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ABSTRACT
The enormous potential for wireless sensor networks to make
a positive impact on our society has spawned a great deal
of research on the topic, and this research is now producing
environment-ready systems. Current technology limits cou-
pled with widely-varying application requirements lead to a
diversity of hardware platforms for different portions of the
design space. In addition, the unique energy and reliabil-
ity constraints of a system that must function for months
at a time without human intervention mean that demands
on sensor network hardware are different from the demands
on standard integrated circuits. This paper describes our
experiences designing sensor nodes and low level software to
control them.
In the ZebraNet system we use GPS technology to record

fine-grained position data in order to track long term animal
migrations [14]. The ZebraNet hardware is composed of a
16-bit TI microcontroller, 4 Mbits of off-chip flash memory,
a 900 MHz radio, and a low-power GPS chip. In this paper,
we discuss our techniques for devising efficient power sup-
plies for sensor networks, methods of managing the energy
consumption of the nodes, and methods of managing the pe-
ripheral devices including the radio, flash, and sensors. We
conclude by evaluating the design of the ZebraNet nodes
and discussing how it can be improved. Our lessons learned
in developing this hardware can be useful both in designing
future sensor nodes and in using them in real systems.

Categories and Subject Descriptors
B.0 [Hardware]: General; C.2.1 [Computer-Communi-
cation Networks]: Network Architecture and Design; C.3
[Special Purpose and Application-Based Systems]:
[Real-time and embedded systems]

General Terms
Performance, Design, Experimentation, Verification
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Sensor Networks, Sensor Deployment, ZebraNet, GPS

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SenSys’04, November 3–5, 2004, Baltimore, Maryland, USA.
Copyright 2004 ACM 1-58113-879-2/04/0011 ...$5.00.

1. INTRODUCTION
Many uses for energy-aware sensor networks are quickly

emerging from industry and academia. The numerous mil-
itary and civilian applications of this technology have the
potential to make a considerable impact on society. As a
result, the sensor network research community has grown
steadily over the past few years.
Typically, sensor nodes are comprised of sensors to col-

lect environmental data, a low-power microcontroller to pro-
cess information and control the system, a radio with lim-
ited range to transmit data from node to node, and off-chip
memory to store data. The nodes are characterized by their
small size and significant energy/resource constraints. In
addition, once deployed, the nodes are difficult to retrieve,
so they must function for months at a time on a battery
pack. Also, the nodes need to be extremely durable as they
will be released into potentially harsh environments. These
issues affect all areas of hardware design, from the selection
of the microcontroller to the design of power supplies.
Due to these fundamental constraints, hardware design

guidelines for sensor nodes are different than those for other
applications. While theoretical research on sensor network
is ongoing, academic and industry researchers have increas-
ingly deployed working prototype sensor networks on which
theories can become reality. As part of the ZebraNet project,
we have designed and built sensor hardware and software as
well. ZebraNet is a mobile sensor system with sparser net-
work coverage and higher-energy sensors (GPS) than many
other sensor networks. As such, it operates in a distinct part
of the hardware design space.
This paper discusses hardware design issues for sensor net-

works in general and our experiences with ZebraNet in par-
ticular. Through this paper we contribute both specific de-
sign thoughts as well as more general lessons learned. For
example, while radio communication garners much attention
in the sensor networks community, the less-glamorous topic
of power supply design ended up requiring much more of our
design time. This seems likely to be a general characteristic
of many sensor network nodes because they can experience
such large (relative) current fluctuations depending on which
sensors and communication devices are on or off.
We also discuss our choice of a dedicated 16-bit microcon-

troller for system and protocol operation, rather than scav-
enging cycles from the GPS processor or adopting a simpler
(e.g. 8-bit) CPU. Having a dedicated microcontroller eased
software development and allows us to move cleanly to other
non-GPS-based sensor applications. Furthermore, despite
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Figure 1: Block diagram of components, interface
connections, and power supplies for the ZebraNet
hardware version 3.

adding to our chip count, it reduces energy consumption by
offering more efficient low-power modes.
Overall, for sensor networks to move from the theoreti-

cal realm to widespread deployment and real-world every-
day use, sensor network researchers must share and learn
from the design experiences of deployments along the way.
Through this paper, we hope to offer a few of our lessons
learned on a test deployment of mobile GPS sensors for
wildlife tracking.
The remainder of this paper is structured as follows. Sec-

tion 2 describes an overview of the ZebraNet system. Sec-
tion 3 discusses microcontrollers for sensor nodes. In Sec-
tion 4, we discuss peripheral devices such as sensors, off-chip
memory, and the radio. Section 5 discusses hardware and
firmware energy management techniques and design choices
based on them. We provide experimental evaluations of our
design in Section 6. Section 7 discusses our initial system
deployment. Finally, we present related work in Section 8
and our conclusions in Section 9.

2. ZEBRANET SYSTEM OVERVIEW
The ZebraNet system, shown as a block diagram in Fig-

ure 1 and conceptually in Figure 2, is designed to support
the research of biologists stationed at the Mpala Research
Center in Kenya [25] by applying the latest sensor network
technology to the field of animal tracking. ZebraNet con-
sists of sensor nodes built into collars on zebras which take
positional readings using a GPS unit and propagate them
from zebra to zebra until infrequent communications perco-
late data to base stations [14].
Our system’s three primary goals are to generate detailed,

accurate logs of each zebra’s position, to recover those logs
for analysis, and to run autonomously for months at a time.

Detailed, Accurate Position Logs Ultimately, our posi-
tional logs need to provide the biologists with an accurate
view into the daily migration pattern of a set of zebras.

Figure 2: ZebraNet System Structure Overview.

Biologists’ observations of zebra behavior show that tak-
ing readings every eight minutes provides them with enough
samples to achieve this goal, but any interval longer than
that is unacceptable.

High Data Recovery Rate Once the data samples are
acquired, they must be collected for analysis. Given that
the zebras are fairly mobile, that only a sparse few are col-
lared and that they are spread over kilometer distances, we
expect our collars to form an extremely sparse network, com-
plicating the collection process. To move data through the
network, nodes communicate via pairwise connections. In
this system, latency is less important than eventually get-
ting the position logs back to the biologists so the single-hop
transmissions are sufficient to move the data between col-
lars. Pairwise communications are also more reliable than
multi-hop communications and this is important because the
collars will only come into contact with each other occasion-
ally. Periodically, a manned mobile base station will come
into contact with a zebra and can download data from sev-
eral zebras at once. We compensate for the high latency
of data propagation by using a large flash memory to store
position logs (see Section 4.2).
To maintain connectivity in such a sparse system, we de-

sign with radios with a range of over one kilometer. As a
result, however, radio communications consume an order of
magnitude more energy than the typical short range radios
used in sensor networks. Figure 3 shows the power con-
sumption when the system is running, including the period
during which the radio turns on, sends a packet, and waits
for a response from its neighbors until the radio communi-
cation period ends.

