# Rule Induction 

Instructor: Jesse Davis

## Announcements

- We will go over HW 1 next week [will be graded by then]
- HW 2 due next week
- Lecture slides are online


## Outline

- Bayes net review
- Propositional rule induction
- First-order rule induction


## Joint Distributions

- Joint distribution $\mathrm{P}\left(\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{n}}\right)$ will tell you about any possible setting of $X_{1}, \ldots, X_{n}$
- $P\left(X_{1}=\right.$ red, $X_{3}=$ medium,$X_{100}=$ heavy $)$
- $P\left(X_{1}=\right.$ red, $, \ldots, X_{n}=$ heavy $)$
- A BN captures a joint distribution
- Even NB allows you to answer any query


## Conditional Distribution

$P(A \mid B)$

- $A=\{$ small, medium, large $\}$
- $B=\{b l u e$, green, red $\}$

|  | $P(A \mid B=$ blue $)$ | $P(A \mid B=$ green $)$ | $P(A \mid B=$ red $)$ |
| :--- | :--- | :--- | :--- | :--- |
| small | 0.2 | 0.06 | 0.5 |
| medium | 0.6 | 0.25 | 0.4 |
| large | 0.2 | 0.69 | 0.1 |

Note: $P(A \mid B=b l u e)+P(A \mid B=$ red $)$ is not meaningful

## Bayes Rule Example

- Patient has a lab test with a positive results
- Returns positive if cancer is present $98 \%$ of time
- Returns negative if cancer is absent 97\% of time
- $0.8 \%$ of people have this cancer

Goal: Prob(cancer \| + )

Bayes rule: $P(c \mid+)=[P(+\mid c) P(c)] / P(+)$

## Bayes Rule Example

- Patient has a lab test with a positive results
- Returns positive if cancer is present $98 \%$ of time
- Returns negative if cancer is absent 97\% of time
- $0.8 \%$ of people have this cancer
- What is the prob of:
- Prob(cancer) =?
- Prob(+ | cancer) = ?
- Prob(+ | ᄀcancer) = ?
- $\operatorname{Prob}(+)=$ ?
- Prob(cancer | +) = ?


## Bayes Rule Example

- Patient has a lab test with a positive results
- Returns positive if cancer is present $98 \%$ of time
- Returns negative if cancer is absent 97\% of time
- $0.8 \%$ of people have this cancer
- What is the prob of:
- Prob(cancer) $=0.008$
- Prob(+ | cancer) = ?
- Prob(+ | ᄀcancer) = ?
- Prob(+) = ?
- Prob(cancer | +) = ?


## Bayes Rule Example

- Patient has a lab test with a positive results
- Returns positive if cancer is present $98 \%$ of time
- Returns negative if cancer is absent 97\% of time
- $0.8 \%$ of people have this cancer
- What is the prob of:
- Prob(cancer) $=0.008$
- Prob(+ | cancer) = 0.98
- Prob(+ | ᄀcancer) = ?
- Prob(+) = ?
- Prob(cancer | +) = ?


## Bayes Rule Example

- Patient has a lab test with a positive results
- Returns positive if cancer is present $98 \%$ of time
- Returns negative if cancer is absent 97\% of time
- $0.8 \%$ of people have this cancer
- What is the prob of:
- Prob(cancer) $=0.008$
- $\operatorname{Prob}(+\mid$ cancer $)=0.98$
- $\operatorname{Prob}(+\mid$ $\neg$ cancer $)=0.03$
- $\operatorname{Prob}(+)=$ ?
- Prob(cancer | +) = ?


## Bayes Rule Example

- Patient has a lab test with a positive results
- Returns positive if cancer is present $98 \%$ of time
- Returns negative if cancer is absent $97 \%$ of time
- $0.8 \%$ of people have this cancer
- What is the prob of:
- Prob(cancer) $=0.008$
- Prob(+ | cancer) = 0.98
- $\operatorname{Prob}(+\mid$ $\neg$ cancer $)=0.03$
- $\operatorname{Prob}(+) \quad=P(+\mid c) * P(c)+P(+\mid \neg c) * P(\neg c)$
- Prob(cancer | +) = ?


## Bayes Rule Example

- Patient has a lab test with a positive results
- Returns positive if cancer is present $98 \%$ of time
- Returns negative if cancer is absent 97\% of time
- $0.8 \%$ of people have this cancer
- What is the prob of:
- Prob(cancer) $=0.008$
- $\operatorname{Prob}(+\mid$ cancer $)=0.98$
- $\operatorname{Prob}(+\mid$ $\neg$ cancer $)=0.03$
- Prob(+) $\quad=0.98 * 0.008+0.03 * 0.992$
- Prob(cancer | +) = ?


## Bayes Rule Example

- Patient has a lab test with a positive results
- Returns positive if cancer is present $98 \%$ of time
- Returns negative if cancer is absent 97\% of time
- $0.8 \%$ of people have this cancer
- What is the prob of:
- Prob(cancer) $=0.008$
- $\operatorname{Prob}(+\mid$ cancer $)=0.98$
- $\operatorname{Prob}(+\mid$ $\neg$ cancer $)=0.03$
- $\operatorname{Prob}(+)=0.0376$
- Prob(cancer | +) = ?


## Bayes Rule Example

- Patient has a lab test with a positive results
- Returns positive if cancer is present $98 \%$ of time
- Returns negative if cancer is absent 97\% of time
- $0.8 \%$ of people have this cancer
- What is the prob of:
- Prob(cancer) $=0.008$
- Prob(+ | cancer) = 0.98
- $\operatorname{Prob}(+\mid$ $\neg$ cancer $)=0.03$
- $\operatorname{Prob}(+)=0.0376$
- Prob(cancer | +) = ?


