Rule Induction

Instructor: Jesse Davis



* Announcements

= We will go over HW 1 next week [will be
graded by then]

= HW 2 due next week

s Lecture slides are online



* Outline

= Bayes net review
= Propositional rule induction

s First-order rule induction



* Joint Distributions

= Joint distribution P(Xy,...,X,) will tell you about
any possible setting of Xi,..., X,

= P(X,=red,X;=medium,X,,,=heavy)
= P(X;=red,...,X,=heavy)

= A BN captures a joint distribution

= Even NB allows you to answer any query



* Conditional Distribution

P(A | B)

« A = {small, medium, large}
= B = {blue, green, red}

TOTE ved) |

small
medium
large

0.6

\0.2

J

0.06
0.25
0.69

0.4

\0.1

Note: P(A | B=blue) + P(A | B= red) is not meaningful



* Bayes Rule Example

= Patient has a lab test with a positive results
= Returns positive if cancer is present 98% of time
= Returns negative if cancer is absent 97% of time
= 0.8% of people have this cancer

Goal: Prob(cancer | +)

Bayes rule: P(c | +) =[P(+ | c) P (c)]/ P(+)



* Bayes Rule Example

= Patient has a lab test with a positive results
= Returns positive if cancer is present 98% of time
= Returns negative if cancer is absent 97% of time
= 0.8% of people have this cancer

= What is the prob of:
= Prob(cancer) =7
= Prob(+ | cancer) = ?
= Prob(+ | =~cancer) = ?
= Prob(+) =7
= Prob(cancer | +) =7




* Bayes Rule Example

= Patient has a lab test with a positive results
= Returns positive if cancer is present 98% of time
= Returns negative if cancer is absent 97% of time
= 0.8% of people have this cancer

= What is the prob of:
= Prob(cancer) = 0.008
= Prob(+ | cancer) = ?
= Prob(+ | =~cancer) = ?
= Prob(+) =7
= Prob(cancer | +) =7




* Bayes Rule Example

= Patient has a lab test with a positive results
= Returns positive if cancer is present 98% of time
= Returns negative if cancer is absent 97% of time
= 0.8% of people have this cancer

= What is the prob of:
= Prob(cancer) = 0.008
= Prob(+ | cancer) = 0.98
= Prob(+ | =~cancer) = ?
= Prob(+) =7
= Prob(cancer | +) =7




* Bayes Rule Example

= Patient has a lab test with a positive results
= Returns positive if cancer is present 98% of time
= Returns negative if cancer is absent 97% of time
= 0.8% of people have this cancer

= What is the prob of:
= Prob(cancer) = 0.008
= Prob(+ | cancer) = 0.98
= Prob(+ | =cancer) = 0.03
= Prob(+) =7
= Prob(cancer | +) =7




* Bayes Rule Example

= Patient has a lab test with a positive results
= Returns positive if cancer is present 98% of time
= Returns negative if cancer is absent 97% of time
= 0.8% of people have this cancer

= What

= Pro
= Pro
= Pro
= Pro
= Pro

is the prob of:

p(cancer) = 0.008

b(+ | cancer) = 0.98

o(+ | =cancer) = 0.03

b(+) = P(+]|c)* P(c) + P(+|~=c) * P(~c)

b(cancer | +) =7
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* Bayes Rule Example

= Patient has a lab test with a positive results
= Returns positive if cancer is present 98% of time
= Returns negative if cancer is absent 97% of time
= 0.8% of people have this cancer

= What

= Pro
= Pro
= Pro
= Pro
= Pro

is the prob of:

p(cancer) = 0.008

b(+ | cancer) = 0.98

o(+ | =cancer) = 0.03

b(+) = 0.98* 0.008 + 0.03 * 0.992

b(cancer | +) =7
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* Bayes Rule Example

= Patient has a lab test with a positive results
= Returns positive if cancer is present 98% of time
= Returns negative if cancer is absent 97% of time
= 0.8% of people have this cancer

= What is the prob of:
= Prob(cancer) = 0.008
= Prob(+ | cancer) = 0.98
= Prob(+ | =cancer) = 0.03
= Prob(+) = 0.0376
= Prob(cancer | +) =7
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* Bayes Rule Example

