
1

Neural Networks

Instructor: Jesse Davis

Slides from: Pedro Domingos, Ray Mooney,

David Page, Jude Shavlik

2

Announcements

 Homework 1 has been graded

 Homework 2 is due now

 Homework 3 is available online

 Lecture notes are available online

3

Outline

 Homework 1 review

 Perceptron

 Multilayer neural networks

Problem 1: Results

 MAE ~ 0.695, RMSE ~ 0.884

 Baselines:

 User‟s average: MAE = 0.79, RMSE = 0.99

 Average rating (3.0): MAE = 0.90, RMSE =
1.08

 Random guessing: MAE = 1.42, RMSE =
1.76

 Difference between best baselines and CF is
seemingly small but translates to lots of $$.

Problem 1: Optimizations

 Logical:
 Cache the mean prediction for each user
 Sort test records by user ID, cache Pearson‟s coefficients for

use for subsequent users (remember: w(a,i) = w(i,a))
 For each user, keep a sorted list of rated movies – allows

O(n) identification of common movies between two users
 Technical:

 Multithread
 Eliminate as much output as possible
 Avoid typecasting (e.g., don‟t store Objects in maps)
 Use floats instead of doubles
 Use retail builds

Problem 2a: Solution

Image courtesy of Abdul Hyee Waqas

Problem 2a: Common Mistake

Problem 2b: Solution

Poin
t

True
Label

Predicted
Label

Result

(0,2) + - error

(-1,1) - + error

(1,1) - + error

(-2,0) + - error

(0,0) + - error

(2,0) + - error

(-1,-
1)

- +
error

(1,-1) - + error

(0,-2) - - correct

Error = 8/9

Problem 2c: Simulate Backward
Elimination

 Step 1: Try eliminating Y
Poin
t

True
Label

Predicted
Label

Result

(0,.) + - error

(-1,.) - conflict error

(1,.) - conflict error

(-2,.) + - error

(0,.) + - error

(2,.) + - error

(-1,.) - conflict error

(1,.) - conflict error

(0,.) - + error

-1 1 2-2

X
axis

(1x)(2x) (2x)(1x)
(2x)

(1x)

Error = 1

Problem 2c: Simulate Backward
Elimination

 Step 2: Try eliminating X
Poin
t

True
Label

Predicted
Label

Result

(.,2) + - error

(.,1) - + error

(.,1) - + error

(.,0) + + correct

(.,0) + + correct

(.,0) + + correct

(.,-1) - conflict error

(.,-1) - conflict error

(.,-2) - - correct

0

-1

1

2

-2

Y-axis

(1x)

(2x)

(3x)

(2x)

(1x)

Error = 5/9

 Step 3: Decide which feature to drop (if any)

Drop X

Problem 2c: Simulate Backward
Elimination

Problem 2c: Simulate Backward
Elimination

 Step 4: Try eliminating Y (again!)
Poin
t

True
Label

Predicted
Label

Result

(.,.) + conflict error

(.,.) - conflict error

(.,.) - conflict error

(.,.) + conflict error

(.,.) + conflict error

(.,.) + conflict error

(.,.) - conflict error

(.,.) - conflict error

(.,.) - conflict error

(4x)

(5x)

Error = 1

Problem 2c: Simulate Backward
Elimination

 Step 5: Decide which feature to drop (if any)

Can‟t drop anything else. Stop.

Only X gets eliminated.

Problem 2c: Common Mistakes

 Forgetting to consider dropping Y after X is dropped

 Counterintuitive in this case, but B.E. does it.

 Assuming that with no features, all points get the same
label (+ or -)

 You could do that, but this is a hack.

 Assuming that different 3-NN sets always yield different
predictions, resulting in conflicts (errors)

 Considering elimination of {X}, then {Y}, then {X,Y}

 B.E. doesn‟t consider all feature subsets – it eliminates
one feature at a time

Problem 3: Solutions

A

B

A

B

C

B

AC

A

B

C

C

D

D

A) B)

C) D)

Problem 3: Common Mistake

A

B

C

D

Can‟t do this – the result is
not a tree!