Autonomous Operation The collars must survive for
months at a time in the wild with no human contact ex-
cept for wireless interactions with the base station. This
led us to add a rechargeable battery that scavenges energy
through the use of solar cells. As a result our system can
meet the survivability requirement, but our energy budget
is strictly limited to the amount of energy that the solar
cells can produce. The battery and solar cells are discussed
further in Section 5.3.

The ZebraNet system is controlled by the Impala middle-
ware layer [19][20]. Impala allows for a combination of sched-
uled and spontaneous events and in this implementation,
GPS sensing and radio communication times are presched-
uled. Several protocols are possible, but in our field deploy-
ment the information is propagated through the network
using a flooding protocol. This allows the base station to
receive the data from all of the collared zebras by encounter-
ing just one. In January 2004, we deployed seven nodes on
zebras in Kenya. Based on the results from the first deploy-
ment of the system, we are currently making improvements
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Figure 3: Power consumption of our system during
a periodic data sampling and communication time
measured with an oscilloscope. The GPS and Radio
Transmit (Tx) points are the highest power. Radio
receive (Rx) is moderate in its power consumption.
The lowest-power portions are the microcontroller
(µC) alone, running at either 32 kHz or 8 MHz. Ev-
ery two hours when the radios active, the GPS read-
ing is delayed four minutes so there is a 12 minute
gap between readings in this figure.

with a broad-scale, long-term deployment in mind. More
information about the deployment is provided in Section 7.

2.1 Hardware Evolution
Based on the system design parameters, the main design

constraint is energy. ZebraNet nodes are built using low-
cost, energy-efficient off-the-shelf components. From con-
ception to realization, the ZebraNet node has gone through
several design iterations. Table 1 shows the major changes
between iterations of the design.
Version 0.1 was a proof-of-concept design [14]. In this

version, we experimented with a number of design concepts
including the use of a second, short-range radio for energy-
efficient communications over distances of 100 meters or less.
The system scavenged unused flash memory and CPU cy-
cles from the GPS processor which reduced the overall board
area, decreased latency by eliminating external wiring, and
simplified the transfer of position logs from the GPS to long
term storage. However using the GPS processor in this man-
ner requires around 34 mA of energy even with the GPS
functionality disabled [7]. Given our strict energy budget,
our system required a lower energy solution, which came in
the form of a separate microcontroller.
The major difference between Version 0.1 and Version 1 is

the addition of a low-power microcontroller which controls
all the peripherals and an external 2 Mbit flash memory to
store data. These additions greatly simplify software de-
velopment and ease design changes by allowing peripheral
changes with only firmware level updates. Version 1 does
not have the solar charging circuitry, but did include var-
ious exploratory designs of high-efficiency power supplies.
The impact of these additions on the system performance
and efficiency is presented in Section 5.
Version 2 is similar to Version 1, but the new layout only

required half the board area of the old one. The design
mostly explored issues with layout and cross-talk interfer-

Figure 4: Photo of a ZebraNet node (2”x3”x1.25”).
The left card includes the radio and the right card
includes the GPS chip and the battery. A credit
card is included in the picture for scale.

ence of on-board components. The power supplies were im-
proved to reduce noise.
Version 3 is a complete system design and it was built into

the collars that were deployed in central Kenya in January
2004. To complete the system, the battery was integrated
with the on-board charger and solar cells. In addition, the
power supplies were redesigned again to standardize the sup-
plies for the GPS and the radio and to further reduce noise.
A photograph of the most recent version of the sensing hard-
ware is shown in Figure 4. It is powered using a Lithium
Ion battery that is recharged with a solar array (described
in Section 5.3). Since the energy provided by the solar array
is limited, however, the system minimizes power consump-
tion wherever possible. This leads directly into a discussion
about the microcontroller, which is the primary topic of the
next section.

3. THE MICROCONTROLLER
Choosing or designing a microcontroller for a sensor node

leads to a basic tradeoff: any chip with such comprehen-
sive control over a system should be fast and have plenty of
memory, yet be energy-efficient. Since the power constraints
typically dominate, this leads to significant computational
and memory constraints.
In the earliest prototype of ZebraNet (Version 0.1) we ran

the system off of the microcontroller co-located on the GPS
chip, a 32-bit, 20 MHz Hitachi SH1 [14]. The package also
has 1 MB of on-board flash memory of which 640 KB are
designated for data storage. However, despite possible ad-
vantages in scavenging memory and CPU cycles from this
chip, the advantages are outweighed by its 750 mA-hr per
day energy requirement. In addition, the programming in-
terface for the chip made implementing our software very
complex.
Ultimately, given the application and the duty cycles of

our sensing unit and the radio, we switched to a Texas In-
struments MSP430F149 microcontroller [32]. This micro-
controller manages the system operations and the peripher-
als. It is a 16-bit microcontroller with 2 KB of RAM and 60
KB of internal flash memory and two serial ports to commu-
nicate with the peripherals. A primary reason for selecting
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Version 0.1 [14] Version 1 Version 2 Version 3
Aug. 2002 Feb. 2003 July 2003 Nov. 2003

Buck-boost and Buck-boost and Two buck-boost
Power Supply Off-board

boost converters boost converters converters
Standard low Os-con LC post filters

Noise Reduction Bypass Capacitor
ESR capacitors capacitors and common mode choke

Radio 2 radio system 2.4 GHz 900 MHz 900 MHz
Cycle stealing from Off-board Ultra low noise Ultra low noise

GPS
onboard CPU antenna power linear regulator linear regulator

Data Flash 5 Mbit 2 Mbit 4 Mbit 4 Mbit
Battery charger None Off-board Off-board Pulse-charging
System Weight 1,151 grams 145 grams 136 grams 138 grams

