
CSE P548 Assignment 6 Spring 2003

om a
will be
good

arable

calar
ssively
branch
alling.
ey to
ces are
eline.
-thread

and

high
h cycle
w ILP,
few
uently,
on a
e, web

tially
from
them,

argues
should
late or

the
will
Computer Systems Architecture
Assignment 6

Due: Tuesday, May 27

The purpose of this assignment is to learn to analyze data that is typically obtainable fr
hardware simulation run and to use the data to answer an architectural design question. You
presented with two alternate viewpoints on whether speculation on an SMT processor is a
idea and a set of data that compares SMT with an out-of-order superscalar with comp
hardware. Your job will be to decide which hypothesis is supported by the data.

For this assignment try to work in teams of two, and for the same reason as before− so that you’ll
benefit from discussions with your partner.

The Issue: to speculate or not to speculate on an SMT

Instruction speculation is a crucial contributor to the performance of modern supers
processors. (Our measurements show that 70% of committed instructions on an aggre
designed out-of-order superscalar started out speculative!) Instruction speculation hides
latencies, and thereby boosts performance, by executing the likely branch path without st
Branch predictors, which provide accuracies up to 96% (excluding OS code), are the k
effective speculation. The primary disadvantage of speculation is that some processor resour
invariably allocated to useless, wrong-path instructions that must be flushed from the pip
However, since resources are often underutilized on superscalars because of low single
instruction-level parallelism (ILP), the benefit of speculation far outweighs this disadvantage
the decision to speculate as aggressively as possible is an easy one.

In contrast to superscalars, simultaneous multithreading (SMT) processors operate with
processor utilization, because they issue and execute instructions from multiple threads eac
and all threads dynamically share most hardware resources. If some threads have lo
utilization is improved by executing instructions from additional threads; if only one or a
threads are executing, then all critical hardware resources are available to them. Conseq
instruction throughput on a fully loaded SMT processor is up to four times higher than
superscalar with comparable hardware on a variety of workloads (integer, scientific, databas
service, and the operating system).

With its high hardware utilization, speculation on an SMT mayharm rather than improve
performance, particularly with all hardware contexts occupied. Speculative (and poten
wasteful) instructions from one thread may compete with useful, non-speculative instructions
other threads for highly utilized hardware resources, and in some cases could displace
lowering performance.

Given these lines of argument, one that argues for speculation on an SMT and one that
against it, analyze the performance data below to decide whether an SMT processor
speculate. Back up your decision with a data analysis, i.e., don’t just say SMT should specu
SMT should not speculate− tell us why and base the reasons on your data analysis, quoting
figures that prove your point. Really mine the data. It is the quality of your analysis that
1

CSE 586 Assignment 5 Fall 2001

in the
it reads
d of
tions.

tency
determine your grade.

The SMT simulations

The SMT processor used in the simulations was configured according to the parameters
table below. The superscalar was identical, except that it had 2 fewer pipeline stages, since
and writes to a smaller register file. The workload was SPECInt95, which is comprise
commonly used integer applications. The results are averaged over the SPECInt95 applica

CPU

Thread Contexts 8

Pipeline 9 stages, 7 cycle misprediction penalty.

Fetch Policy 8 instructions per cycle from up to 2 contexts (the ICOUNT scheme)

Functional Units 6 integer (including 4 load/store and 2 synchronization units)
4 floating point

Instruction Queues 32-entry integer and floating point queues

Renaming Registers 100 integer and 100 floating point

Retirement bandwidth 12 instructions/cycle

Branch Predictor hybrid predictor (shared among all contexts)

Local Predictor 4K-entry prediction table, indexed by 2K-entry history table

Global Predictor 8K entries, 8K-entry selection table, gshare (xor’d)

Branch Target Buffer 256 entries, 4-way set associative (shared among all contexts)

Cache Hierarchy

Cache Line Size 64 bytes

Icache 128KB, 2-way set associative, dual-ported, 2 cycle latency

Dcache 128KB, 2-way set associative, dual-ported (from CPU, r&w), single-ported (from the L2), 2 cycle la

L2 cache 16MB, direct mapped, 23 cycle latency, fully pipelined (1 access per cycle)