= Patient has a lab test with a positive results
= Returns positive if cancer is present 98% of time
= Returns negative if cancer is absent 97% of time
= 0.8% of people have this cancer

= What is the prob of:
= Prob(cancer) = 0.008
= Prob(+ | cancer) = 0.98
= Prob(+ | =cancer) = 0.03
= Prob(+) = 0.0376
= Prob(cancer | +) =7

14



* Bayes Rule Example

= Patient has a lab test with a positive results
= Returns positive if cancer is present 98% of time
= Returns negative if cancer is absent 97% of time
= 0.8% of people have this cancer

= What is the prob of:
= Prob(cancer) = 0.008
= Prob(+ | cancer) = 0.98
= Prob(+ | =cancer) = 0.03
= Prob(+) = 0.0376
= Prob(cancer | +) = 0.209
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* Experiment 2: Tails

Which coin did | use?
P(CJHT)=? P(CJHT)=?  P(C,[HT) =7

P(C1|HT) = aP(HT|C,)P(C:) = aP(H|C,)P(T|C1)P(Ch)

Cl 2 3
N ; 5 S

h o — Y ‘ 2 AN

: c e K = B

P(HIC,)=0.1 P(H|C,)=05 P(HIC, =0.9
P(C)=1/3 P(C)=13  P(C)=1/3



* Experiment 2: Tails

P(C,|HT)="7?
P(C,JHT) = P(C,
P(C,IHT) = P(C,
P(CHT) = P(C,

P(C,|HT)="7?
T) *
T) *
T) *

)*
)*
)*

D(Cl
D(C2

D(C3

Which coin did | use?

P(C,|HT) = ?

°(C))
°(C)

P(C.)



* Experiment 2: Tails

Which coin did | use?

P(C,JHT)=? P(CHT)=? P(C|HT)="?

D(Cl oy
D(C2 oy

) =a*0.1*0.9 *0.33 = af0.0297
) =a*0.5*0.5*0.33 = af0.0825

D(C3 oy

P(C,IHT) + P(C,IHT) + P(C,|HT) =1

) =a*0.9*0.1 *0.33 = af0.0297

Now normalize!



* Experiment 2: Tails

Which coin did | use?

P(CJHT)=? P(CJHT)=? P(C,HT)="

P(C,|HT)=0.1*0.9*0.33 =0.0297

P(C,|HT) =0.5*0.5*0.33 =0.0825

P(C,|HT) =0.9*0.1 *0.33 =0.0297
a="?

Now normalize!



* Experiment 2: Tails

Which coin did | use?

P(C,JHT)=? P(CHT)=? P(C|HT)="?

D(Cl
D(C2
D(C3

) =a*0.1*0.9 *0.33 = a*0.0297
) =a*0.5*0.5*0.33 = a*0.0825

) =a*0.9*0.1 *0.33 = a*0.0297

a = 1/[0.0297 + 0.0825 + 0.0297] = 1/0.1419

Now normalize!



* Experiment 2: Tails

Which coin did | use?

P(CJHT)=? P(C,HT)=? P(C,HT)="?

D(Cl
D(C2
D(C3

) =0.1*0.9*0.33=0.0297/0.1419=0.21
)=05*0.5*0.33=0.0825/0.1419 = 0.58

) =0.9%0.1*0.33=0.0297/0.1419=0.21

a = 1/[0.0297 + 0.0825 + 0.0297] = 1/0.1419

Now normalize!



* Experiment 2: Tails

Which coin did | use?
P(C,|HT) = 0.21P(C_|HT) = 0.58 P(C,|HT) = 0.21

P(C1|HT) = aP(HT|C,)P(C:) = aP(H|C,)P(T|C1)P(Ch)
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P(HIC)=0.1 P(HIC)=05 P(H|C,) =0.9
P(C)=1/3 P(C)=13  P(C)=1/3




* Experiment 2: Tails

Which coin did | use?
P(C,|HT) = 0.21P(C_|HT) = 0.58 P(C,|HT) = 0.21

\‘ff"- 4 el

P(C, =1/3 P(C,) =1/3 P(C, =1/3




* Normalization for NB

elog[prob(ex = pos)]
prob(ex—pos) B elog[prob(ex = pos)] + elog[prob(ex = neqg)]

log[prob(ex=pos)] = log [prob(pos)]
+ Z; log[prob(F; | pos)]

log[prob(ex=neg)] = log [prob(neg)]
+ 2, log[prob(F; | neg)]