Li-Ion, 2 A-hr Li-Ion, 2 A-hr Li-Ion, 2 A-hr
Battery N/A

45 grams 45 grams 45 grams

Table 1: Design summary for different versions of ZebraNet hardware nodes.

this processor was that it supports multiple clocks. This
allows us to use an 8 MHz clock while the GPS, radio, and
flash modules are running. Otherwise, we switch to a 32
kHz clock.
As shown in Figure 1, the microcontroller communicates

with the node’s peripheral devices through the serial ports.
The SPI and UART ports allow for synchronous and asyn-
chronous serial communications with peripherals, respec-
tively. Serial port constraints are a common limitation of
energy-efficient processors. We would really like to have sep-
arate ports for the GPS, the radio, and the flash, but only
two ports are available on the chip. To compensate, the
GPS and the flash share a serial port, with the GPS utiliz-
ing the asynchronous connection to the microcontroller and
the flash utilizing the synchronous connection. Although
this setup prohibits the flash and the GPS from operating
simultaneously, it allows the radio to use the flash while
transmitting and receiving. This is important because it al-
lows the node to minimize the amount of RAM necessary
to complete the transaction; it reads data to be transmitted
directly from the flash and writes data packets to the flash
as they are received.
Given this configuration, the speed at which the micro-

controller communicates with the peripherals is paramount.
Radio and flash accesses typically have extreme time con-
straints, so delays can lead to lost information. For example,
the radio only has a 132 byte buffer, so if the microcontroller
cannot receive the information over the serial connection at
least at the radio’s over the air baud rate of 19.2 kbps, the
radio buffer will overflow and data will be lost. Additionally,
to conserve memory our software only allocates two 64 byte
buffers in the microcontroller to receive data from the radio
so if this data must be stored in long term memory, it must
be transferred and written to the flash module at this rate
too. Otherwise the data will be overwritten in RAM before
it can be stored. These needs influence both the software
design (a central focus of [11]) as well as hardware interface
design, which is our central focus here.
The size of the registers must also be considered when

choosing a microcontroller. For systems targeting sensors
that require little processing and consume on the order of
1 mW of power or less, extremely low-power and narrow-
bitwidth microcontrollers make sense. This is because in
these situations, nodes can conserve energy while still meet-

ing the system’s performance requirements. But for sys-
tems characterized by high-power sensors and the need for
high-burst-rate computations and communication, like Ze-
braNet, a more-capable microcontroller has proven useful.
The ease of 16-bit addressing and computations has simpli-
fied our software development. Furthermore, properly sup-
porting this notion of bursts of high-performance followed
by extremely-low-energy ambient operation has led us to
also begin researching custom sensor CPUs with very good
performance-energy agility.

4. PERIPHERAL DEVICES

4.1 Radio
Our network is intended to be sparsely populated and

highly mobile; nodes can go days or weeks without entering
the radio range of another node. In addition, even if two
nodes establish a connection, they may wander out of range
during the transmission. Therefore, our system requires a
radio range of 1-5 kilometers and a protocol that supports
long blasts of data with occasional disconnections.
Since we needed kilometers of radio range, our high trans-

mission power severely limited our selection of license-free
operating frequencies. We chose the MaxStream 9XStream
radio, which operates at 900 MHz and offers a specified range
of “up to” 5 miles in ideal outdoor conditions [22]. Under
normal operating conditions, however, the signal strength,
and consequentially the effective radio range, is reduced by
factors such as scattering, dispersion, and reflections. While
the transmit power is only 21.5 dBm, the long range is pos-
sible since the radio can achieve a receiving side sensitiv-
ity down to -107 dBm. We also chose this radio because
this transceiver module includes all the circuitry and logic
needed to perform error checking and it provides a simple
UART interface.
Our stringent energy budget also forces us to minimize

the radio’s duty cycle. Radio communications occur every
two hours. Within the communication period, time-slotting
reduces collisions among nodes. The GPS provides the real-
time clock used for time-synchronization between the nodes,
and the microcontroller keeps accurate time between GPS
readings. As a result, we avoid the handshaking overhead
associated with setting up a connection. In Version 0.1,
we also experimented with a second, short range radio, but
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given the sparse nature of our network, we determined that
the extra board area and complexity was not worth the min-
imal benefit it provided.
Data is propagated through the system using a flooding

protocol. Every two hours the nodes activate their radios,
and search for other nodes in range. Each node that finds
at least one neighbor transmits as many recorded positional
logs as possible in its time slot. After five minutes, the
communication session ends and the radio powers down.
Any unsent data waits for the next communication interval.
To improve communication efficiency, we are experiment-
ing with various other protocols including a history-based
protocol [19].
The radio transmits and receives data in packets of 64

bytes; each packet is designed to include a header, footer,
and two GPS position samples. This design prevents posi-
tion samples from being fragmented across multiple packets.
To further reduce power when the unit is not in use, the

radio power supply can be shut off entirely, sinking less than
1 µA of current.

4.2 Off-chip Memory
Flash memory is ideal for sensor networks because it is

non-volatile, fairly inexpensive, and compact. In our latest
hardware design, we use the ATMEL 4-megabit AT45DB-
041B DataFlash chip [1] to log sensed data. We chose this
module because it is easily obtainable and has a small 8 mm
* 5 mm footprint. The memory is divided into 2048 264-byte
pages. The microcontroller communicates with the flash
through the synchronous portion of the serial port it shares
with the GPS at a rate of 667 Kbps. Although the flash
module can operate at up to 20 MHz, this rate is fast enough
to keep up with radio communications while reducing noise
generated at high speeds.
There are three key issues associated with flash memory

in general. First, pages in memory must be written and
erased in their entirety. Erasing a page sets every bit in it
high and write operations can only change high bits low.
Therefore, a page must be erased before it can overwritten.
Although writing to the same page twice without erasing is
not recommended, in ZebraNet, a GPS position sample is
only 28 bytes long, far less than the 264 byte page size. We
get around this problem by writing 1’s in all bit slots that we
do not use. In the flash module, this is equivalent to telling
it to do nothing to those bits. This means that we pass 264
bytes to the flash module to write 28 bytes of useful data.
While this takes time, it does not directly affect performance
because in our system, after a position fix there is a long idle
period before the next sample. However, it could become a
problem in a system in which sensors can generate data at
any time and buffer size is limited.
Another problem with flash is that writes and erases are

slow compared to other operations. For example, our Atmel
chip requires 8 ms to erase a page and 14 ms to program
one [1]. Therefore, erase operations need to be planned in
advance and the write time must be accounted for in all
algorithms that use the module.
Finally, flash memory modules have a limited write life-

time [15]. Given the high rate at which some sensor nodes
can gather information, this constraint can become an is-
sue in some applications. Our system achieves load-leveling
by separating the flash into local and global data sections
and treating each section as a circular buffer. Given the

current system configuration, each node’s flash memory is
large enough to hold 26 days of its own positional data and
52 days worth of other node’s data collected via collar-to-
collar updates. Hence in our context, our system should
be able to run for over 7000 years before the flash memory
locations fail due to excessive writes!

