Instance-Based Learning

Preview

o K-nearest neighbor
e Other forms of IBL
« Collaborative filtering

Instance-Based Learning

Key idea: Just store all training examples (xz;, f(x;))

Nearest neighbor:
e Given query instance z,, first locate nearest training
example z,,, then estimate f(z,) «— f(x,)
k-Nearest neighbor:

e Given z,, take vote among its k nearest neighbors
(if discrete-valued target function)

e Take mean of f values of k nearest neighbors

(if real-valued)
k
f(@g) Z

Advantages and Disadvantages

Advantages:
e Training is very fast
e Learn complex target functions easily

e Don’t lose information

Disadvantages:
e Slow at query time
e Lots of storage

e Easily fooled by irrelevant attributes

Distance Measures

e Numeric features:

— Euclidean, Manhattan, L™-norm:

di
L"(x1,%2) = \/Z# T xa s — X2,

— Normalized by: range, std. deviation

e Symbolic features:

— Hamming/overlap
— Value difference measure (VDM):

6(val;,val;) = #Classes |P(cn|val;) — P(cp|val;)|™

e In general: arbitrary, encode knowledge

Voronoi Diagram

S': Training set

Voronoi cell of x € 5"
All points closer to x than to any other instance in S

Region of class C-
Union of Voronoi cells of instances of C in S

Behavior in the Limit
e*(x): Error of optimal prediction
enn(x): Error of nearest neighbor
Theorem: lim,,_,.enn < 2¢*
Proof sketch (2-class case):

ENN = P4+PNNec— + P—_PNNec+
=p+(1 —pynet) + (1 —pi)pNNest

limy oo PNNe+ = P+, limyp oo pPNNe— = P
lim, oo eNN =P+ (1—p1)+ (1—py)py = 2e*(1—€*) < 2¢€*
lim,,— o (Nearest neighbor) = Gibbs classifier

(] 3 _ %
Theorem: hmn—>oo, k—oc, k/n—0€kNN — €

Distance-Weighted £-NN

Might want to weight nearer neighbors more heavily ...

k
Zi:l wz,f('T%)
k
D i Wi

f(wq) ¢

where
1

d(wqaxi)z

and d(z,, z;) is distance between z, and z;

w; =

Notice that now it makes sense to use all training examples
instead of just &

Curse of Dimensionality

Imagine instances described by 20 attributes,
but only 2 are relevant to target function
Curse of dimensionality:

— Nearest neighbor is easily misled when hi-dim X
— Easy problems in low-dim are hard in hi-dim
— Low-dim intuitions don’t apply in hi-dim
Examples:

— Normal distribution

— Uniform distribution on hypercube

— Points on hypergrid

— Approximation of sphere by cube

— Volume of hypersphere

Feature Selection

e Filter approach:
Pre-select features individually

— E.g., by info gain

e Wrapper approach:
Run learner with different combinations of features
— Forward selection

— Backward elimination
— Etc.

FORWARD_SELECTION(F'S)
F'S: Set of features used to describe examples

Let SS =10
Let BestFval =0
Repeat

Let BestF = None
For each feature F in F'S and not in SS
Let SS" =SSU{F}
If Eval(SS') > BestEval
Then Let BestF = F
Let BestEval = Eval(SS§’)
If BestF # None
Then Let SS = SS U {BestF'}
Until BestF = None or SS = F'S
Return SS

BACKWARD_ELIMINATION(F'S)
F'S: Set of features used to describe examples
Let §§ = FS
Let BestFEval = Eval(SS5)
Repeat
Let WorstF = None.
For each feature F' in S5
Let §8' =85 —{F}
If Fval(SS’) > BestEwval
Then Let WorstF = F
Let BestEval = Eval(SS’)
If WorstF # None
Then Let §S =SS5 — {WorstF'}
Until WorstF = None or SS = {
Return S§S

Feature Weighting

e Stretch jth axis by weight z;, where z4,..., 2, chosen
to minimize prediction error

e Use gradient descent to find weights z1,..., 2z,

e Setting z; to zero eliminates this dimension altogether

Reducing Computational Cost

Efficient retrieval: k-D trees

(only work in low dimensions)

Efficient similarity comparison:

— Use cheap approx. to weed out most instances

— Use expensive measure on remainder

Form prototypes

Edited k-NN:
Remove instances that don’t affect frontier

Edited k-Nearest Neighbor

EDITED_k-NN(S)
S: Set of instances
For each instance x in S
If x is correctly classified by S — {x}
Remove x from S
Return S