Also, finding identical subtrees
in practice is very hard, and
standard tree-learning
algorithms don‟t do it.

Problem 4: Solution

 A) 1

 # of positive and negative examples are
equal

 B) 0

 Given a2=true, # of positive and negative
examples are equal, and same for a2 = false

 Thus, knowing a2 doesn‟t reduce entropy in
any way

Problem 5: Solution

18

0 0.2 0.4 0.6 0.8 1.0

1.0

0.8

0.6

0.4

0.2

TPR

FPR

Problem 5: Advice

 When building plots, pay attention to axes‟
scales and ranges

 E.g., for the ROC, both axes should be on
the same scale – they have the same units of
measurement

 When plotting probabilities, set axes‟ ranges
to [0, 1.0] – extending them past 1.0
(e.g., to 1.2) doesn‟t make sense

 A little care will make your plots look much
more convincing and professional

20

Outline

 Homework 1 review

 Perceptron

 Multilayer neural networks

Neural Networks

 Analogy to biological neural systems, the most
robust learning systems we know

 Attempt to understand natural biological
systems through computational modeling

 Massive parallelism allows for computational
efficiency

 Intelligent behavior as an “emergent” property
 Large number of simple units
 Combine output of simple units
 As opposed to explicitly encoded symbolic

rules and algorithms

21

Neural Network Learning

 Learning approach based on modeling
adaptation in biological neural systems

 Perceptron: Initial algorithm for learning simple
neural networks (single layer) developed in the
1950‟s

 Backpropagation: More complex algorithm for
learning multi-layer neural networks developed
in the 1980‟s

22

23

Real Neurons

 Cell structures

 Cell body

 Dendrites

 Axon

 Synaptic terminals

24

Neural Communication

 Electrical potential across cell membrane
exhibits spikes called action potentials

 Spike originates in cell body, travels
down axon, and causes synaptic
terminals to release neurotransmitters

 Chemical diffuses across synapse to

dendrites of other neurons

 Neurotransmitters: excititory or

inhibitory

 If net input of neurotransmitters to a
neuron is excititory and exceeds some
threshold, it fires an action potential

25

Real Neural Learning

 Synapses change size and strength with
experience

 Hebbian learning: When two connected
neurons are firing at the same time, the
strength of the synapse between them
increases

 “Neurons that fire together, wire together.”

Connectionist Models

 Consider humans:

 Neuron switching time ~ 0.001 seconds

 Number of neurons ~1010

 Connections per neuron ~ 104-5

 Scene recognition ~ 0.1 seconds

 100 inference steps seems insufficient to
achieve this results

Massive parallel computation!

26

Properties of Neural Networks

 Many neuron-like threshold switching units

 Many weighted interconnections between units

 Highly parallel, distributed process

 Emphasis on tuning weights automatically

27

Perceptron Model

Model network as a graph with:

 Cells as nodes

 Synaptic connections as weighted edges

 Neuron fires if sum of inputs exceeds a
predefined threshold

30
input

o
u
tp

u
t

Tj
0

1

Perceptron

31

X1

X2

Xn

Σ

w1

w2

wn

…

w0

1

v= w0 + Σwixi
o = 1 if v > 0

-1 otherwise{

o(x1,…,xN)= 1 if w0 + w1x1+…+ wnxn > 0
-1 otherwise{

o(x) = 1 if w x > 0
-1 otherwise{ .

Vector Notation

32

Neural Computation

 McCollough and Pitts (1943) showed how such model
neurons could compute logical functions and be used
to construct finite-state machines.

 Can be used to simulate logic gates:

 AND: Let all wji be Tj /n, where n is the number of inputs.

 OR: Let all wji be Tj

 NOT: Let threshold be 0, single input with a negative weight.

 Can build arbitrary logic circuits, sequential machines,
and computers with such gates.

 Given negated inputs, two layer network can compute
any boolean function using a two level AND-OR
network.