MSHR 32 entries for the L1 cache, 32 entries for the L2 cache

Store Buffer 32 entries

ITLB & DTLB 128-entries, fully associative

L1-L2 bus 256 bits wide

Memory bus 128 bits wide

Physical Memory 128MB, 90 cycle latency, fully pipelined
2

CSE 586 Assignment 5 Fall 2001
The SMT data

IPC: 5.18

IPC per pipe stage:

spec(%) true-path spec(%) wrong-path spec(%) nonspec(%) total
fetch 3.49 (56.5%) 2.82 (45.6%) 0.67 (10.9%) 2.69 (43.5%) 6.19
decode 3.31 (56.0%) 2.75 (46.6%) 0.56 (9.4%) 2.60 (44.0%) 5.91
rename 3.21 (55.4%) 2.74 (47.2%) 0.47 (8.13) 2.59 (44.6%) 5.80
issue 2.92 (53.4%) 2.72 (49.6%) 0.20 (3.7%) 2.56 (46.6%) 5.48
read1 2.92 (53.3%) 2.72 (49.7%) 0.20 (3.7%) 2.56 (46.5%) 5.45
read2 2.86 (52.9%) 2.71 (50.1%) 0.15 (2.8%) 2.55 (47.1%) 5.41
execute 2.78 (52.4%) 2.68 (50.6%) 0.10 (1.8%) 2.52 (47.6%) 5.30
write 2.75 (52.2%) 2.68 (50.9%) 0.07 (1.4%) 2.51 (47.8%) 5.26
commit 2.67 (51.6%) 2.67 (51.5%) 0.00 (0.0%) 2.51 (48.4%) 5.18

percentage of instructions squashed (from branch speculations): 9.7
cycles simulated: 200000000

avg. number of contexts that are speculating in any given cycle: 4.7

Fetch statistics
==
avg. number of contexts ready to be fetched each cycle: 6.6
avg. number of speculating contexts ready to be fetched each cycle: 4.6
avg. number of contexts not speculating ready to be fetched each cycle: 2.0

avg. number of instructions fetched per cycle: 6.2
avg. number of speculative instructions fetched per cycle: 3.5
avg. number of nonspeculative instructions fetched per cycle: 2.7

avg. number of consecutive speculative branches per context: 0.8

total instructions fetched: 1237550208
speculative instructions fetched (% of fetched instructions): 61.4
nonspeculative instructions fetched (% of fetched instructions): 38.6

avg. branch delay (cycles/branch): 10.0

avg. number of instructions squashed per misprediction: 8.8

avg. fetch-to-fetch delay for a thread (the number of cycles between two
consecutive fetches from the same context): 5.1

branch prediction accuracy: 87.7%

useful (true-path) instructions (% of maximum fetch bandwidth): 68.5
3

CSE 586 Assignment 5 Fall 2001
percentage of forward-taken branches: 31.1
percentage of backward taken branches: 17.9
percentage of forward not taken branches: 45.9
percentage of backward not taken branches: 5.1

IQ statistics
==
avg. number of contexts present in IQ: 5.3

avg. IQ size (instructions): 21.8

avg. number of speculative instructions in IQ: 12.9
avg. number of nonspeculative instructions in IQ: 8.6

avg. number of speculative instructions ready to issue: 4.4
avg. number of nonspeculative instructions ready to issue: 4.1

IQ full (percentage of cycles): 4.3
avg. number of speculative instructions in full IQ (instructions/backup): 21.3
avg. nonspeculative instructions in full IQ (instructions/backup): 10.7

avg. speculative instructions held up by full IQ (instructions/backup): 1.2
avg. nonspeculative instructions help up by full IQ (instructions/backup): 0.9

out of renaming registers (percentage of cycles): 0.3
avg. number of speculative instructions held up by a lack of registers: 1.8
avg. number of nonspeculative instructions help up by a lack of registers: 1.8

Where in the pipeline instructions are squashed (mostly from branch
speculations but a small number from other factors, such as exceptions):

per stage accumulative
0: 12338755 (8.9%) 12338755 (8.9%)
1: 18641892 (13.4) 30980648 22.2%)
2: 56457388 (40.5%) 87438032 (62.7%)
3: 1762941 (1.3%) 89200976 (64.0%)
4: 195106 (0.1%) 89396080 (64.1%)
5: 11986018 (8.6%) 101382096 (72.7%)
6: 16690893 (12.0%) 118072992 (84.7%)
7: 6255869 (4.5%) 124328864 (89.2%)
8: 15058986 (10.8%) 139387856 (100.0%)
4

CSE 586 Assignment 5 Fall 2001
The Superscalar data

IPC: 2.78

IPC per pipe stage:

spec (%) true-path spec (%) wrong-path spec (%) nonspec (%) total
fetch 3.52 (93.2%) 2.55 (67.4%) 0.97 (25.74%) 0.26 (6.8%) 3.76
decode 3.35 (93.1%) 2.53 (70.4%) 0.82 (22.68%) 0.25 (6.9%) 3.60
rename 3.23 (92.9%) 2.53 (72.8%) 0.70 (20.05%) 0.25 (7.1%) 3.48
issue 2.84 (92.0%) 2.53 (81.8%) 0.31 (10.17%) 0.25 (8.0%) 3.09
read 2.85 (92.0%) 2.53 (81.8%) 0.31 (10.17%) 0.25 (8.0%) 3.09
execute 2.74 (91.7%) 2.53 (84.7%) 0.21 (6.99%) 0.25 (8.3%) 2.99
commit 2.53 (91.1%) 2.53 (91.1%) 0.00 (0.00%) 0.25 (8.9%) 2.78