24



* D-Separation

No Evidence:

A and C are dependent
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* D-Separation
A and C are independent
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* D-Separation

No Evidence:
B and C are dependent
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* D-Separation

B and C are independent
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* D-Separation

No Evidence:

A and B are independent

29



* D-Separation

*

A and B are dependent
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* D-Separation

*

A and B are dependent
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* Outline

= Bayes net review
= Propositional rule induction

s First-order rule induction
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* Rule Sets

= Effective hypothesis space
= Variable sized hypotheses
= Can represent any Boolean function
= Can represent both discrete and continuous features

= Classify learning algorithm as follows:

= Constructive search: Learn by adding rules to rule set.
Each rule is built by adding tests

= Eager
= Batch



* Terminology

= A rule consists of a body and a head
Body = Head

= The body consists of a conjunction of tests
= Attribute = value
= Attribute > value
= Attribute < value
= Where ‘Attribute’ is one of the features and ‘value’
appears in the training data

= The head contains a class label

34



* Relationship to Propositional Logic

= Aruleis also called a Horn (or definite) clause
Outlook = Sunny A Humidity = High = Don't play
Is logically equivalent to
—[Outlook = Sunny] v =a[Humidity = High] v [Don't play]

= Horn clause: Zero or one positive test
= Definite clause: Exactly one positive test
» E.g.: =[Outlook = Sunny] v a[Humidity = High]
is @ Horn clause, but not a definite clause

35



* Terminology

= A rule set is a disjunction of rules
Outlook = Sunny A Humidity = Normal = Play
Outlook = Overcast = Play
Outlook = Rain A Wind = Weak = Play

= Rule covers an example: True of the example
Outlook = Sunny A Humidity = Normal = Play
covers any example
sunny,?,normal,?,?

= Usually all rules are predictive of one class

= Combine rules through a decision list

36



lon List

* Decisi

Rule 1

fires Rule

1 Rule 1 does
not fire

Positive Rrule 2 1|20} Rule 2 does

fires

Posi

not fire

/ \
itive "
Rule N
fires /
Positive

Rule N does
not fire

N\

Negative
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* Relationship to Decision Trees

Outlook )

Overcast

Humidity ‘l: wind
Play

Rain

Strong Weak

High

Don't play Play Don't play Play

N——

The previous rule set is equivalent to this decision tree



Relationship to Decision Trees

A small set of rules can correspond to a big decision tree, because of the Replication Problem.

[:vl/\xg:>y=1 ] [3;3/\3:4:>y= [3:5/\3;6:>y=1]
x1
x2 x3
1 x3 x4 x5
b ‘/X\ 1 x5 x6 0
1 x5 x6 0 S B 1 B

x6 Okl 0 )

=
.

-
\_




* Learning a Single Rule

GrowRule(P,N)
R =14}
Repeat
choose 'best test’ x©Ov to add R, O € {=,#,<,2}
R =R UXx0v
P = P — all positive examples not satisfied by R
Until P is empty
Return R

40



* Learning a Single Rule

Called Top-down or general-to-specific induction
Each step called a refinement or specialization

41



* Choosing the Best Test

= Rule R covers P, and N, and R’ covers P, and N,

P,

Relative frequenc
- quency P+ N,

= Coverage: P, — N4

G - P 'PO -Pl
= Gain: Py || 5= | P0+NO] [P1+N1 P1+N1

P, helps manage the trade off between gain
and covering many positive examples

42



(Called Divide-and-conquer or Cover-removal)

* Learning a Set of Rules

GrowRuleSet(P,N)
A={}
Repeat
R = GrowRule(P,N)
A=RUA
P = P — all positive examples that satisfy R
Until P is empty
Return A