Perceptron Training

Given: Set of examples, where we know the
desired outputs as well as which inputs
are active

Learn: Weights associated with each input such
that the correct output is produced for
each training example

Learning done by an iterative weight update

33

Perceptron Training Rule

 Weight update rule: Wi = Wi + η(tj-oj)xj,i

 Wi is the weight for input i

 η is the learning rate

 tj is the true output for example j

 oj is the predicted output for example j

 xj,i is the value of feature i of example j

 Intuitively, this means

 If label is correct, do nothing

 If weights are too high, decrease them

 If weights are too low, increase them
34

Perceptron Training Algorithm

Set initial weights to random value

Repeat

for each example Xj

compute current output oj

compare oj to tj
if necessary, update weights

Until all examples are labeled correctly

35

Epoch

Linear Separability

36

Consider a perceptron, its output is

1 if W1X1+W2X2 + … + WnXn > Q

0 otherwise

In terms of feature space

W1X1 + W2X2 = Q

X2 = =
Q -W1X1

W2

-W1 Q

W2 W2
X1+

Hence, can only classify examples if a
“line” (hyerplane) can separate them

y = mx + b

x1

x2

The XOR Problem

37

Input

0 0
0 1
1 0
1 1

Output

-
+
+
-

a)
b)
c)
d)

+

- +

-

0 1

1

X2

X1

Not linearly separable!!
Can‟t correctly classify

Perceptron Convergence Theorem

Perceptron  no Hidden Units

Can prove that weights will converge if

 The set examples is learnable, the
perceptron training rule will eventually find
the necessary weights

 Learning rate is sufficiently small

38

Gradient Descent

 Recall: 0 = w0 + w1x1+…+ wnxn

 Question: How do we handle noise?

 Idea: Minimize squared error:

 Note: i ranges over data points

39

E(w) = ½ Σ (ti-oi)
2

Perceptron Gradient Descent

 Hypothesis space: Set of weights

 Goal: Minimize the classification error on the
training data

 Perceptron does gradient descent to find weights

40

weights

training
data
error
rate

Derivation

41

Error  ½ * Σ(t – o)2

Network‟s output

Teacher‟s answer
 E

 Wi

ΔWj  - η

= Σ(t – o)
 E

 Wi

 (t – o)

 Wi

= - Σ(t – o)
 o

 W i

Remember: o = W·X

© Jude Shavlik 2006
David Page 2007

CS 760 – Machine Learning (UW-
Madison) Lecture #16, Slide 42

Continuation of Derivation

 E

 Wi

= - Σ(t – o)
 Wi

(w i * x i)

= - Σ(t – o) xi

So ΔWi = η Σ (t – o) xi The Delta Rule

Stick in formula
for output

46

Perceptron Performance

 Linear threshold functions are restrictive (high bias) but
still reasonably expressive; more general than:
 Pure conjunctive

 Pure disjunctive

 M-of-N (at least M of a specified set of N features must be
present)

 In practice, converges fairly quickly for linearly
separable data.

 Can effectively use even incompletely converged results
when only a few outliers are misclassified.

 Experimentally, Perceptron does quite well on many
benchmark data sets.

48

Perceptron Limits

 System obviously cannot learn concepts it
cannot represent

 Minksy and Papert (1969) wrote a book
analyzing the perceptron and demonstrating
many functions it could not learn

 These results discouraged further research on
neural nets; and symbolic AI became the
dominate paradigm

Naïve Bayes Revisited

 Perceptrons are the simplest neural network

 Its output is just a function of weighted sum
of its inputs

 Perceptrons and logisitic regression are
basically the same [see new Mitchell chapter]

 Several variants of each

 Similar to SVMs [covered later]

49

Naïve Bayes and Perceptrons

50

Xf,v =
1 if feature f has value v
0 otherwise{

Also note that: a0=1, a1=a

P(f = v) = P(f =v | +) * P(+) + P(f =v | -) * P(-)

(assuming discrete-valued features)

Naïve Bayes and Perceptrons

51

Πf Πv P(f=v |+)Xf,v * P(+)
P(+ | Xf,v) =

[Πf Πv P(f=v |+)Xf,v * P(+)] +
[Πf Πv P(f=v |-)Xf,v * P(-)]

[Πf Πv P(f=v |-)Xf,v * P(-)]

[Πf Πv P(f=v |+)Xf,v * P(+)]