## Bayes Rule Example

- Patient has a lab test with a positive results
- Returns positive if cancer is present $98 \%$ of time
- Returns negative if cancer is absent 97\% of time
- $0.8 \%$ of people have this cancer
- What is the prob of:
- Prob(cancer) $=0.008$
- $\operatorname{Prob}(+\mid$ cancer $)=0.98$
- $\operatorname{Prob}(+\mid$ $\neg$ cancer $)=0.03$
- $\operatorname{Prob}(+)=0.0376$
- Prob(cancer | +) = 0.209


## Experiment 2: Tails

## Which coin did I use?

$$
\mathrm{P}\left(\mathrm{C}_{1} \mid \mathrm{HT}\right)=? \quad \mathrm{P}\left(\mathrm{C}_{2} \mid \mathrm{HT}\right)=? \quad \mathrm{P}\left(\mathrm{C}_{3} \mid \mathrm{HT}\right)=?
$$

$$
P\left(C_{1} \mid H T\right)=\alpha P\left(H T \mid C_{1}\right) P\left(C_{1}\right)=\alpha P\left(H \mid C_{1}\right) P\left(T \mid C_{1}\right) P\left(C_{1}\right)
$$


$\mathrm{P}\left(\mathrm{H} \mid \mathrm{C}_{1}\right)=0.1 \quad \mathrm{P}\left(\mathrm{H} \mid \mathrm{C}_{2}\right)=0.5$
$\mathrm{P}\left(\mathrm{H}_{\mathrm{C}} \mathrm{C}_{3}\right)=0.9$
$P\left(C_{1}\right)=1 / 3$
$P\left(C_{2}\right)=1 / 3$
$P\left(C_{3}\right)=1 / 3$

## Experiment 2: Tails

## Which coin did I use?

$$
\mathrm{P}\left(\mathrm{C}_{1} \mid \mathrm{HT}\right)=? \quad \mathrm{P}\left(\mathrm{C}_{2} \mid \mathrm{HT}\right)=? \quad \mathrm{P}\left(\mathrm{C}_{3} \mid \mathrm{HT}\right)=?
$$

$P\left(\mathrm{C}_{1} \mid \mathrm{HT}\right)=P\left(\mathrm{C}_{1} \mid \mathrm{H}\right) * P\left(\mathrm{C}_{1} \mid \mathrm{T}\right) * P\left(\mathrm{C}_{1}\right)$
$P\left(\mathrm{C}_{2} \mid \mathrm{HT}\right)=P\left(\mathrm{C}_{2} \mid \mathrm{H}\right) * P\left(\mathrm{C}_{2} \mid \mathrm{T}\right) * P\left(\mathrm{C}_{2}\right)$
$P\left(\mathrm{C}_{3} \mid H T\right)=P\left(\mathrm{C}_{3} \mid H\right) * P\left(\mathrm{C}_{3} \mid T\right) * P\left(\mathrm{C}_{3}\right)$

## Experiment 2: Tails

## Which coin did I use?

$$
\begin{array}{rrr}
\mathrm{P}\left(\mathrm{C}_{1} \mid \mathrm{HT}\right)=? & \mathrm{P}\left(\mathrm{C}_{2} \mid \mathrm{HT}\right)=? & \mathrm{P}\left(\mathrm{C}_{3} \mid \mathrm{HT}\right)=? \\
\mathrm{P}\left(\mathrm{C}_{1} \mid \mathrm{HT}\right)=\mathrm{a}^{*} 0.1^{*} 0.9 * 0.33=\mathrm{a} 0.0297 \\
\mathrm{P}\left(\mathrm{C}_{2} \mid \mathrm{HT}\right)=\mathrm{a}^{*} 0.5 * 0.5 * 0.33=\mathrm{a} * 0.0825 & \\
\mathrm{P}\left(\mathrm{C}_{3} \mid \mathrm{HT}\right)=\mathrm{a}^{*} 0.9 * 0.1^{*} 0.33=\mathrm{a}^{*} 0.0297 & \begin{array}{l}
\text { Don't } \\
\text { sum to } \\
1!!!!
\end{array} &
\end{array}
$$

Now normalize!

## Experiment 2: Tails

## Which coin did I use?

$$
\begin{gathered}
\mathrm{P}\left(\mathrm{C}_{1} \mid \mathrm{HT}\right)=? \quad \mathrm{P}\left(\mathrm{C}_{2} \mid \mathrm{HT}\right)=? \quad \mathrm{P}\left(\mathrm{C}_{3} \mid \mathrm{HT}\right)=? \\
\mathrm{P}\left(\mathrm{C}_{1} \mid \mathrm{HT}\right)=0.1 * 0.9 * 0.33=0.0297 \\
\mathrm{P}\left(\mathrm{C}_{2} \mid \mathrm{HT}\right)=0.5^{*} 0.5 * 0.33=0.0825 \\
\mathrm{P}\left(\mathrm{C}_{3} \mid \mathrm{HT}\right)=0.9 * 0.1 * 0.33=0.0297 \\
\mathrm{a}=?
\end{gathered}
$$

Now normalize!

## Experiment 2: Tails

## Which coin did I use?

$$
\begin{aligned}
\mathrm{P}\left(\mathrm{C}_{1} \mid \mathrm{HT}\right)=? \quad \mathrm{P}\left(\mathrm{C}_{2} \mid \mathrm{HT}\right)=? \quad \mathrm{P}\left(\mathrm{C}_{3} \mid \mathrm{HT}\right)=? \\
\mathrm{P}\left(\mathrm{C}_{1} \mid \mathrm{HT}\right)=\mathrm{a}^{*} 0.1^{*} 0.9 * 0.33=\mathrm{a}^{*} 0.0297 \\
\mathrm{P}\left(\mathrm{C}_{2} \mid \mathrm{HT}\right)=\mathrm{a}^{*} 0.5^{*} 0.5^{*} 0.33=\mathrm{a}^{*} 0.0825 \\
\mathrm{P}\left(\mathrm{C}_{3} \mid \mathrm{HT}\right)=\mathrm{a}^{*} 0.9 * 0.1^{*} 0.33=\mathrm{a}^{*} 0.0297 \\
\mathrm{a}=1 /[0.0297+0.0825+0.0297]=1 / 0.1419
\end{aligned}
$$

Now normalize!