4.3 Sensing Devices
The GPS unit is our primary sensing device and we use

the µ–blox GPS-MS1E chip. While the specified power con-
sumption of 462 mW is high, the GPS hot start time is only
2 seconds [7] so it was the best choice at the time. The low
fix time minimizes the total energy consumed. Recently,
Xemics introduced the lowest power GPS, the RGPSM002.
The RGPSM002 has a hot start time of 12 seconds and
power consumption of 62.7 mW [38]. Based on these spec-
ifications, this chip saves only 20 percent of the energy per
fix than our current chip. However, through our tests we
have found it necessary to keep our current GPS module on
for an average of 25 seconds in order to improve positional
accuracy, greatly increasing the energy savings. Therefore,
we have begun to look at switching to the Xemics chip.
To meet the requirements of our system, we must take

position samples every eight minutes. However, to conserve
energy we would like to minimize the duty cycle of the GPS.
When the GPS is turned on, it will report a reading every
second and remains on for one minute or until it acquires
an acceptable lock, whichever comes first. (With our GPS
module, if the node cannot acquire a valid lock within one
minute it probably will not acquire one soon at all.) The
method for determining whether a lock is acceptable or not
is discussed in more detail in Section 6.1.
The GPS communicates with the microcontroller at 38.4

Kbps—the maximum rate for the µ–blox chip—through the
asynchronous portion of the serial port that it shares with
the flash module. Due to port sharing, the GPS and the
flash cannot operate simultaneously, so the position reading
is stored in a buffer on the microcontroller until the GPS
is shut down. The readings are processed by the microcon-
troller as they are received. As soon as the read is done, the
system turns on the flash and records the data.
To conserve energy, the GPS chip runs off its own 3.3 V

power supply which can be turned on and off by the soft-
ware. Once either the GPS has been on for one minute or
an acceptable lock has been obtained, the microcontroller
cuts power to the GPS unit.
After selecting the sensing devices, the system designer

must decide whether the microcontroller polls for sensor
readings or the sensors wake the microcontroller when read-
ings are available. This decision is primarily determined
based on the duty cycle and energy consumption of the
sensors. For example, a motion sensor might wait until it
detects movement in the area before waking the microcon-
troller. While many sensors may work as the initiator, in our
system the GPS consumes two orders of magnitude more en-
ergy than the microcontroller. Furthermore, it operates on
a predetermined schedule. Therefore, in our case, it is much
more energy-efficient to leave the processor on constantly
and power down the GPS when it is not in use.
In the future we plan to include other sensors, including

XYZ orientation sensors and acceleration sensors, to help
the biologists better understand zebra behavior such as head
positions.
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5. ENERGY ISSUES
Since energy is the primary constraint of our system, effi-

cient energy management is essential in every part of the sys-
tem. In this section, we describe our techniques for energy
management at the system level, our power supply design,
and our solar charging mechanism.

5.1 System-Level Energy Management
There are three primary system level management tech-

niques that we will describe in this section. They are the
dual clock scheme, on-the-fly processing, and the timely use
of components.
First, since the microcontroller is on constantly, the dual

clock scheme saves significant energy. As mentioned earlier,
the microcontroller supports two clocks. The hardware has
both a 32 kHz clock and an 8 MHz clock. The system con-
sumes twice as much energy when using the fast clock than
when using the slow clock. Even in a system that requires
data sampling as frequently as ours, the overall duty cycle
is low so the fast clock is not always needed.
When the microcontroller is operating on the 32 kHz clock,

it consumes approximately 0.05 mA more than it does in
sleep mode. Since we use the on-chip A/D converter to
control the battery charging mechanism and our peripherals
operate on a fixed schedule, we decided use the slow clock
as opposed to sleep mode for simplicity.
When peripherals are running, we switch to the 8 MHz

clock. For the radio, we do not have a choice; the micro-
controller running the 32 kHz clock cannot process data as
fast as the radio receives it. With the GPS and the flash,
though, the system could theoretically function on the slow
clock. However, each of these peripherals consumes orders
of magnitude more energy than the microcontroller running
the fast clock. As a result, we conserve energy using the fast
clock while these peripherals are running since it allows us
to power them down earlier than if we used the slow clock.
Second, as originally mentioned in [11], concurrency-in-

tensive operations are important in sensor nodes because
of limited buffer space. However, concurrent operation also
conserves power in our system in two ways: it uses some of
the extra cycles the microcontroller spends waiting for bytes
from the peripherals so that the processor can switch back
to the slow clock earlier and it processes data before we need
it so we can make faster decisions which ultimately leads to
shorter peripheral on-time.
For example, as the position data comes from the GPS,

low-level code extracts the current time as well as data to
determine the accuracy of the position. If the lock is accept-
able, the node will shut down the GPS unit and correct the
system clock. This allows for a timely use of the GPS com-
ponent and reduces the energy consumption by more than a
factor of two compared to leaving the unit on for a minute
and then turning it off.
Using the radio in a timely manner is also important.

Since the GPS unit provides us with access to an accurate
global clock, we can use low-level software to synchronize
the nodes and use a time-slotted transmission scheme. This
scheme eliminates the need for time synchronization com-
munication rounds and saves power by eliminating a major
cause of packet retransmissions.

5.2 Power Supplies
The demand for long life, small size, and performance

has made power supplies a non-trivial part of our sensor
node both in terms of complexity and design time. Since
most sensor systems are designed with high performance and
strict energy budgets, the power supply could determine the
final competitiveness of the system. Furthermore, all sensor
nodes require high amperage radio bursts balanced against
low-power ambient operation. These large current fluctua-
tions make voltage regulation a fundamental challenge for
sensor hardware in general.
To minimize the power consumption and to maximize the

performance of different peripheral devices, we designed sep-
arate power supplies for each module that are turned off
independently of each other. The system is powered by a
Li-ion battery, which can safely have voltages from 3.0 V to
4.2 V.