1

1 +

P(+ | Xf,v) =

Clever trick: Multiply all
conditional probabilitiesTest example

feature vector

Naïve Bayes and Perceptrons

52

Note: Πf Πv P(f=v |-)Xf,v = eΣf,v log[P(f =v |-) Xf,v]

[P(-)]

[P(+)]

1

1 +

P(+ | Xf,v) =

eΣf,v Log
[P(f = v |-)] Xf,v

[P(f = v |+)] Xf,v

Rewrite Naïve Bayes equations as:

Naïve Bayes and Perceptrons

53

-Wf,v = Log
[P(f = v |-)]

[P(f = v |+)]

-Θ = Log
[P(-)]

[P(+)]

1

1 + e

P(+ | Xf,v) =
-[(Σf,v wf,v*xf,v)- Θ]

weights

Bias/Threshold Greater ≥ 0.5 if
weighted sum of

features greater than Θ

Example Encoding of Naïve Bayes as
a Perceptron

54

S

Color=red

sum

Color=blue

Color=green

Size=big

Size=small

weight

weight

-1

Initial threshold, the

evidence must overcome

to guess positive

sum
e

-
1

1Xcolor,red

[P(size = small |-)]

[P(size = small |+)]
Log

[P(-)]

[P(+)]
Log

[P(color= red |-)]

[P(color = red |+)]
Log

Naïve Bayes vs. Perceptron

Implement NB as a perceptron w/sigmoidal output

 Weights and bias are set by equations on previous
slides

Note: Perceptron learner may pick different

weights

 Representation is same for NB and perceptron

 Learning algorithm is different

 Many equivalent scoring hypothesis may exist [i.e.,
separating hyperplanes]

55

56

Outline

 Homework 1 review

 Perceptron

 Multilayer neural networks

Multi-Level Neural Networks

 Neural Networks can represent complex
decision boundaries

 Variable size

 Deterministic

 Continuous Parameters

 Learning Algorithms for neural networks

 Local Search. The same algorithm as for sigmoid
threshold units

 Eager

 Batch or Online

57

© Jude Shavlik 2006
David Page 2007

CS 760 – Machine Learning (UW-
Madison) Lecture #16, Slide 58

Multi-Level Neural Networks

Output units

Input units

Hidden units

error
weight

Activation

© Jude Shavlik 2006
David Page 2007

CS 760 – Machine Learning (UW-
Madison) Lecture #16, Slide 59

Hidden Units

One View
Allow a system to create its own internal
representation – for which problem
solving is easy A perceptron

Multi-Level Neural Networks

 A typical multi-layer network consists of:

 Input

 Hidden

 Output

 Typically, each layer is fully connected to next layer

 Activation of neurons feeds forward

 Usually, the network structure (units and
interconnections) is specified by the designer

 Learning problem: Find a good set of weights

60

Multi-Level Neural Networks

 Multi-layer networks can represent arbitrary
functions

 One layer with enough hidden units (possibly 2N for
Boolean functions), can record input

 Single hidden layer: Compute any Boolean function

 The weights determine the function compute

 An effective learning algorithm for such
networks was thought to be difficult

61

Question: How to provide an error signal
to the interior units?

Idea: Still Use Gradient Descent

 Despite limitations, gradient descent is works
well in practice

 How can we apply it to a multi layer network?

 Gradient descent requires output of a unit to be
a differentiable function

 Linear threshold function is not differentiable,
so we‟ll use the sigmoid function

62

Sigmoid Function

63

bias

o
u
tp

u
t

inputbias

o
u
tp

u
t

input

output j= F(Sweight i,j x output i)

F(input i) =
1

1+e -(input i – bias i)

i

Backpropogation

 Backpropagation generalizes the perceptron rule

 Derivation involves partial derivatives

 Rumelhart, Parker, and Le Cun (and Bryson & Ho, 1969
+ Werbos, 1974) independently developed (1985) a
technique for learning weights of hidden units

64

 E
 Wi,j

error signal

© Jude Shavlik 2006
David Page 2007

CS 760 – Machine Learning (UW-
Madison) Lecture #16, Slide 65

WARNING!
Calculus / Linear Algebra Ahead!!!