## Experiment 2: Tails

## Which coin did I use?

$$
\begin{gathered}
\mathrm{P}\left(\mathrm{C}_{1} \mid H T\right)=? \quad \mathrm{P}\left(\mathrm{C}_{2} \mid H T\right)=? \quad \mathrm{P}\left(\mathrm{C}_{3} \mid H T\right)=? \\
\mathrm{P}\left(\mathrm{C}_{1} \mid H T\right)=0.1^{*} 0.9 * 0.33=0.0297 / 0.1419=0.21 \\
\mathrm{P}\left(\mathrm{C}_{2} \mid \mathrm{HT}\right)=0.5 * 0.5 * 0.33=0.0825 / 0.1419=0.58 \\
\mathrm{P}\left(\mathrm{C}_{3} \mid \mathrm{HT}\right)=0.9 * 0.1^{*} 0.33=0.0297 / 0.1419=0.21 \\
\mathrm{a}=1 /[0.0297+0.0825+0.0297]=1 / 0.1419
\end{gathered}
$$

Now normalize!

## Experiment 2: Tails

## Which coin did I use?

$$
\mathrm{P}\left(\mathrm{C}_{1} \mid \mathrm{HT}\right)=0.21 \mathrm{P}\left(\mathrm{C}_{2} \mid \mathrm{HT}\right)=0.58 \mathrm{P}\left(\mathrm{C}_{3} \mid \mathrm{HT}\right)=0.21
$$

$$
P\left(C_{1} \mid H T\right)=\alpha P\left(H T \mid C_{1}\right) P\left(C_{1}\right)=\alpha P\left(H \mid C_{1}\right) P\left(T \mid C_{1}\right) P\left(C_{1}\right)
$$



$$
\begin{array}{rlrl}
\mathrm{P}\left(\mathrm{H} \mid \mathrm{C}_{1}\right) & =0.1 & \mathrm{P}\left(\mathrm{H} \mid \mathrm{C}_{2}\right) & =0.5 \\
\mathrm{P}\left(\mathrm{C}_{1}\right) & =1 / 3\left(\mathrm{H} \mid \mathrm{C}_{3}\right) & =0.9 \\
\mathrm{P}\left(\mathrm{C}_{2}\right) & =1 / 3 & \mathrm{P}\left(\mathrm{C}_{3}\right) & =1 / 3
\end{array}
$$

## Experiment 2: Tails

## Which coin did I use?

$$
\mathrm{P}\left(\mathrm{C}_{1} \mid \mathrm{HT}\right)=0.21 \mathrm{P}\left(\mathrm{C}_{2} \mid \mathrm{HT}\right)=0.58 \mathrm{P}\left(\mathrm{C}_{3} \mid \mathrm{HT}\right)=0.21
$$



## Normalization for NB

$\operatorname{prob}(\mathrm{ex}=\mathrm{pos})=\frac{\mathrm{e}^{\log [\operatorname{prob}(\mathrm{ex}=\operatorname{pos})]}}{\mathrm{e}^{\log [\operatorname{prob}(\mathrm{ex}=\operatorname{pos})]+} \mathrm{e}^{\log [\operatorname{prob}(\mathrm{ex}=\mathrm{neg})]}}$
$\log [p r o b(e x=p o s)]=\log [p r o b(p o s)]$
$+\Sigma_{i} \log \left[p r o b\left(F_{i} \mid\right.\right.$ pos $\left.)\right]$
$\log [p r o b(e x=n e g)]=\log [p r o b(n e g)]$
$+\Sigma_{i} \log \left[\operatorname{prob}\left(F_{i} \mid\right.\right.$ neg $\left.)\right]$

## D-Separation



## Outline

- Bayes net review
- Propositional rule induction
- First-order rule induction


## Rule Sets

- Effective hypothesis space
- Variable sized hypotheses
- Can represent any Boolean function
- Can represent both discrete and continuous features
- Classify learning algorithm as follows:
- Constructive search: Learn by adding rules to rule set. Each rule is built by adding tests
- Eager
- Batch


## Terminology

- A rule consists of a body and a head Body $\Rightarrow$ Head
- The body consists of a conjunction of tests
- Attribute = value
- Attribute > value
- Attribute < value
- Where 'Attribute' is one of the features and 'value' appears in the training data
- The head contains a class label


## Relationship to Propositional Logic

- A rule is also called a Horn (or definite) clause

Outlook = Sunny $\wedge$ Humidity $=$ High $\Rightarrow$ Don't play
Is logically equivalent to
$\neg[$ Outlook $=$ Sunny] $\vee \neg$ [Humidity $=$ High] $\vee$ [Don't play]

- Horn clause: Zero or one positive test
- Definite clause: Exactly one positive test
- E.g.: $\neg[O u t l o o k=$ Sunny] $\vee \neg[$ Humidity = High] is a Horn clause, but not a definite clause


## Terminology

- A rule set is a disjunction of rules

Outlook $=$ Sunny $\wedge$ Humidity $=$ Normal $\Rightarrow$ Play
Outlook = Overcast $\Rightarrow$ Play
Outlook = Rain $\wedge$ Wind $=$ Weak $\Rightarrow$ Play

- Rule covers an example: True of the example

Outlook $=$ Sunny $\wedge$ Humidity $=$ Normal $\Rightarrow$ Play
covers any example