43



* Cover-Removal Example

X; © +
™ + + +
o + + + -
(@\ ~ +.|_
= L
— + -
+ + + L
S -
o

00 10 20 3.0 40 5.0
Rulel: X; <3AX,<12=+

6.0

X1




* Cover-Removal Example

X; © +
™ + + +
o + + + T
(@\ B +.|_
o _ -
o _
o _
o

00 10 20 3.0 40 5.0
Rule 2: X;<25AX,>20=+

6.0

X1




* Cover-Removal Example

X,

1.0 20 3.0

0.0

00 10 20 3.0 40 50 6.0

X1

Rule 3: X, >3 A X, <40 A X, >25= +



* Cover-Removal Example

Xy ©
o™
o _ -
L
S -
= -
o -
o

00 1.0 20 30 40 50 60 y
1
Rule 4: X, > 4.8 AX,;<55AX,>15AX,<2.0= +



* Cover-Removal Example

X,

1.0 20 3.0

0.0

0.0

1.0

2.0

3.0

4.0

5.0

6.0




How Does a Rule Set Partition
Feature Space?

1.0 20 3.0

0.0

+
+ + +
N + o+ -
i} o+ o+
i} . o
+ _
* + o+ - ]
0.0 1.0 20 3.0 40 50 6e6.0




How Does a Rule Set Partition
Feature Space?

1.0 20 3.0

0.0




* Other Search Procedures

= The presented algorithms all use greedy search
= Finding the smallest set of rules is NP-hard
= Other search procedures often lead to results

= Round robin replacement

= Backfitting

= Beam search

= Specific-to-general search

51



* Round Robin Replacement

= Build entire rule set
s Delete the first rule learned

= Find all training examples uncovered by any
remaining rule

= Learn rule(s) to cover these training examples
= This can be repeated for each original rule

= Allows a later rule to capture the positive
examples of a rule learned earlier

52



* Backfitting

= After adding each rule to the rule set, perform
round robin replacement

= Typically, just do several iterations, which
converges quickly

= Repeat the process of learning a rule and the
performing round robin replacement until all
positive examples are covered

53



* Beam Search

= Instead of building just one rule at a time, we
build B rules

= At each step, consider all possible refinements
for each of the B rules

= Score these refinements and select the top B
= [terate until it is not possible to add a test
= Add best rule to the rule set

54



* Beam Search Pictorially

55



* Bottom-Up Learning

Day Outlook Temp Humid Wind PlayTennis?

dl w n

d2 s - S

d3 0 h

d4 r m h

d5 r c " Feature combination never
d6 r C 1l occurs for ‘positive’ class — why
d7 0 C 1l waste time evaluating it?
ds S m h

d9 S C n w y

dio r m n W y

dil s m n S y

di2 o m h S y

di3 o h n w y

did r m h S n



* One Simple Idea

= Unifies rule induction and k-NN

= [reat each example as a rule

= Generalize rules by dropping conditions
» Find nearest example of same class

= Drop conditions such that rule satisfies both
examples [and no negative examples]

= Note: If no accepted generalizations, form of
nearest-neighbors!

57



* Finding a Generalization

Day Outlook Temp Humid Wind PlayTennis? Distance
d3 0 h




* Bottom-Up Learning

Day Outlook Temp Humid Wind PlayTennis? Distance
d3 0 h




* Example

‘Covers 4 pos, 0 neg ‘
Humid=n A Wind=w =y ‘Covers 2 pos, 0 neg

Temp=c A Humid=n A Wind=w = vy

Out=s A Temp=c A Humid=n A Wind=w =y



Learning Rules for Multiple Classes

What if rules for more than one class?

Two possibilities:
e Order rules (decision list)

e Weighted vote (e.g., weight = accuracy x coverage)



Voting Example

# Matching rules = threshold

Rule 1 Rule 2 Rule 3 Rule N-2 Rule N-1 Rule N

UW WILD Group 62



* Notes on Rule Induction

= When scoring rules, be weary of small sample
sizes

= Use m-estimates as mentioned last week

= Cover-removal is a clever idea for directing the
search space

= Prone to building rules for each noisy
example

= Bottom-up learning generally is the most
accurate — though can be slower
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* Outline

= Bayes net review
= Propositional rule induction
= First-order rule induction
= Motivation and first-order logic
= FOIL
= Inverting resolution: Cigol
= Progol
= Applications

64



* Learning First-Order Rules

= Why do this?
» Capture information about related entities
= Can learn in relational DBs
= No longer restricted to fixed-length feature vectors