Linear Regulators We use linear converters to power our
microcontroller and the GPS antenna. The TI MSP430 low-
power microcontroller operates at 3.1 V and the battery can
vary from 3.4 V at system standby to 4.2 V at full charge.
For the microcontroller, this means the regulator only needs
to step down. The minimum power consumption of the mi-
crocontroller is on the order of 100 µA, which makes the use
of a linear regulator ideal because of the low quiescent cur-
rent. We chose the TI TPS71501 regulator with a quiescent
current of only 3.2 µA.
The GPS active antenna operates at 2.8 V and requires

a low noise supply for the best accuracy and fastest acqui-
sition time. Therefore, we use a low noise linear regulator
(National LP2982-2.8) for the GPS antenna supply.

Switch Converters We use switch converters to power
our GPS and radio. Switch converters are highly efficient
and have the ability to both step up and step down voltage;
however, they are electrically noisy and complex. In a design
that uses a single battery source, though, the need to step
up voltage sometimes makes it difficult to avoid using them.
The GPS requires 3.3 V to power the on-chip Hitachi mi-

crocontroller and analog processors. Since it draws 140 mA
while attempting to find a lock, we need a buck-boost con-
verter that can both step up and step down the voltage. We
use the Linear Technology LTC3440 buck-boost converter
which has up to 94 percent efficiency; it uses a four-switch
arrangement that eliminates the need for a transformer usu-
ally required for buck-boost converters.
The radio requires a 5 V source and draws from 50 mA

when receiving to 150 mA when transmitting. For simplic-
ity, it uses the same type of voltage regulation chip as the
GPS. Since a buck-boost converter has pulsating input and
output currents, we reduced the switching noise by adding
large, low equivalent series resistance (ESR) Os-con capaci-
tors as well as LC post filters to stabilize the power line.
While a Cuk converter would have a better noise profile

than a buck-boost converter, we decided against it due to the
difficulty of closing the feedback loop. This problem would
result in an unsuitable transient response for the system’s
large current swings [5].

5.3 Batteries and Solar Recharge
Due to ZebraNet’s relatively high average power consump-

tion (0.03 W - 0.07 W), our system would require a battery
weighing approximately 10 kg to operate for 1 year. This
weight is not acceptable for zebra tracking. Instead, our
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Figure 5: Solar module characteristics of three cells
in series

Figure 6: Solar Cell Module

system uses a rechargeable battery with a solar array. The
additional weight of the battery and the solar array is light
(200 g), so the size and weight are acceptable for this appli-
cation.

5.3.1 Solar Cells
Our system utilizes a solar array of 14 solar modules each

producing at maximum of 7 mA at 5 V.
Special care is required when designing solar modules.

When solar cells are connected in series, shaded cells can
be reverse-biased, and as a result, the entire string delivers
negligible power. When the cells are connected in parallel,
the voltage will be limited by the cell with the lowest volt-
age. If the amount of sunlight shining on a connected string
of cells is significantly different, the cells with lower sunlight
will dissipate power produced by the other cells and may
burn out. This property requires us to design in isolation
between solar cells to prevent damage.
Each solar cell produces approximately 0.55 V open circuit

voltage. The cells stay at an approximately constant voltage
until they reach their current limit, which varies depending
on design and light conditions. This behavior means that
some smart circuitry is necessary to get the maximum en-
ergy from the cells.
We chose modules with three cells in series because they

minimize the number of the cells in series and still produces
a high enough voltage to guarantee the boost converter can
have reliable startup. Figure 5 illustrates the solar cells
input voltage characteristics. Maximum power is produced
at the corner where the cells change from constant voltage
to constant current.
In order to receive maximum power from the cells, we need

to keep the cell operating at the maximum power corner. To
achieve this, we designed the circuit shown in Figure 6. This
circuit has a simple comparator (TI TPS3103) controlling a
boost converter (Linear Technology LTC3400) to keep the

three-cell series operating near the maximum power corner
voltages, between 1.0 V and 1.3 V. The boost converter
boosts the input voltage to a usable 5 V and isolates solar
modules from each other.
With this design, the outputs of different solar modules

can be connected together in parallel to allow the power
generated by each cell to be added together. This design also
eliminates the possibility that solar cells will be damaged
by current flowing backwards into them. The output of the
boost converter is used to charge the battery. A large input
reservoir capacitor reduces the on/off switching of the boost
converter.
It is reasonable to wonder whether there are viable al-

ternatives to solar cells. For example, energy can also be
scavenged through mechanical conversion techniques such
as vibration [29]. We can estimate the weight necessary to
produce enough energy to power our system with the equa-
tion: P = m∗g ∗h∗e. In this equation, m is the mass of the
moving weight, g is the gravitational acceleration constant,
h is the height change per second, e is the conversion effi-
ciency, and P is the power produced. If we assume that on a
walking zebra the weight sways 0.1 meter vertically and the
conversion efficiency of the system is 10%, the mass of the
weight needs to be 1 kg to generate the needed 0.1 W. This
is double the current weight of the collar. Even more weight
would be needed if the zebra does not walk constantly. This
added weight could negatively impact the survival rate of
collared animals. In comparison, 14 of our solar modules
combined weigh 100 grams and produce 0.4 W in full sun.
Piezoelectric techniques are also a possibility, where pres-

sure from the animal’s weight might be converted to elec-
trical energy. For example, one might think of a power-
generating horseshoe, where the weight of each step is con-
verted into electrical energy. While this is promising in
terms of the energy generated for a 400 kg animal like a
zebra, there are significant reliability and packaging issues
with this approach. For our purposes, solar cells offer both
reasonable sizes and also the promise of useful reliability.