## sunny,?,normal,?,?

- Usually all rules are predictive of one class
- Combine rules through a decision list


## Decision List

## Rule 1 Rule 1 Rule 1 does <br> fires not fire <br> Positive Rule 2 Rule 2 <br> Rule 2 does not fire <br> Positive



## Relationship to Decision Trees



The previous rule set is equivalent to this decision tree

## Relationship to Decision Trees

A small set of rules can correspond to a big decision tree, because of the Replication Problem.

$$
x_{1} \wedge x_{2} \Rightarrow y=1
$$


$x_{5} \wedge x_{6} \Rightarrow y=1$


## Learning a Single Rule

GrowRule(P,N)
$R=\{ \}$
Repeat choose 'best test' $x_{i} \Theta v$ to add $R, \Theta \in\{=, \neq, \leq, \geq\}$
$\mathrm{R}=\mathrm{R} U \mathrm{x}_{\mathrm{i}} \Theta \mathrm{V}$
$P=P-$ all positive examples not satisfied by $R$
Until $P$ is empty
Return R

## Learning a Single Rule



Called Top-down or general-to-specific induction Each step called a refinement or specialization

## Choosing the Best Test

- Rule R covers $\mathrm{P}_{0}$ and $\mathrm{N}_{0}$ and $\mathrm{R}^{\prime}$ covers $\mathrm{P}_{1}$ and $\mathrm{N}_{1}$
- Relative frequency $\frac{P_{1}}{P_{1}+N_{1}}$
- Coverage: $\mathrm{P}_{1}-\mathrm{N}_{1}$
- Gain: $P_{1}\left[\left[\frac{-P_{0}}{P_{0}+N_{0}} \log \frac{P_{0}}{P_{0}+N_{0}}\right]-\left[\frac{-P_{1}}{P_{1}+N_{1}} \log \frac{P_{1}}{P_{1}+N_{1}}\right]\right]$
$P_{1}$ helps manage the trade off between gain and covering many positive examples


## Learning a Set of Rules <br> (Called Divide-and-conquer or Cover-removal)

GrowRuleSet(P,N)
A $=\{ \}$
Repeat

$$
\begin{aligned}
& \mathrm{R}=\mathrm{GrowRule}(\mathrm{P}, \mathrm{~N}) \\
& \mathrm{A}=\mathrm{R} \cup \mathrm{U} \\
& \mathrm{P}=\mathrm{P}-\text { all positive examples that satisfy } \mathrm{R}
\end{aligned}
$$

Until $P$ is empty
Return A

## Cover-Removal Example



Rule 1: $\mathrm{X}_{1}<3 \wedge \mathrm{X}_{2}<1.2 \Rightarrow+$

## Cover-Removal Example



Rule 2: $\mathrm{X}_{1}<2.5 \wedge \mathrm{X}_{2}>2.0 \Rightarrow+$

## Cover-Removal Example



Rule 3: $X_{1}>3 \wedge X_{1}<4.0 \wedge X_{2}>2.5 \Rightarrow+$

## Cover-Removal Example



Rule $4: X_{1}>4.8 \wedge X_{1}<5.5 \wedge X_{2}>1.5 \wedge X_{2}<2.0 \Rightarrow+$

## Cover-Removal Example



## How Does a Rule Set Partition Feature Space?



## How Does a Rule Set Partition Feature Space?



## Other Search Procedures

- The presented algorithms all use greedy search
- Finding the smallest set of rules is NP-hard
- Other search procedures often lead to results
- Round robin replacement
- Backfitting
- Beam search
- Specific-to-general search


## Round Robin Replacement

- Build entire rule set
- Delete the first rule learned
- Find all training examples uncovered by any remaining rule
- Learn rule(s) to cover these training examples
- This can be repeated for each original rule
- Allows a later rule to capture the positive examples of a rule learned earlier


## Backfitting

- After adding each rule to the rule set, perform round robin replacement
- Typically, just do several iterations, which converges quickly
- Repeat the process of learning a rule and the performing round robin replacement until all positive examples are covered


## Beam Search

- Instead of building just one rule at a time, we build B rules
- At each step, consider all possible refinements for each of the B rules
- Score these refinements and select the top B
- Iterate until it is not possible to add a test
- Add best rule to the rule set


## Beam Search Pictorially



## Bottom-Up Learning

Day Outlook Temp Humid Wind PlayTennis? d1 d2 d3 d4

| $s$ | $h$ |
| :--- | :--- |
| $s$ | $h$ |
| o | h |
| r | m | d5 d6 d7 d8 d9

d10
C
d11
d12
d13 o
d14
r
m
h
Feature combination never occurs for 'positive' class - why waste time evaluating it?

## One Simple Idea

- Unifies rule induction and k-NN
- Treat each example as a rule
- Generalize rules by dropping conditions
- Find nearest example of same class
- Drop conditions such that rule satisfies both examples [and no negative examples]
- Note: If no accepted generalizations, form of nearest-neighbors!