= Can learn rules such as:

ancestor(X,Y) «— parent(X,Y)

ancestor(X,Y) «— parent(X,Z), ancestor(Z,Y)
= Prolog programs are sets of such rules

65



First-Order Rule for Classifying Web Pages

[Slattery, 1997]

course(A) «—
has-word(A, instructor),
— has-word (A, good),
link-from(A, B),
has-word(B, assign),
= link-from(B, C)

Train: 31/31, Test: 31/34



* First-Order Logic Review

= Four symbols:
= Constants: anna, bob
« Variables: X, Y
=« Predicates/relations: friends(X,Y)
= Functions: motherOf(X)

= Grounding: Replace all variables by constants
=« friends(X,Y) — friends(anna,bob)

Note: We are using Prolog notation

67



* First-Order Logic Review

= Substition: Maps variables to constants
= ©={Xx—anna, y — bob}

= O[mother(X,Y) — parent(X,Y)] is
mother(anna,bob) — parent(anna,bob)

= Literal: A predicate or its negation

= Formula: Sets of literals with <, «,—,A,V
= sister(X,Y) < sibling(X,Y)
= mother(X,Y) — parent(X,Y)

68



* First-Order Logic Review

Clause: A disjunction of literals

Horn-clause: Clause with zero or one
positive literals

Definite-clause: clause with EXACTLY one
positive literal

« =mother(X,Y) v parent(X,Y)

Theory: Set of clauses

69



First-Order = Relational Database

PatientlD|Gender Birthday

P1 M | 3/22/63

patient(p1l,m, 3/22/63)

PatientlD| Date |Physician| Symptoms | Diagnosis

P1 |1/1/01| Smith |palpitations| hypoglycemic
P1 |2/1/03| Jones |[fever, aches|influenza

diagnosis(p1, 1/1/01, smith, palpitations, hypoglycemic)
diagnosis(p1, 2/1/03, jones, fever, flu)
diagnosis(p1, 2/1/03, jones, aches, flu)



* Queries in First-Order Logic

Selection:

= Mmillionaire(X) < income(X,Y), Y> 1,000,000
Projection:

= father(X) < father(X,Y)

Union:

« parent(X,Y) «— mother(X,Y)

« parent(X,Y) < father(X,Y)

Can also define cross-product, join, set
difference, etc.

71



Inductive Logic Programming
* (ILP) [Muggleton & De Raedt, J. Log. Prog."94]

Positive examples Negative examples

—
Background
Knowledge

pos(g) < edge(G, X, Y), color(X, green), color(Y, blue).

Aleph (Srinivasan), Progol (Muggleton),
FOIL (Quinlan), etc.



* ILP Problem Definition

Given: Set of positive examples, set of negative
examples, background knowledge (BK),
all in first-order logic

Do: Learn first-order rule set that when combined
with BK, entails the positive examples but not the
negative examples

73



* Outline

= Propositional rule induction

= First-order rule induction
= Motivation and first-order logic
» FOIL
= Inverting resolution: Cigol
= Progol
= Applications

74



* FOIL: First-Order Inductive Learner

= Same as propositional divide-and-conquer
except for:

» Different candidate specializations
» Different evaluation function

75



* Specializing Rules in FOIL

Learning rule: target(xy,...,X,) < Ly,...,.L,
Candidate specializations add new literals

s Q(Vy,...,V,) such that at least one of V,,...,V,
already appears in the clause

= Equals(X;X;), where X;, X; already appear in the
clause
= The negation of either of the above literals

76



* Specializing Rules in FOIL

Target: sibling(X,Y) «—
Predicates: brother, sister, father, etc.