5.3.2 Batteries
A purely solar system would not allow the system to func-

tion at night or during bad weather. Yet these are the times
where behaviors of these animals are most interesting and vi-
sual tracking is most hazardous. A compromise was reached
to use solar modules which charge a 2 mA-h lithium-ion bat-
tery. The lithium-ion battery was chosen for its relatively
constant voltage over its entire capacity range, varying from
4.2 V at full charge to 3.0 V at depletion. This battery
would provide us with about 72 hours of normal operation
without recharge. Lithium-ion batteries offer one of the best
energy densities amongst different battery chemistries.
To charge the Li-ion battery, we implemented a pulse

charging scheme with a MOSFET switch. Pulse charging
is the least hardware intensive charging scheme. Since so-
lar cells are current limited by default, no special hardware
is necessary to ensure a safe charging current to the bat-
tery. The charger is controlled by the microcontroller and
the battery voltage is sensed by the on-chip 12-bit analog-
to-digital converter. When the battery voltage nears 4.2
V, the processor will begin pulse charging cycles. Off-time
lengthens as the battery approaches full charge. Since the
system is always consuming power in large pulses, no spe-
cial programming is necessary to ensure charge termination.
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The charging system does depend on the system to go into
low-power mode when the battery approaches depletion.

6. EVALUATION

6.1 GPS Accuracy
Since the GPS unit consumes a great deal of energy, a key

aspect of our design is to balance the energy usage of the
GPS against the accuracy of the position locks. The most
energy-efficient approach would be to turn on the GPS, take
one fix, and then turn the GPS off again. We have found
that this method is too inaccurate; locks acquired in this
way from a stationary GPS running over a 24 hour period
had a standard deviation of around 32.6 meters with many
extreme outliers differing by more than a kilometer. This
accuracy is poor compared to a standard deviation of about
5.3 meters in a GPS chip that is left on continuously. In-
accurate locks can compromise all of our results because we
do not know which ones we can trust. Leaving the GPS on
continuously drains the battery faster than we can recharge
it, so that it not an option either.
Given these constraints, we developed a method that ap-

proaches the accuracy of leaving the unit on all the time
while limiting energy consumption to close to that of the
inaccurate first-lock method. To determine this method, we
ran experiments on a GPS unit with an obstructed view of
the sky over a 24 period.
We found two properties characteristic of GPS that can

be used to determine the accuracy of the locks. First is the
number of satellites in view of the GPS antenna. Although
the GPS will attempt to determine its position if it can see at
least three satellites, three-satellite locks are not as accurate
as locks generated from four or more satellites. Therefore,
we ignore any locks with less than four satellites.
The second property is the configuration of the satellites

visible to the GPS antenna. Dilution of precision (DOP) is
a metric of the geometric positions of the satellites [24]. The
accuracy of the position decreases as DOP increases. Our
GPS chip automatically throws out any fixes with a DOP
greater than 10. Based on experimental results, we decided
to further throw out any lock with a DOP greater than six.
In addition, since the satellite configuration is unlikely to
change much within the minute that the GPS is powered on,
if the GPS unit receives ten consecutive readings in which
the DOP is greater than seven, we turn the unit off. The
ten readings give the GPS a chance to find an additional
satellite. We chose this number based on experimental data
that showed that if we did not find another satellite within
ten seconds, we were unlikely to find one before the minute
of on-time expired.
Finally, we find that the first two locks that the GPS

claims are valid are in practice far less accurate than the
third. So, we ignore the first two locks that the above meth-
ods would allow, and then accept the third.
With this algorithm, the GPS unit is powered on an av-

erage of 25 seconds every eight minutes and the standard
deviation of the accuracy is 5.33 meters. This accuracy is
comparable to leaving the unit on at all times. The primary
disadvantage to this method is that in our experiment, it
failed to acquire a lock roughly half the times the unit was
turned on. However, since the locks it accepts are more re-
liable, this method increases the integrity of our data. Also,
the experiment is somewhat conservative in terms of satel-

Figure 7: Percent of Successful Receive vs. Distance
on Versions 1, 2, and 3.

lites in view, as only half of the sky is visible to the test
setup. Although we expect the zebras to be mostly in an
open terrain, obstructions do occur both due to brush/trees
and also if the collar orientation aims the GPS antenna side-
ways or downwards.

6.2 Radio Range
Radio range is critical for ensuring network connectivity

and therefore data collection success in our network. In this
section, we present experimental data on the actual observed
behavior of our “5-mile” range radios.
All radio tests were conducted on a 0.9 kilometer stretch

of straight road outside of Princeton’s engineering building.
Tests were conducted between midnight and 6 AM, when
curbside parking is illegal and few cars pass through. Trees
and a few buildings line the sides of the street. This lo-
cation, while not ideal, lets us compare the radio behavior
from different design iterations in a naturally dispersive en-
vironment.
In the first experiment, we used a ZebraNet node as a

transmitter and tested the transmit side of the nodes. The
receiver is a development board with a low noise power sup-
ply. The data from the development board is then recorded
on a connected computer. Figure 7 shows how the packet
delivery success rate varies with distance. Each curve corre-
sponds to one of the three hardware versions. The trans-
mit success rate differ slightly between each version and
stays fairly high through 0.9 kilometers. Version 3 shows
a slightly higher success rate than other versions mostly due
to a lower signal-to-noise ratio resulting from a better de-
signed power supply. However, evidence of fading is obvious
from the significant drop in success rate at around 0.4 and
0.6 kilometers. This fading effect makes it necessary to have
error correction and detection algorithms even over short
distances. For example, our flooding protocol replicates key
peer discovery and acknowledgement packets to improve re-
silience to dropped packets.
Figure 8 shows receive power vs. distance. This experi-

ment was also conducted on the 0.9 kilometer road described
above. A packet is sent from the development board to a
node which then retransmits the packet back to the source
where the receive power is recorded. No data is available
for Version 1 because it had such difficulty receiving that it
could not execute the test. (This problem is discussed in
more detail in Section 6.3.) For reference, we also plotted
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Figure 8: Radio Receive Power vs. Distance of Ver-
sion 2, Version 3, and the ideal free space model.

the free space ideal curve, representing a quadratic drop in
power versus range, along with the other curves.
This figure shows a near exponential decay in received

power as range increases rather than the expected quadratic
decay. This difference could be due to the location of the
test site where the path loss is complicated by diffraction
loss and scattering as well as interactions between the two.
Our testing location seems to be similar to a homogeneous
random scatter medium, where the same pattern is observed
[17].
In addition, this figure shows that Version 3’s received

power is in general lower than that of Version 2, which could
be caused by variations between different radio modules.
However, as shown in Figure 7, Version 3 still has a higher
successful reception rate. This is due to improvements in
the board design that increased receiver sensitivity.