Weight Space

 Given a neural-network layout, the weights are
free parameters that define a space

 Each point in this Weight Space specifies a
network

 Associated with each point is an error rate, E,
over the training data

 Backprop performs gradient descent in weight
space

66

Gradient Descent Weight Space

67

E

W1

 E

 w

 W1

 W2

Gradient Descent Rule

68

E(w)  []
E

w0

E
w1

E
w2

E
wN

, , , … … … , _

Gradient: N+1 dimensional vector (slope in weight space)

Goal: Reduce errors

How: Go “down hill”

Take a finite step in weight space:

W2

w = -   E (w)

or wi = - 
E
wi

E

W1

 E

w

Online vs. Batch Gradient Descent

 Technically, we should look at the error
gradient for the entire training set, before
taking a step in weight space
(“batch” Backprop)

 However, as presented, we take a step after
each example (“on-line” Backprop)

 Much faster convergence

 Can reduce overfitting (since on-line Backprop is
“noisy” gradient descent)

69

Online vs. Batch Gradient Descent

70

BATCH – add w
vectors for every
training example, then
„move‟ in weight space.

ON-LINE – “move”
after each example
(aka, stochastic gradient
descent)

E

Swi

w1

w3

w2

w

w1

w2

w3

* Note wi,BATCH  wi, ON-LINE, for i > 1

E

w

* Final locations in space need not be the same for BATCH and ON-LINE w

© Jude Shavlik 2006
David Page 2007

CS 760 – Machine Learning (UW-
Madison) Lecture #16, Slide 71

Assume one layer of hidden units (std. topology)

1. Error  ½ S (Teacheri – Output i) 2

2. = ½ S(Teacheri – F([SWi,j x Output j])
2

3. = ½ S(Teacheri – F([SWi,j x F (SWj,k x Outputk)]))
2

Determine

BP Calculations

 Error
 Wj,k

 Error
 netj

= (use equation 2)

= (use equation 3)

* See Table 4.2
in Mitchell for
results

wi,j = -  ( E /  wi,j) xi,j

i j k

Recall:

Terminology

72

i kj

netj sum of weight inputs to j

Differentiating the Sigmoid

73



1/2

o
u
tp

u
t

input

σ(x)= 1 + e-x
1

= σ(x)(1- σ(x)) σ(x)
x

Update: Output Units

74

 Error
 Wj,k

=
 Error

 ok

 ok

 Wj,k

= ½ S(ta - oa)
2 Error

 ok

= ½ (tk - o k)
2

= ½ 2(tk - o k)
 (tk - ok)

 ok

= -(tk - ok)

Update: Output Units

75

 Error
 Wj,k

=
 Error

 ok

 ok

 Wj,k

= -(tk - ok)
 Error

 ok

= ok(1 - ok)
 oj

 Wj,k

 Error
 Wj,k

= -o k(1 - ok)(tk - o k)

wj,k = -  ( E /  wj,k) xj,k

Update: Hidden Units

76

 Error
 netj

=
 Error
 netk

 netk
 netj

S

 netk
 netj

S= -δk

=
 netk

 oj
S -δk

 oj

 netj

= S -δk wj,k
 oj

 netj

= S -δk wj,ko j(1 - oj)

= -o j(1 - oj) δk wj,kS

Backpropagation Algorithm

Set initial weights to random value

Repeat

for each example Xj

1. compute current output oj

2. For each output unit k:

3. For each hidden unit h:

4. Update each network weight wi,j

Until train set error rate is small enough
77

wi,j = wi,j + Δwi,j 

k= ok(1- ok) (tk- ok)

h= oh(1- oh) Σk wi,jk

where Δwi,j = j xi,j

Notes

 Initiate weights & bias to small random values
for example in [-0.3, 0.3]

 Randomize order of training examples

 Propagate activity forward to output units

 Measure accuracy on test set to estimate
generalization (future accuracy)

78

outj = F(S wi,j x outi)

Learning Rate

 This is a subtle art

 Too small: Days instead of minutes to converge

 Too large: Diverges (MSE gets larger and larger
while the weights increase and usually oscillate)