Legal
refinements

Si
Si
Si
Si
Si
Si

D

D
D
D
D
D

ing(X,Y) « sister(X,Y)
ing(X,Y) « brother(X,Y)
ing(X,Y) « sister(X,2)
ing(X,Y) « sister(Z,Y)
ing(X,Y) « equals(X,Y)
ing(X,Y) «<=equals(X,Y)

Illegal
refinements

Si
Si
Si

D
D

D

ing(X,Y) « sister(Z,2)
ing(X,Y) < brother(A,B)
ing(X,Y) « father(A,B)

77



Information Gain in FOIL

: : P1 Po
Foil_ Gain(L,R)=t|lo — lo
( ) ( g2p1 + ny gZPo-I—no)

Where
e [ is the candidate literal to add to rule R
e pg = number of positive bindings of R
e 1y = number of negative bindings of R
e p; = number of positive bindings of R + L
e n; = number of negative bindings of R + L

e t = no. of positive bindings of R also covered by R + L



FOIL Example

e
S

7

X —y represents LinkedTo(x,y)



2. Absence implies fact is false

Representing negative info:
* FOII— Example 1. Encode —linkedTo(3,1)

Positive Negative Background
Examples Examples Knowledge

canReach(0,1) —canReach(1,0) inkedTo(0,1)
canReach(0,2) —canReach(2,1) inkedTo(0,2)
canReach(0,3) —canReach(2,0) inkedTo(1,2)
canReach(0,4) —canReach(3,2) inkedTo(2,3)
canReach(0,5) —canReach(3,1) inkedTo(3,4)

EénReach(7,8) :..canReach(8,7) I.i.|-1kedTo(7,8)

Target function: canReach(X,Y) true iff
there is a directed path from Xto Y



* FOIL Hypothesis Space

Set of clauses using predicates linkedTo and canReach

canReach(X,Y) <

< N -
canReach(X,Y) « canReach(X,Y) « canReach(X,Y) «
linkedTo(X,Y) linkedTo(Y,X) -*- linkedTo(X,2)

Even for small problem the
hypothesis space can be large!
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FOIL Gain Subtlety

»

-

O=| Q= O™

>

G
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FOIL Gain Subtlety

7 A OO —[FI

L& Lot G B/ 10
o s H a H a A —M\GFE 5
O O O O) O O O O o 0 O o

rlght(A) " car(A,B), I—Ogo— _OEO_ (_)AO A\'OEu:ID'/_E O

tri(B)

A B

right(A) :- car(A,B), tri(B),
car(A,C), circle(C)

W B lc

A

()_—\I:II:I,LQ

O

right(A) :- car(A,B), tri(B),

car(A,C), para(C)
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* One Problem with FOIL

XY), Y = high

This literal is non-discriminating
because most people have at least
one bank account!

FOIL will have a hard time
learning this clause
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* Overcoming Greedy Search’s Myopia

= Solution 1: One-step lookahead
« Try all pairs of candidate literals
= Prohibitively slow

= Solution 2: Restrict lookahead to template
clauses [i.e., only consider things of a certain
form]

« E.g., R(A,B) ~ S(B,C)

85



* Outline

= Propositional rule induction

= First-order rule induction
= Motivation and first-order logic
» FOIL
= Inverting resolution: Cigol
= Progol
= Applications
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* Types of Logical Reasoning

= Deduction
= Given: Rule set, antecedents
= Do: Derive consequents

= Induction:
= Given: Possible antecedents and conguents

= Do: Discover rules (map (sets) antecedents to
consequents)

= Abduction

= Given: Rule sets, consequents
= Do: Infer which antecedents are true

87



Induction as Inverted Deduction

Induction is finding h such that
(V{xz;, f(x;)) € D) BAhAx; - f(x;)

where
e x,; is ¢th training instance
e f(x;) is the target function value for z;

e B is other background knowledge

So let’s design inductive algorithm by inverting operators
for automated deduction.



Induction as Inverted Deduction

“Pairs of people (u,v) such that child of u is v”

f(x;) : Child(Bob, Sharon)
z; : Male(Bob), Female(Sharon), Father(Sharon, Bob)
B : Parent(u,v) «— Father(u,v)

What satisfies (V(z;, f(x;)) € D) BAhAz; = f(x;)?

hy: Child(u,v) «— Father(v,u)
ho : Child(u,v) «— Parent(v,u)



Induction as Inverted Deduction

We have mechanical deductive operators F (A, B) = C,
where ANABFC

Need inductive operators

O(B, D) = h where (Y{(x;, f(x;)) € D) (BAhAx;) - f(x;)