6.3 Power Supplies
The power supply design was improved through each ver-

sion to reduce noise and, thus, improve the overall perfor-
mance of the system. Version 1’s power supply design un-
derestimated the current requirements of the peripherals.
This caused noise coupling throughout the entire system.
For example, during radio transmission, noise coupled from
the radio power lines to the microcontroller power resulted
in occasional unintended microcontroller resets, as well as
poor receiver performance. The left-hand graph of Figure
9 shows the oscilloscope trace of Version 1’s radio and mi-
crocontroller AC power supply noise during transmission.
From the radio power supply trace (the lower curve on the
left-hand graph) we see that switching noise is almost 5 V
peak to peak. This trace also shows the lower frequency
triangle wave that was caused by the pulsing current out-
put of the radio buck-boost converter. While both the high
and low frequency noise affect the radio performance, only
the switching noise is coupled to the microcontroller power
supply as shown in the top trace of this graph.
In Version 2, the coupling problem was fixed by placing

the power supply further from the digital ground as well as
larger capacitors. We were able to reduce the shot noise but
the low frequency noise component remained. This signif-
icantly increased the receiver sensitivity and improved the
performance of the system. However, the radio power fluc-
tuation was still too large and could be further improved.
The right-hand graph of Figure 9 shows the power supply

of Version 3 in the same scale as that of Version 1. The ad-

Figure 9: Version 1 (left) and Version 3 (right)
Power supply noise. For each graph, the CPU power
supply is shown on top (200mV/div), and the radio
on the bottom (1V/div). The x-axis, time, is shown
at 10µs/div.

Figure 10: Plains Zebra at Sweetwaters Game Pre-
serve with ZebraNet collar. The collar is made of
a white butyl belting material. The darker spots
visible on the upper half of the collar are the solar
modules which lie between the two layers of butyl
belting, with openings exposed to allow sunlight in.

dition of LC post filters in this version, coupled with careful
PCB placement, significantly reduced the power noise. Fast
transient response is maintained due to a very small induc-
tance created by farad beads. This version also implements
a soft start, which slows the voltage transitions to prevent
current from rushing to the output and causing peripheral
startup noise. The power supplies are much steadier in this
version than in previous versions. As shown in Figure 7, this
resulted in an increase in the percentage of packets received
correctly.
Overall, these iterations in power supply design have been

a central part of ZebraNet hardware development. Since
sensor networks exhibit large current swings, voltage regu-
lation is an important issue. Furthermore, the small board
area also makes board layout an important issue.

7. DEPLOYMENT EXPERIENCES
In January, 2004, we brought a set of ZebraNet nodes

to Kenya and deployed them on zebras at the 100 sq. km.
Sweetwaters game reserve in central Kenya. The goals for
this deployment were to gain experiences with the impact
of the collaring on wild zebras, to get information on the
long-term behavior and reliability of the collars, and to (of
course) collect some initial zebra movement data. For this
test, our goal was to collar a total of 6-10 zebras; this is
less than the full 30-node deployment that we intend to do
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Figure 11: An example of GPS location data col-
lected for one zebra over a 24 hour period in UTM
coordinates. The pictured area is 36 square kilome-
ters.

in roughly 12 months. This section describes some of our
experiences and lessons learned.
On January 12, we collared seven zebras, six females and

one male. Figure 10 shows a photograph of a collared ze-
bra. Immediately after collaring, and for roughly a day af-
terwards, the collared zebras seemed to be affected by the
collars, with additional head shakes being observed by the
biologists. By the end of the first week, however, the col-
lared zebras showed little difference from their uncollared
counterparts in terms of behaviors like head shakes, eating,
and social grouping.

Physical Design Figure 10 gives a sense of the collar’s
physical design. For reliability and ruggedness, the radio an-
tenna is embedded between the layers of butyl belting that
form the collar. This was an imperative part of the physical
design, since most commercial tracking collars have exter-
nal whip antennas that break off easily once deployed. The
dipole antenna is made of a strip of copper tape and braid.
The radio hops within a small range of frequencies, and the
dipole’s length is tuned for the center of these frequencies.
To maintain a good radio range, one needs to reduce ab-
sorption of the signal into the animal’s neck; we did this via
a ground plane of woven conductive mesh separated 1 cm
from the antenna by a foam dielectric.
Like the radio antenna, the GPS antenna also needs to be

protected. It too is sandwiched between the butyl collar lay-
ers, and is designed to be oriented near the animal’s mane,
facing upwards to see satellites most easily and therefore im-
prove the speed and accuracy of GPS fixes. Our experiments
showed that the GPS antenna received well even inside the
butyl layer. A v-shaped metal wedge in the collar was de-
signed to keep the collar upright at all times, but because
the collars were put on more loosely than designed for, the
collars would rotate more than planned for, misdirecting the
GPS antenna at times.
The photograph also illustrates the proper orientation of

the solar modules, which are the dark squares on the “mane”
portion of the collar. Since some of the solar modules wrap
somewhat around the zebra’s neck (and since the collar
sometimes rotates to aim solar modules downward) we do

not reach full charging efficiency; we designed for roughly
half efficiency.

Zebra Data Collected Figure 11 shows a collection of
the data points gathered by ZebraNet during this initial de-
ployment. This collection comprises some of the most fine-
grained movement data collected for zebras, and has helped
give biologists new insights into the daily home ranges of dif-
ferent zebras, how they interact and overlap. In particular,
to our knowledge, this is the first night-time data collected
for zebras, which allows biologists to pose and answer ques-
tions about how zebra movements differ from day to night.
Although more experiments are needed, the data indicates
that zebras explore more wooded areas and river gullies at
night, as compared to their daytime ranges primarily in open
grasslands. It is presumed that their agility in these areas
proves a greater asset against predators as nighttime falls.