## Finding a Generalization

| Day | Outlook | Temp | Humid | Wind | PlayTennis? | Distance |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| d3 | o | h | h | w | y | ? |
| d4 | r | m | h | W | y | ? |
| d5 | r | c | n | W | y | ? |
| d7 | 0 | C | n | S | y | ? |
| 19 | S | C | 11 | w | y |  |
| d10 | r | m | n | W | y | ? |
| d11 | S | m | n | S | y | ? |
| d12 | O | m | h | S | y | ? |
| d13 | o | h | n | w | y | ? |

Outlook $=\mathrm{s} \wedge$ Temperature $=\mathrm{c} \wedge$ Humid $=\mathrm{n} \wedge$ Wind $=\mathrm{w} \Rightarrow \mathrm{y}$

## Bottom-Up Learning

| Day | utlook | Temp | Humid | Wind | PlayTennis? | Distance |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| d3 | o | h | h | w | y | 3 |
| d4 | r | m | h | W | y | 3 |
| d5 | r | c | n | W | y | 1 |
| d7 | 0 | C | n | S | y | 2 |
| 49 | S | C | 11 | w | y |  |
| d10 | r | m | n | W | y | 2 |
| d11 | S | m | n | S | y | 3 |
| d12 | o | m | h | S | y | 4 |
| d13 | o | h | n | W | y | 2 |

Outlook $=\mathrm{s} \wedge$ Temperature $=\mathrm{c} \wedge$ Humid $=\mathrm{n} \wedge$ Wind $=\mathrm{w} \Rightarrow \mathrm{y}$

## Example

## Covers 4 pos, 0 neg

Humid=n $\wedge$ Wind=w $\Rightarrow \mathrm{y}$

## Covers 2 pos, 0 neg

Temp $=\mathrm{c} \wedge$ Humid $=\mathrm{n} \wedge$ Wind $=\mathrm{w} \Rightarrow \mathrm{y}$

Out $=s \wedge$ Temp $=c \wedge$ Humid $=n \wedge$ Wind $=w \Rightarrow y$

## Learning Rules for Multiple Classes

What if rules for more than one class?
Two possibilities:

- Order rules (decision list)
- Weighted vote (e.g., weight $=$ accuracy $\times$ coverage)


## Voting Example



## Notes on Rule Induction

- When scoring rules, be weary of small sample sizes
- Use m-estimates as mentioned last week
- Cover-removal is a clever idea for directing the search space
- Prone to building rules for each noisy example
- Bottom-up learning generally is the most accurate - though can be slower


## Outline

- Bayes net review
- Propositional rule induction
- First-order rule induction
- Motivation and first-order logic
- FOIL
- Inverting resolution: Cigol
- Progol
- Applications


## Learning First-Order Rules

- Why do this?
- Capture information about related entities
- Can learn in relational DBs
- No longer restricted to fixed-length feature vectors
- Can learn rules such as:
ancestor $(\mathrm{X}, \mathrm{Y}) \leftarrow \operatorname{parent}(\mathrm{X}, \mathrm{Y})$ ancestor $(X, Y) \leftarrow$ parent $(X, Z)$, ancestor $(Z, Y)$
- Prolog programs are sets of such rules


## First-Order Rule for Classifying Web Pages

## [Slattery, 1997]

course $(\mathrm{A}) \leftarrow$
has-word(A, instructor),
$\neg$ has-word(A, good),
link-from(A, B),
has-word(B, assign),
$\neg$ link-from $(\mathrm{B}, \mathrm{C})$
Train: 31/31, Test: $31 / 34$

## First-Order Logic Review

- Four symbols:
- Constants: anna, bob
- Variables: X, Y
- Predicates/relations: friends(X,Y)
- Functions: motherOf(X)
- Grounding: Replace all variables by constants
- friends $(X, Y) \rightarrow$ friends(anna,bob)

Note: We are using Prolog notation

## First-Order Logic Review

- Substition: Maps variables to constants
- $\Theta=\{x \rightarrow$ anna, $y \rightarrow$ bob $\}$
- $\Theta[$ mother $(X, Y) \rightarrow \operatorname{parent}(X, Y)]$ is mother(anna,bob) $\rightarrow$ parent(anna,bob)
- Literal: A predicate or its negation
- Formula: Sets of literals with $\leftrightarrow, \leftarrow, \rightarrow, \wedge, \vee$
- sister $(X, Y) \leftrightarrow \operatorname{sibling}(X, Y)$
- mother $(X, Y) \rightarrow \operatorname{parent}(X, Y)$


## First-Order Logic Review

- Clause: A disjunction of literals
- Horn-clause: Clause with zero or one positive literals
- Definite-clause: clause with EXACTLY one positive literal
- $\neg m o t h e r(X, Y) \vee \operatorname{parent}(X, Y)$
- Theory: Set of clauses


## First-Order = Relational Database

| PatientID | Gender | Birthday |
| :---: | :---: | :---: |
| P 1 | M | $3 / 22 / 63$ |

patient(p1,m, 3/22/63)

| PatientID | Date | Physician | Symptoms | Diagnosis |
| :---: | :--- | :--- | :--- | :--- |
|  |  |  |  |  |
| P1 | $1 / 1 / 01$ | Smith | palpitations | hypoglycemic |
| P1 | $2 / 1 / 03$ | Jones | fever, aches | influenza |

diagnosis(p1, 1/1/01, smith, palpitations, hypoglycemic) diagnosis(p1, 2/1/03, jones, fever, flu) diagnosis(p1, 2/1/03, jones, aches, flu)

## Queries in First-Order Logic

- Selection:
- millionaire $(X) \leftarrow$ income $(X, Y), Y>1,000,000$
- Projection:
- father $(X) \leftarrow$ father $(X, Y)$
- Union:
- parent $(X, Y) \leftarrow$ mother $(X, Y)$
- parent $(X, Y) \leftarrow$ father $(X, Y)$
- Can also define cross-product, join, set difference, etc.


# Inductive Logic Programming 

(ILP) [Muggleton \& De Raedt, J. Log. Prog.'94]

Positive examples
Negative examples


## Background

 Knowledge$\operatorname{pos}(\mathrm{g}) \leftarrow$ edge $(\mathbf{G}, \mathrm{X}, \mathrm{Y})$, color(X, green), color(Y, blue).
Aleph (Srinivasan), Progol (Muggleton), FOIL (Quinlan), etc.