Induction as Inverted Deduction

Positives:

e Subsumes earlier idea of finding A that “fits” training
data

e Domain theory B helps define meaning of “fit” the data
B/\h/\aci I—f(:cz)

e Suggests algorithms that search H guided by B



Induction as Inverted Deduction

Negatives:

e Doesn’t allow for noisy data. Consider
(V{x;, f(x;)) € D) (BAhAx;)F f(x;)

e First order logic gives a huge hypothesis space H
— Overfitting

— Intractability of calculating all acceptable h’s



* Deduction: Resolution Rule

s Step 1: Given clauses C, and G, find literal L
from C,such that—L. appears in G,

= Step 2: Form resolvent C by including all
literals C; and C, except for L and —L

= More precisely, the resolvent C is:

C=(C,—{L}) U —AHL})

where — is set difference and U is union
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* Deductive Resolution Example

-P v Q v(=S)v T
—IPVQVV—lT
—IPVQV—lT
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* Inverted Resolution (Propositional)

= Given clauses C; and C find literal L that occurs
in C;but not C

s Form clause C,by including the following literals

Co=(C-(C; —H{L}) U{-L}
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C;: PassExam v C:

KnowMaterial

-KnowMaterial v =Study

C: PassExam v —Study

C,: PassExam v
-KnowMaterial

Inverting Resolution Example

C,:|KnowMaterial

v =Study

VvV PassExam

C: PassExam v —Study
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* First-Order Resolution

= Step 1: Find literal L, from clause C,, literal L,
from clause C, and substitution @ such that
LJQ — _IL2@

= Step 2: Form resolvent C by including all literals
= From C,0
= From C,0
= Except from L,©and —=L,0

= More precisely, the resolvent C is:

C=(C,—{L,})OU(C,—A{L})0
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heavier(A,B)

v =denser(A,B) v =larger(A,B)

denser(hammer,feather)

larger(hammer,feather)

First-Order Resolution Example

heavier(hammer, feather)?

—heavier(hammer,feather)

A/hammer
B/feather

—denser(hammer,feather)

v large(hammer,feather)

-larger(hammer,feather)
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* Inverting First-Order Resolution

Cy C C=(C,—{L})OU(C,—-{L;})0
8 = 6,6,
O

1. C—(C, —{L;})6; =(C, —{L,}),

2. G, —{L,}=(C—(C,—A{L,}) 6,)8,"

3. ;= (C—(C; —{L,}) 6,)8;7 U{L,}

4. G, = (C—-(C,—{L,}) 6,)8;1 U {~L,6,0,'}
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Cigol

Target: GrandChild(Y, X) GrandChild(Y, X) :- Father(X,2), Father(Z,Y)
Pos = {GrandChild(bob,shannon)} ﬁ
B = {Father(tom,bob),

GrandChild(Y, X) v
-Father(X,2) v
Father(tom,bob) —Father(Z,Y)

Father(shannon, tom)}

bob/Y
tom/Z

Father(shannon,tom)
GrandChild(bob, X) v
—Father(X,tom)

shannon/X

GrandChild(bob, shannon)
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* Cigol: Pros and Cons

s Pros
= Search can be more focused on effiecent
= Can perform predicate invention

= Cons
= Inverse resolution has many choices at each step
= Does not make full use of data
= Involves a human in the loop
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* Outline

= Propositional rule induction

= First-order rule induction
= Motivation and first-order logic
» FOIL
= Inverting resolution: Cigol
= Progol
= Applications
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Can We Combine Inverse Entailment
and Top-Down Search?

= Can view this as mixed top-down and bottom-
up approach

= Problem: It is undecidable in general whether:
 C1E 2

s T ACI E example

= Solution: Use subsumption rather than
implication
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* Subsumption for Literals

s Literal L1 subsumes L2 iff there exists a
substitution 0 such that L16= L2

= Examples
p(f(X),X) subsumes p(f(a),a)

p(f(X),X) does not subsume p(f(a),b)



* Subsumption for Clauses

s Clause C; subsumes clause G, iff there exists a
substitution 8 such that C,0 subset C,

= Examples
p(X,Y) v p(Y,Z) subsumes p(W,W)
p(X,Y) v p(Y,Z) subsumes p(X,Y) v p(Y,Z) v q(2)

s If C, subsumes C, then C, implies G,
(opposite is not true)