Lessons Learned and Future Plans: Radio range is a
key factor in ZebraNet’s ability to percolate data. Perhaps
the biggest technical issue in our deployment was that ra-
dios specified for 5-mile range, and tested in New Jersey to
have a roughly 1-mile range, displayed shorter communica-
tion ranges once deployed. The radio ranges also displayed
high variance amongst the different collars. We measured
ranges of 100 meters to 1.2 km for the collars tested in
Kenya. While it is difficult to completely assess the causes of
this issue, we believe that some of the following factors lied
in: the antenna’s ground plane design, corrosion on the radio
antenna’s connection with the radio chip, and even simply
the fact that zebras graze with collars close to the ground
which increases the absorption and reduces the range.
Energy constraints drove our choices regarding the event

schedule and duty cycle planned for data collection and
percolation. Some of these, such as the two-hour interval
between radio times, proved overly restrictive. Our future
work will implement a more opportunistic scheme to allow
collars to detect each other and communicate whenever they
are within range, not only at two-hour intervals. To achieve
this, we need a lower-energy radio, which can be achieved
by custom-designing a radio with distinct characteristics for
the receiver and the transmitter. We also plan to drop our
communications to a lower frequency in order to naturally
improve the range characteristics.
Our future plans also include switching to a newly-avail-

able GPS chip which offers quicker fixes at lower energy
costs and increasing the number of sensors on the collar. In
particular, we are currently testing XYZ orientation sensors
that will assist the biologists in collecting data about the
zebra’s activities: a collar low to the ground is likely eat-
ing, while other patterns regarding how the head is raised
may be mined for information on the zebra’s social behavior,
vigilance towards predators, and so forth.

8. RELATED WORK
This section touches on several of the most relevant cate-

gories of related work.

Sensing Hardware The Mica2 Mote developed at Berke-
ley and commercialized by Crossbow Technologies is in wide
use [10]. Built from off-the-shelf components, Mica2 Motes
have 8-bit Atmel ATmega 128L processors running at 4 MHz
and input ports to support a variety of sensors. In labora-
tory experiments, Motes are often used to evaluate protocols
and sensor network behavior [8][18][21]. Harvard researchers
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have also established a remotely-programmable and measur-
able Mote infrastructure in their building to conduct a range
of experiments [37].
Intel has also developed a Mote version [16] and has begun

experimental deployments with it [12]. UCLA’s Medusa-
MK2 has a Berkeley Mote as its base [30]. It then adds a
second 32-bit, 40 MHz AT91FR4081 ARM/Thumb proces-
sor to support computationally-intensive applications. The
second processor can be turned on and off as needed to con-
serve energy.
MIT’s µAMPS [23] and Rockwell Science Center’s WINS

nodes [27] both use 32-bit StrongArm processors and are
much more powerful, and consume much more energy, than
ZebraNet nodes or Mica2 Motes. µAMPS uses a 206 Mhz
SA1110 processor and WINS uses a 133 MHz SA1100 pro-
cessor. To compensate for the additional energy consump-
tion, the processors spend most of their time in a 1mW
sleep mode. In addition, µAMPS reduces energy via dy-
namic voltage scaling. Thus far, the µAMPS project has
developed a low-power radio and a low-power DSP module
for their nodes and they are planning to design a custom
microcontroller as well [4].

Sensor Node Radios Once deployed, most sensor nodes
are intended to remain stationary and in a densely packed
configuration. As a result, they use radios with much shorter
ranges—only 10-100 meters typically—which consume an
order of magnitude less energy than our multi-mile radio.
In fact, numerous research efforts inspired by these nodes,
including the PicoRadio project [26], are devoted to further
reducing the size and power consumption of radios in sensor
nodes, which will in some cases lead to even smaller typical
radio ranges. These drops in radio range will typically need
to be remedied by higher network density [28].

Wildlife Tracking with Sensors Telenor R&D’s Elec-
tronic Shepherd project [34] and UC Davis’s Southern Cal-
ifornia Puma Project [35] are examples of projects using
GPS-based sensors for animal tracking. They face size,
weight, and energy constraints very similar to those of our
project. The primary differences between our system and
these systems are that they track over a more limited ge-
ographic area and they require fewer GPS readings and
communications per day. This allows the sensor nodes to
communicate directly to a fixed infrastructure rather than
propagating the data from node to node. In other projects,
researchers have exploited fixed infrastructure to track ani-
mals such as falcons [33] and salmon [2] without GPS.

Other Applications and Deployments In an early sensor
deployment in 2002, 43 Motes were deployed on Great Duck
Island, off the coast of Maine, to monitor the island habitat
and bird population [31]. In addition to this deployment,
there have been several other Mote deployments to facilitate
environmental monitoring including [3], [13], and [36].
WINS nodes have been deployed on US Navy vessels thr-

ough the Office of Naval Research [27]. Their long-term
goal is to use the sensors to monitor the health of certain
pieces of machinery that at the moment, crew members must
routinely check to determine when parts need to be replaced.
Intel and Carnegie Mellon University are developing a

software infrastructure called IrisNet [9] that would support
a worldwide sensor network. As a first step, they have de-
ployed a networks of cameras along the Oregon coastline
to allow researchers to collect visual environmental data re-

motely. The University of Hohenheim is developing a Pre-
cision Farming system to help farmers improve quality and
increase yield by providing them with sensors to help them
determine the best places, conditions, and processes with
which to grow and harvest crops [6].

9. CONCLUSION
This paper has presented our experiences developing hard-

ware and low-level software for ZebraNet. We have devel-
oped a fully-functional, highly-mobile, energy-efficient sens-
ing system that determines accurate positional data and can
propagate it through the network. To reduce energy con-
sumption, we have implemented several system-level energy-
management techniques. Even with these methods, the high
power of the GPS and the long system lifetime target re-
quires that our hardware utilize a solar array for recharge.
Our hardware choices work well for the sparsely connected,
node-to-node communication model we require.
Another lesson that arises through our hardware versions

concerns the choice of microcontroller. While we originally
planned to scavenge cycles from the GPS processor [14], the
importance of a “clean” software environment prevailed and
we chose a second off-chip microcontroller in Version 1. By
devoting a microcontroller to our sensor software rather than
scavenging cycles from the GPS processor, we greatly sim-
plified software development for our high-burst-rate compu-
tations and communications. In going with a second micro-
controller, we were also able to reduce the energy budget
since it can run at a much slower clock rate.
The severe energy constraints of sensor nodes mean that

details really do matter. Items like voltage regulation be-
come important in sensor hardware due to the extreme am-
perage fluctuations caused by units switching on and off,
the need for low-noise power supplies for radio success, and
the need for overall energy efficiency. Noise and crosstalk
issues are further compounded in sensor nodes by the fact
that small board area is a primary goal.
Overall moving from theory to experiment and practice

is an invaluable research step. The current increasing focus
on prototyping is helping the sensor research community
progress towards the end-goal of practical, efficient, and re-
liable sensor networks in wide-scale deployment. A diversity
of sensor hardware prototypes can offer a range of insights
across the design space, and we view our ZebraNet hardware
as contributing one further point to this space.
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