EDITED_k-NN(S)
S: Set of instances
T=20
For each instance x in S
If x is not correctly classified by T’
Add x to T
Return T

Overfitting Avoidance

e Set k by cross-validation
e Form prototypes

e Remove noisy instances

— E.g., remove x if all of x’s k£ nearest neighbors
are of another class

Locally Weighted Regression

k-NN forms local approx. to f for each query point z,

Why not form an explicit approximation f (z) for region
surrounding z,”?

e Fit linear function to k£ nearest neighbors
e Fit quadratic, ...

e Produces “piecewise approximation” to f

Several choices of error to minimize:

e Squared error over k nearest neighbors

Ei(zg)=) (f(x) - f(x))’

€ ENN(zq)

e Distance-weighted squared error over all neighbors

Esy(zq) = Z(f(m) — f(a:))2K(d($q, z))

xeD

Radial Basis Function Networks

Global approximation to target function, in terms of
linear combination of local approximations

Used, e.g., for image classification
A different kind of neural network

Closely related to distance-weighted regression,
but “eager” instead of “lazy”

Radial Basis Function Networks

a,(x) a,(x) a,(x)
where a;(z) are the attributes describing instance z, and

f(@) = wo + Y wuKu(d(zu, 7))

Common choice for K,: Ky(d(z,,r)) =e 2%

Training Radial Basis Function Networks

Q1: What z, to use for each kernel function K, (d(z,, x))
e Scatter uniformly throughout instance space
e Use training instances (reflects distribution)

e (luster instances and use centroids

Q2: How to train weights (assume here Gaussian K,)

e First choose variance (and perhaps mean) for each K,
— E.g., use EM

e Then hold K, fixed, and train linear output layer
— Efficient methods to fit linear function

e Or use backpropagation

Case-Based Reasoning

Can apply instance-based learning even when X # R"
— Need different “distance” measure

Case-based reasoning is instance-based learning
applied to instances with symbolic logic descriptions

Widely used for answering help-desk queries

((user-complaint errorb3-on-shutdown)
(cpu-model PentiumIIT)
(operating-system Windows2000)
(network-connection Ethernet)
(memory 128MB)
(installed-applications Office PhotoShop VirusScan)
(disk 10GB)
(likely-cause 777))

Case-Based Reasoning in CADET

CADET: Database of mechanical devices

e Fach training example:
(qualitative function, mechanical structure)

e New query: desired function
e Target value: mechanical structure for this function

Distance measure: match qualitative function descriptions

A stored case: T—junction pipe
Structure:

8, ,]j T = temperature
w Q = waterflow

A problem specification: Water faucet

Structure:

)

Function:

2
Function:
A VAN
¢
c 2 0 “n
== _
S N
T +
C Tm
T, +

Case-Based Reasoning in CADET

e Instances represented by rich structural descriptions

e Multiple cases retrieved (and combined) to form
solution to new problem

e Tight coupling between case retrieval and problem
solving

Lazy vs. Eager Learning

Lazy: Wait for query before generalizing

e k-nearest neighbor, case-based reasoning

Eager: Generalize before seeing query

e ID3, FOIL, Naive Bayes, neural networks, ...

Does it matter?
e Eager learner must create global approximation
e Lazy learner can create many local approximations

e If they use same H, lazy can represent more complex
functions (e.g., consider H = linear functions)

Collaborative Filtering

(AKA Recommender Systems)

e Problem:
Predict whether someone will like a Web page,
newsgroup posting, movie, book, CD, etc.

e Previous approach:
Look at content

e Collaborative filtering:
— Look at what similar users liked

— Similar users = Similar likes & dislikes

Collaborative Filtering

Represent each user by vector of ratings
Two types:

— Yes/No

— Explicit ratings (e.g., 0 — * * % x %)
Predict rating:

Rik = Rz + « Z Wz’j(Rjk —
XjENz'

Similarity (Pearson coefficient):

W.. =

R;)

> u(Rix — Ri)(Rjx — R;j)

o \/Zk(Rik — Ri)*(Rji —

R;)?

Fine Points

Primitive version:

Rz’k = ¥ Z Wz’jRjk
Xj €EN;
a= (32 [Wyl)™
N, can be whole database, or only k nearest neighbors
R, = Rating of user 7 on item £

R; = Average of all of user j’s ratings

Summation in Pearson coefficient is over all items
rated by both users

In principle, any prediction method can be used
for collaborative filtering

Example

R, R Rz R4 Rs
Alice 2 - 4 4 .
Bob 1 5 4 - 3
Chris 5 2 - 2 1
Diana | 3 - 2 2 -