## ILP Problem Definition

Given: Set of positive examples, set of negative examples, background knowledge (BK), all in first-order logic

Do: Learn first-order rule set that when combined with BK, entails the positive examples but not the negative examples

## Outline

- Propositional rule induction
- First-order rule induction
- Motivation and first-order logic
- FOIL
- Inverting resolution: Cigol
- Progol
- Applications


## FOIL: First-Order Inductive Learner

- Same as propositional divide-and-conquer except for:
- Different candidate specializations
- Different evaluation function


## Specializing Rules in FOIL

Learning rule: target $\left(x_{1}, \ldots, x_{n}\right) \leftarrow L_{1}, \ldots, L_{m}$
Candidate specializations add new literals

- $\mathrm{Q}\left(\mathrm{V}_{1}, \ldots, \mathrm{~V}_{\mathrm{r}}\right)$ such that at least one of $\mathrm{V}_{1}, \ldots, \mathrm{~V}_{\mathrm{r}}$ already appears in the clause
- Equals $\left(\mathrm{X}_{\mathrm{i}}, \mathrm{X}_{\mathrm{j}}\right)$, where $\mathrm{X}_{\mathrm{i}}, \mathrm{X}_{\mathrm{j}}$ already appear in the clause
- The negation of either of the above literals


## Specializing Rules in FOIL

Target: sibling $(X, Y) \leftarrow$
Predicates: brother, sister, father, etc.

## Legal refinements

sibling $(X, Y) \leftarrow \operatorname{sister}(X, Y)$ sibling $(X, Y) \leftarrow \operatorname{brother}(X, Y)$ sibling $(X, Y) \leftarrow \operatorname{sister}(X, Z)$ sibling $(X, Y) \leftarrow$ sister $(Z, Y)$ sibling $(X, Y) \leftarrow$ equals $(X, Y)$ sibling $(X, Y) \leftarrow \neg$ equals $(X, Y)$

## Illegal refinements

sibling $(X, Y) \leftarrow \operatorname{sister}(Z, Z)$
sibling $(X, Y) \leftarrow$ brother $(A, B)$
sibling $(X, Y) \leftarrow$ father $(A, B)$

## Information Gain in FOIL

$$
\text { Foil_Gain }(L, R) \equiv t\left(\log _{2} \frac{p_{1}}{p_{1}+n_{1}}-\log _{2} \frac{p_{0}}{p_{0}+n_{0}}\right)
$$

## Where

- $L$ is the candidate literal to add to rule $R$
- $p_{0}=$ number of positive bindings of $R$
- $n_{0}=$ number of negative bindings of $R$
- $p_{1}=$ number of positive bindings of $R+L$
- $n_{1}=$ number of negative bindings of $R+L$
- $t=$ no. of positive bindings of $R$ also covered by $R+L$


## FOIL Example



## FOIL Example

## Positive

Examples
canReach(0,1)
canReach $(0,2)$
canReach $(0,3)$
canReach $(0,4)$
canReach $(0,5)$
canReach $(7,8)$

## Negative

Examples
$\neg$ canReach $(1,0)$
$\neg$ canReach $(2,1)$
$\neg$ canReach $(2,0)$
$\neg$ canReach $(3,2)$
$\neg$ canReach $(3,1)$
ᄀcanReach $(8,7)$

## Representing negative info: 1. Encode ᄀlinkedTo(3,1) <br> 2. Absence implies fact is false

## Background

Knowledge
linkedTo(0,1)
linkedTo(0,2)
linkedTo(1,2)
linkedTo $(2,3)$
linkedTo(3,4)
linkedTo(7,8)

Target function: canReach $(X, Y)$ true iff there is a directed path from $X$ to $Y$

## FOIL Hypothesis Space

Set of clauses using predicates linkedTo and canReach


Even for small problem the hypothesis space can be large!

## FOIL Gain Subtlety





## FOIL Gain Subtlety


right $(\mathrm{A}):-\operatorname{car}(\mathrm{A}, \mathrm{B})$, tri(B)

| A | B |
| :--- | :--- |
| train1 | car2 |
| train2 | car2 |
| train2 | car3 |
| train2 | car4 |
| train2 | car5 |
| train3 | car2 |
| train4 | car2 |

right( $A$ ) :- $\operatorname{car}(A, B), \operatorname{tri}(B)$,
 $\operatorname{car}(\mathrm{A}, \mathrm{C}), \operatorname{circle}(\mathrm{C})$

| A | B | C |
| :--- | :--- | :--- |
| train2 | car2 | car6 |
| train2 | car3 | car6 |
| train2 | car4 | car6 |
| train2 | car5 | car6 |

right(A) :- $\operatorname{car}(\mathrm{A}, \mathrm{B}), \operatorname{tri}(\mathrm{B})$, $\operatorname{car}(\mathrm{A}, \mathrm{C}), \operatorname{para}(\mathrm{C})$

| A | B | C |
| :--- | :--- | :--- |
| train1 | car2 | car3 |
| train3 | car2 | car4 |

## One Problem with FOIL

## $\operatorname{happy}(X) \leftarrow$ bankAccount $X, Y), Y=$ high

This literal is non-discriminating because most people have at least one bank account!

## FOIL will have a hard time learning this clause

## Overcoming Greedy Search's Myopia

- Solution 1: One-step lookahead
- Try all pairs of candidate literals
- Prohibitively slow
- Solution 2: Restrict lookahead to template clauses [i.e., only consider things of a certain form]
- E.g., R(A,B) ^ S(B,C)


## Outline

- Propositional rule induction
- First-order rule induction
- Motivation and first-order logic
- FOIL
- Inverting resolution: Cigol
- Progol
- Applications


## Types of Logical Reasoning

- Deduction
- Given: Rule set, antecedents
- Do: Derive consequents
- Induction:
- Given: Possible antecedents and conquents
- Do: Discover rules (map (sets) antecedents to consequents)
- Abduction
- Given: Rule sets, consequents
- Do: Infer which antecedents are true


## Induction as Inverted Deduction

Induction is finding $h$ such that

$$
\left(\forall\left\langle x_{i}, f\left(x_{i}\right)\right\rangle \in D\right) B \wedge h \wedge x_{i} \vdash f\left(x_{i}\right)
$$

where

- $x_{i}$ is $i$ th training instance
- $f\left(x_{i}\right)$ is the target function value for $x_{i}$
- $B$ is other background knowledge

So let's design inductive algorithm by inverting operators for automated deduction.