 The learning rate influences the ability to escape
local optima

 Very often, different learning rates are used for
units in different layers

 Each unit has its own optimal learning rate

 The -just right value is hard to find
79

© Jude Shavlik 2006
David Page 2007

CS 760 – Machine Learning (UW-
Madison) Lecture #16, Slide 80

Adjusting η on-the-Fly

0. Let η = 0.25

1. Measure ave. error over k examples

- call this Ebefore

2. Adjust wgts according to neural-net learning
algorithm being used

3. Measure ave error on same k examples

- call this Eafter

© Jude Shavlik 2006
David Page 2007

CS 760 – Machine Learning (UW-
Madison) Lecture #16, Slide 81

Adjusting η (cont.)

4. If E after > E before,

then η  η * 0.99

else η  η * 1.01

5. Go to 1

Note: k can be all training examples
but could be a subset

© Jude Shavlik 2006
David Page 2007

CS 760 – Machine Learning (UW-
Madison) Lecture #16, Slide 82

Including a “Momentum” Term
in Backprop

To speed up convergence, often another
term is added to the weight-update rule

Typically, 0 < β < 1

)1()(
,

,

,
-



-
 tW

W

E
tW

ji

ji

ji




The previous
change in
weight

Online, Batch and Momentum

83

The “momentum term” variant of backprop
can be written as

So we‟re doing an “exponentially decaying”
weighted sum of the individual gradients

Sort of a cross between pure batch & pure on-line

it

t

i

i

t
ww

-



- 
0

The weights
at time t

Design Choices

 Overfitting: too many parameters compared to
the amount of data available

 Choosing the number of hidden units:

 Too few do not allow the concept to be learned

 Too many lead to slow learning and overfitting

 n binary inputs: log n is a good heuristic choice

 Choosing the number of layers

 Always start with one hidden layer

 Never go beyond 2 hidden layers, unless the task
structure suggests something different

86

Interpretability

 Multilayer neural networks are difficult for
humans to understand

 One idea:

 Attempt to extract a decision or rule set from
a learned neural network

 Train the decision tree to mimic the decisions
made by the learned neural network

 Present decision tree to user

90

KBANN: Incorporating Background
Knowledge

 Cup ← Stable, Liftable, OpenVessel

 Stable ← BottomIsFlat

 Liftable ← Graspable, Light

 Graspable ← HasHandle

 OpenVessel ← HasConcavity,ConcavityPointsUp

91

Knowledge: Network Topology

92

Light

Cup

Stable

Liftable

ConcavityPointsUp

OpenVessel

BottomIsFlat

HasHandle

HasConcavity

Graspable

Application: Face Recognition

 Given: Sets of photos

 Task: Recognize DIRECTION of face

 Framework: Different people, poses,
“glasses”, different

93

Design Decision

 Input Encoding:

 Just pixels? (subsampled? averaged?)

 or perhaps lines/edges?

 Output Encoding:

 Single output ([0, 1/n] = #1, . . .)

 Set of n-output (take highest value)

 Network structure: # of layers

 Connections (training time vs accuracy)

 Learning Parameters: Stochastic?

 Initial values of weights?

 Learning rate h, Momentum a, . . .

 Size of Validation Set, . . .
94

Images

95

Subsample: 30 x 32 pixels: 4x4 blocks get
mean activation and normalize [0,1]

Network Structure

96

…

0.1: Inactive
0.9: Active

When Use A Neural Network

 Input is high-dimensional discrete or real-
valued (e.g. raw sensor input)

 Output is discrete, real valued, or a vector of
values

 Possibly noisy data

 Training time is unimportant

 Form of target function is unknown

 Human readability of result is unimportant

 Output computation has to be fast

97

Next Class

 Model Ensembles [Dietterich, AI Magazine
article, section 2 only]

 Genetic algorithms [read Mitchell, Chapter 9]

98

Summary

 Peceptrons: Linear decision boundary

 Multilayer networks: Very expressive

 Learning: Find weights

 Gradient descent

 Backpropagation

99

Questions?

100

