Recall:



Terminology

72

i kj

netj sum of weight inputs to j



Differentiating the Sigmoid

73



1/2

o
u
tp

u
t

input

σ(x)= 1 + e-x
1

= σ(x)(1- σ(x)) σ(x)
x



Update: Output Units

74

 Error
 Wj,k

= 
 Error

 ok

 ok

 Wj,k

= ½ S(ta - oa)
2 Error

 ok

= ½ (tk - o k)
2

= ½ 2(tk - o k)
 (tk - ok)

 ok

= -(tk - ok)



Update: Output Units

75

 Error
 Wj,k

= 
 Error

 ok

 ok

 Wj,k

= -(tk - ok)
 Error

 ok

= ok(1 - ok)
 oj

 Wj,k

 Error
 Wj,k

= -o k(1 - ok)(tk - o k)

wj,k = -  ( E /  wj,k ) xj,k



Update: Hidden Units

76

 Error
 netj

= 
 Error
 netk

 netk
 netj

S

 netk
 netj

S= -δk

= 
 netk

 oj
S -δk

 oj

 netj

= S -δk wj,k
 oj

 netj

= S -δk wj,ko j(1 - oj)

= -o j(1 - oj) δk wj,kS



Backpropagation Algorithm

Set initial weights to random value

Repeat

for each example Xj

1. compute current output oj

2. For each output unit k:

3. For each hidden unit h:

4. Update each network weight wi,j

Until train set error rate is small enough
77

wi,j = wi,j + Δwi,j 

k= ok(1- ok) (tk- ok)

h= oh(1- oh) Σk wi,jk

where Δwi,j = j xi,j



Notes

 Initiate weights & bias to small random values 
for example in [-0.3, 0.3]

 Randomize order of training examples

 Propagate activity forward to output units

 Measure accuracy on test set to estimate 
generalization (future accuracy)

78

outj = F( S wi,j x outi)



Learning Rate

 This is a subtle art

 Too small: Days instead of minutes to converge

 Too large: Diverges (MSE gets larger and larger 
while the weights increase and usually oscillate)

 The learning rate influences the ability to escape 
local optima

 Very often, different learning rates are used for 
units in different layers

 Each unit has its own optimal learning rate

 The -just right value is hard to find
79



© Jude Shavlik 2006
David Page 2007

CS 760 – Machine Learning (UW-
Madison) Lecture #16, Slide 80

Adjusting η on-the-Fly

0.   Let η = 0.25

1.   Measure ave. error over k examples

- call this  Ebefore

2.   Adjust wgts according to neural-net learning 
algorithm being used

3.   Measure ave error on same k examples

- call this  Eafter



© Jude Shavlik 2006
David Page 2007

CS 760 – Machine Learning (UW-
Madison) Lecture #16, Slide 81

Adjusting η (cont.)

4.  If E after > E before, 

then η  η * 0.99

else  η  η * 1.01

5.  Go to 1

Note: k can be all training examples 
but could be a subset



© Jude Shavlik 2006
David Page 2007

CS 760 – Machine Learning (UW-
Madison) Lecture #16, Slide 82

Including a “Momentum” Term 
in Backprop

To speed up convergence, often another 
term is added to the weight-update rule

Typically, 0 < β < 1

)1()(
,

,

,
-



-
 tW

W

E
tW

ji

ji

ji




The previous 
change in 
weight



Online, Batch and Momentum

83

The “momentum term” variant of backprop
can be written as

So we‟re doing an “exponentially decaying” 
weighted sum of the individual gradients

Sort of a cross between pure batch & pure on-line

it

t

i

i

t
ww

-



- 
0

The weights 
at time t







Design Choices

 Overfitting: too many parameters compared to 
the amount of data available

 Choosing the number of hidden units:

 Too few do not allow the concept to be learned

 Too many lead to slow learning and overfitting

 n binary inputs: log n is a good heuristic choice

 Choosing the number of layers

 Always start with one hidden layer

 Never go beyond 2 hidden layers, unless the task 
structure suggests something different

86









Interpretability

 Multilayer neural networks are difficult for 
humans to understand

 One idea:

 Attempt to extract a decision or rule set from 
a learned neural network

 Train the decision tree to mimic the decisions 
made by the learned neural network

 Present decision tree to user

90



KBANN: Incorporating Background 
Knowledge

 Cup ← Stable, Liftable, OpenVessel

 Stable ← BottomIsFlat

 Liftable ← Graspable, Light

 Graspable ← HasHandle

 OpenVessel ← HasConcavity,ConcavityPointsUp

91



Knowledge: Network Topology

92

Light

Cup

Stable

Liftable

ConcavityPointsUp

OpenVessel

BottomIsFlat

HasHandle

HasConcavity

Graspable



Application: Face Recognition

 Given: Sets of photos

 Task: Recognize DIRECTION of face

 Framework: Different people, poses, 
“glasses”, different

93



Design Decision

 Input Encoding:

 Just pixels? (subsampled? averaged?)

 or perhaps lines/edges?

 Output Encoding:

 Single output ([0, 1/n] = #1, . . . )

 Set of n-output (take highest value)

 Network structure: # of layers

 Connections (training time vs accuracy)

 Learning Parameters: Stochastic?

 Initial values of weights?

 Learning rate h, Momentum a, . . .

 Size of Validation Set, . . .
94



Images

95

Subsample: 30 x 32 pixels: 4x4 blocks get 
mean activation and normalize [0,1]



Network Structure

96

…

0.1: Inactive
0.9: Active



When Use A Neural Network

 Input is high-dimensional discrete or real-
valued (e.g. raw sensor input)

 Output is discrete, real valued, or a vector of 
values

 Possibly noisy data

 Training time is unimportant

 Form of target function is unknown

 Human readability of result is unimportant

 Output computation has to be fast

97



Next Class

 Model Ensembles [Dietterich, AI Magazine 
article, section 2 only]

 Genetic algorithms [read Mitchell, Chapter 9]

98



Summary

 Peceptrons: Linear decision boundary

 Multilayer networks: Very expressive

 Learning: Find weights

 Gradient descent 

 Backpropagation

99



Questions?

100