## Induction as Inverted Deduction

"Pairs of people $\langle u, v\rangle$ such that child of $u$ is $v "$
$f\left(x_{i}\right):$ Child(Bob,Sharon)
$x_{i}: \quad$ Male(Bob), Female(Sharon), Father(Sharon, Bob)
$B: \operatorname{Parent}(u, v) \leftarrow$ Father $(u, v)$

What satisfies $\left(\forall\left\langle x_{i}, f\left(x_{i}\right)\right\rangle \in D\right) B \wedge h \wedge x_{i} \vdash f\left(x_{i}\right)$ ?

$$
\begin{array}{ll}
h_{1}: & \operatorname{Child}(u, v) \leftarrow F \operatorname{Father}(v, u) \\
h_{2}: & \operatorname{Child}(u, v) \leftarrow \operatorname{Parent}(v, u)
\end{array}
$$

## Induction as Inverted Deduction

We have mechanical deductive operators $F(A, B)=C$, where $A \wedge B \vdash C$

Need inductive operators
$O(B, D)=h$ where $\left(\forall\left\langle x_{i}, f\left(x_{i}\right)\right\rangle \in D\right)\left(B \wedge h \wedge x_{i}\right) \vdash f\left(x_{i}\right)$

## Induction as Inverted Deduction

Positives:

- Subsumes earlier idea of finding $h$ that "fits" training data
- Domain theory $B$ helps define meaning of "fit" the data

$$
B \wedge h \wedge x_{i} \vdash f\left(x_{i}\right)
$$

- Suggests algorithms that search $H$ guided by $B$


## Induction as Inverted Deduction

Negatives:

- Doesn't allow for noisy data. Consider

$$
\left(\forall\left\langle x_{i}, f\left(x_{i}\right)\right\rangle \in D\right)\left(B \wedge h \wedge x_{i}\right) \vdash f\left(x_{i}\right)
$$

- First order logic gives a huge hypothesis space $H$
$\rightarrow$ Overfitting
$\rightarrow$ Intractability of calculating all acceptable $h$ 's


## Deduction: Resolution Rule

- Step 1: Given clauses $C_{1}$ and $C_{2}$ find literal $L$ from $C_{1}$ such that $\neg L$ appears in $C_{2}$
- Step 2: Form resolvent $C$ by including all literals $C_{1}$ and $C_{2}$ except for $L$ and $\neg L$
- More precisely, the resolvent C is:
$C=\left(C_{1}-\{L\}\right) \cup\left(C_{2}-\{L\}\right)$
where - is set difference and $U$ is union


## Deductive Resolution Example

$$
\begin{aligned}
& \neg P \vee Q \vee \neg S \vee \neg T \\
& \neg P \vee Q \vee S \vee \neg T \\
& \neg P \vee Q \vee \neg T
\end{aligned}
$$

## Inverted Resolution (Propositional)

- Given clauses $C_{1}$ and $C_{\text {, find }}$ literal $L$ that occurs in $C_{1}$ but not $C$
- Form clause $C_{2}$ by including the following literals $C_{2}=\left(C-\left(C_{1}-\{L\}\right)\right) \cup\{\neg L\}$


## Inverting Resolution Example



## First-Order Resolution

- Step 1: Find literal $L_{1}$ from clause $C_{1}$, literal $L_{2}$ from clause $C_{2}$ and substitution $\Theta$ such that $L_{1} \Theta=-L_{2} \Theta$
- Step 2: Form resolvent C by including all literals
- From $C_{1} \Theta$
- From $C_{2} \Theta$
- Except from $L_{1} \Theta$ and $\tau_{2} \Theta$
- More precisely, the resolvent C is:
$C=\left(C_{1}-\left\{L_{1}\right\}\right) \theta \cup\left(C_{2}-\left\{L_{2}\right\}\right) \theta$


## First-Order Resolution Example

heavier $(\mathrm{A}, \mathrm{B}) \vee \neg$ denser $(\mathrm{A}, \mathrm{B}) \vee \neg \operatorname{larger}(\mathrm{A}, \mathrm{B})$
heavier(hammer,feather)?
ᄀheavier(hammer,feather) A/hammer
B/feather
larger(hammer,feather)

ㅁ

## Inverting First-Order Resolution

$$
\underbrace{C_{1}}_{1} \underbrace{C_{2}}_{C} \quad \begin{aligned}
& C=\left(C_{1}-\left\{L_{1}\right\}\right) \theta \cup\left(C_{2}-\left\{L_{2}\right\}\right) \theta \\
& \theta=\theta_{1} \theta_{2}
\end{aligned}
$$

1. $C-\left(C_{1}-\left\{L_{1}\right\}\right) \theta_{1}=\left(C_{2}-\left\{L_{2}\right\}\right) \theta_{2}$
2. $C_{2}-\left\{L_{2}\right\}=\left(C-\left(C_{1}-\left\{L_{1}\right\}\right) \theta_{1}\right) \theta_{2}^{-1}$
3. $C_{2}=\left(C-\left(C_{1}-\left\{L_{1}\right\}\right) \theta_{1}\right) \theta_{2}^{-1} \cup\left\{L_{2}\right\}$
4. $C_{2}=\left(C-\left(C_{1}-\left\{L_{1}\right\}\right) \theta_{1}\right) \theta_{2}^{-1} \cup\left\{\neg L_{1} \theta_{1} \theta_{2}^{-1}\right\}$