Progol

= Learn hypothesis of definite clauses

= User provides sets of predicates, functions,
forms of arguments for each

= While positive examples remain uncovered

= Randomly pick positive example as seed, clause
MUST cover this example

= Build ‘bottom’ or most specific clause

= General to specific search
= If clause covers negative examples, then refine it
= Score(clause) = |pos covered| - |neg covered|
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Learning by Searching a
Lattice of Hypotheses

active(X) if
has-hydrophobic(X,A)

active(X) if
has-hydrophobic(X,A),
has-donor(X,B),
distance(X,A,B,5.0)

active(X)

active(X) if active(X) if
has-donor(X,A) has-acceptor(X,A)

active(X) if active(X) if
has-donor(X,A), has-acceptor(X,A),
has-donor(X,B), has-donor(X,B),
distance(X,A,B,4.0) distance(X,A,B,6.0)

etc.
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* Lattice of Clauses

s We can construct a lattice of clauses

= Ordering is subsumption
= We group clauses into variants;
= Top: Call everything positive
= Bottom: Bottom clause

= Intuition: Top-down search through space of
clauses that inverse entailment could generate
for an example



* Refinement Operators

= Rewrite a clause to make it more specific

= Goals for a refinement operator
= Finite
= Complete
= Not redundant

= Not possible to get all three!



* Refinement Operator

= Ground a variable to a constant (function)

= Rename a variable to one that already exists in
clause

= Add a new literal that introduces new variables

Note: This is complete and finite



* Example

= First, consider IMDB as a problem
= Work in groups for 5 minutes
= Think about

= What algorithmic approach would you use
for this problem?

= What are the pros and cons of the selected
approach?
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* Outline

= Propositional rule induction

= First-order rule induction
= Motivation and first-order logic
» FOIL
= Inverting resolution: Cigol
= Progol
= Applications
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* Application: Drug Design

= 'Drugs” are small molecules that affect disease
by binding to a target protein in the body

= Machine Learning is useful in drug design in
several ways

» Identify target proteins using gene expression
analysis

= Find target structure by analyzing X-ray
crystallography data (DiMaio et al. 2006)

= Find potential binding agents by analyzing known
drugs (3D-QSAR) (Jain et al. 1994)



* The Problem of 3D-QSAR

AN

3-Dimensional Quantitative
Structure-Activity Relationships

Given: 3-dimensional structures of low-energy
conformations of molecules, and
their known binding affinities to target

Do: Learn a model to predict binding affinity
for new molecules to this target



L Binding Mechanism

Pharmacophore —
the 3D molecular

= substructure
responsible for
binding

Conformation of an Angiotensin-Converting Enzyme
(ACE) inhibitor



* Background Knowledge

atom(m1,al,0,6.0,-2.5,1.8).
atom(m1,a2,c,0.6,-2.7,0.3).
atom(m1,a3,s,0.4,-3.5,-1.3).

bond(m1,al,a2,1).
bond(m1,a2,a3,1).

= Free to declare rules that use low
level molecular descriptions

= Benzene rlngs hydrogen
donors, hk/) rogen acceptors,
hydropho ic groups, etc.
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* Challenge: Molecular Conformations
C4H10

Low energy conformations more likely



Supervised vs. Multiple Instance

Learning
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* High-Level Idea

= ILP constructs features for a regression model

Yi = Zkaik +b,
K
= Used in practice
= Gets good results

= Better 'hit’ rate
= Discover biologically relevant information
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‘ Thermolysin: Blood Pressure

LR-SAYU

Thermolysin




* Application: Mammography

= Provide decision support for radiologists

= Variability due to differences in training and
experience

= Experts have higher cancer detection and fewer
benign biopsies

= Shortage of experts
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* Approach

Combine three things
s Forward feature selection

= Inductive logic programming to propose
features

= Tree-augmented naive Bayes as statistical
model

Simple idea, but excellent performance
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* Rule Induction Summary

Rules grown by adding
time to the rule body
= Many search strategies
= Many score functions

Rule sets grown by adc
Rules can either be pro
Alternative idea: Learn

one antecedent at a

ing rule at a time
hosition or first-order

oy inverting resolution

Rule learning applied to many real-world apps
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* Next class

= Homework 2 is due!

= Homework 1 review

= Perceptrons

= Neural networks

= Read Mitchell, Chapter 4
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