percentage of instructions squashed (from branch speculations): 25.8
cycles simulated: 200000000

avg. number of contexts that are speculating in any given cycle: 0.9

avg. basic block size: 4.8

Fetch statistics
==
avg. number of contexts ready to be fetched each cycle: 0.97
avg. number of speculating contexts ready to be fetched each cycle: 0.95
avg. number of contexts not speculating ready to be fetched each cycle: 0.02

avg. number of instructions fetched per cycle: 3.8
avg. number of speculative instructions fetched per cycle: 3.5
avg. number of nonspeculative instructions fetched per cycle: 0.3

avg. number of consecutive speculative branches per context: 3.3

total instructions fetched: 755177536
speculative instructions fetched (% of fetched instructions): 94.2
nonspeculative instructions fetched (% of fetched instructions): 5.8

avg. branch delay (cycles/branch): 1.3

avg. number of instructions squashed per misprediction: 35.2

avg. fetch-to-fetch delay for a thread (cycles): 1.4

branch prediction accuracy: 92.4%

useful (true-path) instructions (% of maximum fetch bandwidth): 34.9
5

CSE 586 Assignment 5 Fall 2001

This
t. The

read
IQ statistics
==
avg. IQ size (instructions/cycle): 9.3

avg. number of speculative instructions in IQ: 8.4
avg. number of nonspeculative instructions in IQ: 0.6

avg. number of speculative instructions ready to issue: 3.3
avg. number of nonspeculative instructions ready to issue: 0.3

IQ full (percentage of cycles): 1.7
avg. number of speculative instructions in a full IQ: 31.6
avg. number of nonspeculative instructions in a full IQ: 0.4

avg. number of speculative instructions held up by a full IQ: 2.1
avg. number of nonspeculative instructions help up by a full IQ: 0.01

out of renaming registers (percentage of cycles): 0.2
avg. number of speculative instructions held when there are no registers: 3.8
avg. number of nonspeculative instructions help up when there are no
registers: 0.01

Where in the pipeline instructions are squashed (mostly from branch
speculations but a small number from other factors, such as exceptions):

 per stage accumulated
0: 23731896 (12.7%) 23731896 (12.7%)
1: 23796264 (12.7%) 47528160 (25.4%)
2: 76448264 (40.9%) 123976424 (66.3%)
3: 332 (0.0%) 123976752 (66.3%)
4: 70 (0.0%) 123976824 (66.3%)
5: 21156748 (11.3%) 145133568 (77.6%)
6: 41778032 (22.4%) 186911600 (100.0%)

Speculative Instructions: 711180385 (94.2%)

Part II: The report

Your report should follow the usual report guidelines, and 2-3 pages of text should do it.
time you can write only a results section that argues whether SMT should speculate or no
premise comes from the assignment itself.

Part III: Turning it in

Turn in your report via e-mail or paper handouts. Use postscript or pdf (it’s hard for us to
MS Word documents).
6

	Computer Systems Architecture
	Assignment 6
	Due: Tuesday, May 27
	CPU
	Thread Contexts
	8
	Pipeline
	9 stages, 7 cycle misprediction penalty.
	Fetch Policy
	8 instructions per cycle from up to 2 contexts (the ICOUNT scheme)
	Functional Units
	6 integer (including 4 load/store and 2 synchronization units)
	4 floating point
	Instruction Queues
	32-entry integer and floating point queues
	Renaming Registers
	100 integer and 100 floating point
	Retirement bandwidth
	12 instructions/cycle
	Branch Predictor
	hybrid predictor (shared among all contexts)
	Local Predictor
	4K-entry prediction table, indexed by 2K-entry history table
	Global Predictor
	8K entries, 8K-entry selection table, gshare (xor’d)
	Branch Target Buffer
	256 entries, 4-way set associative (shared among all contexts)
	Cache Hierarchy
	Cache Line Size
	64 bytes
	Icache
	128KB, 2-way set associative, dual-ported, 2 cycle latency
	Dcache
	128KB, 2-way set associative, dual-ported (from CPU, r&w), single-ported (from the L2), 2 cycle l...
	L2 cache
	16MB, direct mapped, 23 cycle latency, fully pipelined (1 access per cycle)
	MSHR
	32 entries for the L1 cache, 32 entries for the L2 cache
	Store Buffer
	32 entries
	ITLB & DTLB
	128-entries, fully associative
	L1-L2 bus
	256 bits wide
	Memory bus
	128 bits wide
	Physical Memory
	128MB, 90 cycle latency, fully pipelined