## Cigol

Target: GrandChild(Y, X)
GrandChild(Y, X) :- Father(X,Z), Father(Z,Y)

```
Pos \(=\{\) GrandChild(bob,shannon) \(\}\) B = \{Father(tom,bob), Father(shannon, tom) \}
```



GrandChild(Y, X) $\vee$ $\neg$ Father $(X, Z) \vee$


GrandChild(bob, shannon)

## Cigol: Pros and Cons

- Pros
- Search can be more focused on effiecent
- Can perform predicate invention
- Cons
- Inverse resolution has many choices at each step
- Does not make full use of data
- Involves a human in the loop


## Outline

- Propositional rule induction
- First-order rule induction
- Motivation and first-order logic
- FOIL
- Inverting resolution: Cigol
- Progol
- Applications


## Can We Combine Inverse Entailment and Top-Down Search?

- Can view this as mixed top-down and bottomup approach
- Problem: It is undecidable in general whether:
- C1 上 $C 2$- T^C1 上 example
- Solution: Use subsumption rather than implication


## Subsumption for Literals

- Literal L1 subsumes L2 iff there exists a substitution $\theta$ such that $\mathrm{L} 1 \theta=\mathrm{L} 2$
- Examples
$p(f(X), X)$ subsumes $p(f(a), a)$
$p(f(X), X)$ does not subsume $p(f(a), b)$


## Subsumption for Clauses

- Clause $\mathrm{C}_{1}$ subsumes clause $\mathrm{C}_{2}$ iff there exists a substitution $\theta$ such that $C_{1} \theta$ subset $C_{2}$
- Examples
$p(X, Y) \vee p(Y, Z)$ subsumes $p(W, W)$ $p(X, Y) \vee p(Y, Z)$ subsumes $p(X, Y) \vee p(Y, Z) \vee q(Z)$
- If $C_{1}$ subsumes $C_{2}$ then $C_{1}$ implies $C_{2}$ (opposite is not true)


## Progol

- Learn hypothesis of definite clauses
- User provides sets of predicates, functions, forms of arguments for each
- While positive examples remain uncovered
- Randomly pick positive example as seed, clause MUST cover this example
- Build 'bottom' or most specific clause
- General to specific search
- If clause covers negative examples, then refine it
- Score(clause) = |pos covered| - |neg covered|


## Learning by Searching a Lattice of Hypotheses



## Lattice of Clauses

- We can construct a lattice of clauses
- Ordering is subsumption
- We group clauses into variants;
- Top: Call everything positive
- Bottom: Bottom clause
- Intuition: Top-down search through space of clauses that inverse entailment could generate for an example


## Refinement Operators

- Rewrite a clause to make it more specific
- Goals for a refinement operator
- Finite
- Complete
- Not redundant
- Not possible to get all three!


## Refinement Operator

- Ground a variable to a constant (function)
- Rename a variable to one that already exists in clause
- Add a new literal that introduces new variables

Note: This is complete and finite

## Example

- First, consider IMDB as a problem
- Work in groups for 5 minutes
- Think about
- What algorithmic approach would you use for this problem?
- What are the pros and cons of the selected approach?


## Outline

- Propositional rule induction
- First-order rule induction
- Motivation and first-order logic
- FOIL
- Inverting resolution: Cigol
- Progol
- Applications


## Application: Drug Design

- "Drugs" are small molecules that affect disease by binding to a target protein in the body
- Machine Learning is useful in drug design in several ways
- Identify target proteins using gene expression analysis
- Find target structure by analyzing X-ray crystallography data (DiMaio et al. 2006)
- Find potential binding agents by analyzing known drugs (3D-QSAR) (Jain et al. 1994)


## The Problem of 3D-QSAR

## 3-Dimensional Quantitative <br> Structure-Activity Relationships

Given: 3-dimensional structures of low-energy conformations of molecules, and their known binding affinities to target

Do: Learn a model to predict binding affinity for new molecules to this target

## Binding Mechanism



## Conformation of an Angiotensin-Converting Enzyme (ACE) inhibitor

## Background Knowledge

atom(m1,a1,o,6.0,-2.5,1.8). atom(m1,a2,c,0.6,-2.7,0.3). atom(m1,a3,s,0.4,-3.5,-1.3).
bond(m1,a1,a2,1). bond(m1,a2,a3,1).

- Free to declare rules that use low level molecular descriptions
- Benzene rings, hydrogen donors, hydrogen acceptors, hydrophobic groups, etc.


## Challenge: Molecular Conformations



Low energy conformations more likely

## Supervised vs. Multiple Instance

 Learning

Supervised

## High-Level Idea

- ILP constructs features for a regression model

$$
y_{i}=\sum_{k} b_{k} R_{i k}+b_{0}
$$

- Used in practice
- Gets good results
- Better 'hit' rate
- Discover biologically relevant information


## Thermolysin: Blood Pressure



Thermolysin

## Application: Mammography

- Provide decision support for radiologists
- Variability due to differences in training and experience
- Experts have higher cancer detection and fewer benign biopsies
. Shortage of experts


## Approach

Combine three things

- Forward feature selection
- Inductive logic programming to propose features
- Tree-augmented naïve Bayes as statistical model

Simple idea, but excellent performance

## Rule Induction Summary

- Rules grown by adding one antecedent at a time to the rule body
- Many search strategies
- Many score functions
- Rule sets grown by adding rule at a time
- Rules can either be proposition or first-order
- Alternative idea: Learn by inverting resolution
- Rule learning applied to many real-world apps


## Next class

- Homework 2 is due!
- Homework 1 review
- Perceptrons
- Neural networks
- Read Mitchell, Chapter 4


## Questions?

