
Implementing Software on Resource-Constrained Mobile
Sensors: Experiences with Impala and ZebraNet

Ting Liu Christopher M. Sadler Pei Zhang Margaret Martonosi

Departments of Electrical Engineering and Computer Science
Princeton University

{tliu, csadler, peizhang, mrm}@princeton.edu

ABSTRACT
ZebraNet is a mobile, wireless sensor network in which nodes
move throughout an environment working to gather and pro-
cess information about their surroundings [10]. As in many
sensor or wireless systems, nodes have critical resource con-
straints such as processing speed, memory size, and energy
supply; they also face special hardware issues such as sens-
ing device sample time, data storage/access restrictions, and
wireless transceiver capabilities. This paper discusses and
evaluates ZebraNet’s system design decisions in the face of
a range of real-world constraints.

Impala—ZebraNet’s middleware layer—serves as a light-
weight operating system, but also has been designed to en-
courage application modularity, simplicity, adaptivity, and
repairability. Impala is now implemented on ZebraNet hard-
ware nodes, which include a 16-bit microcontroller, a low-
power GPS unit, a 900MHz radio, and 4Mbits of non-volatile
FLASH memory. This paper discusses Impala’s operation
scheduling and event handling model, and explains how sys-
tem constraints and goals led to the interface designs we
chose between the application, middleware, and firmware
layers. We also describe Impala’s network interface which
unifies media access control and transport control into an
efficient network protocol. With the minimum overhead
in communication, buffering, and processing, it supports a
range of message models, all inspired by and tailored to Ze-
braNet’s application needs. By discussing design tradeoffs
in the context of a real hardware system and a real sensor
network application, this paper’s design choices and perfor-
mance measurements offer some concrete experiences with
software systems issues for the mobile sensor design space.
More generally, we feel that these experiences can guide de-
sign choices in a range of related systems.

Categories and Subject Descriptors
C.0 [Computer Systems Organization]: General—Hard-
ware/Software Interfaces; System Architectures; C.3 [Com-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MobiSys’04, J une 6–9, 2004, Bos ton, Mas s achus etts , U SA.
Copyright 2004 ACM 1-58113-793-1/04/0006 ...$5.00.

puter Systems Organization]: Special-purpose and App-
lication-based Systems—Microprocessor/Microcomputer Ap-
plications; Real-time and Embedded Systems; D.4.4 [Opera-
ting Systems]: Communications Management—Buffering;
Message Sending; Network Communication; D.4.7 [Operat-
ing Systems]: Organization and Design—Distributed Sys-
tems; Real-time Systems and Embedded Systems

General Terms
Design, Measurement, Performance

Keywords
Sensor Networks, Middleware System, Operation Schedul-
ing, Event Handling, Network Communications

1. INTRODUCTION
Energy-aware mobile sensor networks will make a signif-

icant impact on society within the next decade. The tech-
nology has numerous military and civilian applications that
can save lives and improve our overall quality of life. These
networks are typically comprised of a low power microcon-
troller capable of limited information processing, sensors to
capture specific data from the environment, memory to store
collected data, and a radio to transmit data between nodes.
Sensor networks can be comprised of thousands of nodes
communicating with each other to relay data and to perform
complex distributed calculations. Individual nodes must be
extremely energy-efficient as once they are deployed in the
environment they are very difficult, if not impossible, to
reacquire. Additionally, depending on their size, the envi-
ronment in which they are deployed, and their power con-
sumption, each node can be extremely unreliable.

Programmers for these systems must make a concerted
effort to establish efficient, dependable communications be-
tween nodes. Radio transmissions must be minimized as
each byte transmitted consumes around two orders of mag-
nitude more energy than each computation on the low power
microcontroller. Additionally, protocols must account for
the unreliable nature of the network as nodes can fail or
simply move out of range during transmission. Steps must
be taken to ensure that the network can rapidly adapt to
such changes in its structure.

The Princeton ZebraNet Project explores these issues as
we develop an energy-efficient mobile sensor network to help
track zebra migrations in Africa [10]. Individual nodes have
been built into collars and deployed on zebras near the Mpala

256

Research Centre in Kenya [17]. Each node is equipped with
a GPS unit in order to log position information. This infor-
mation is then passed from zebra to zebra using peer-to-peer
protocols until it reaches a base station where it can be pro-
cessed and analyzed.

Impala—ZebraNet’s middleware layer—serves as a light-
weight operating system, but also has been designed to en-
courage application modularity, simplicity, adaptivity, and
repairability. A previous study of Impala, prototyped within
the HP/Compaq iPAQ pocket PC handhelds, was focused
on its middleware support for inherent software modulariza-
tion, dynamic software adaptation, and remote software up-
date [12]. Impala now is implemented on the ZebraNet hard-
ware featuring energy-efficient components. Critical issues
arise concerning implementing software on the real hardware
system. Such issues include hardware/software interfaces,
system operation scheduling, event handling, and network
communication support. This paper discusses these issues
in the context of our implementation experiences, and de-
scribes how underlying hardware realities impact our design
choices. The first test deployment of ZebraNet occurred
in January 2004, and the system has evolved to the point
where the hardware and software layers have become clearly
defined.

Overall, the contributions of this work are as follows:

• We built a system architecture with minimal layering
and clean interfaces for resource-constrained mobile
sensor systems. The Impala middleware layer trans-
forms rough hardware realities into easy application
perspectives. It allows complex hardware controls and
accesses to be safely exported as convenient services
to applications. It also allows miscellaneous hardware
interrupts to be efficiently handled and delivered as a
few types of abstract events.

• We established a system activity model that handles
a mix of regular operations and irregular events for
long-running mobile sensor systems. By having the
best knowledge of the overall system activities, Impala
uses operation scheduling to achieve the maximum en-
ergy conservation without yielding system control to
untrusted applications. By processing simple hard-
ware interrupts in short/atomic routines and handling
complex software events in long/preemptable routines,
Impala achieves both concurrency and prioritization of
system activities.

• We developed an efficient network interface that cap-
tures and supports the distinctive network communica-
tion characteristics of mobile sensor systems. It allows
large messages to be transmitted over very small radio
packets and supports a range of message models: reli-
able and unreliable, unicast and multicast, all with the
minimum communication, buffering, and processing
overhead. By judiciously collapsing traditional net-
work layers, it unifies media access control and trans-
port control to reduce system overhead and achieve
performance optimizations.

• We provide solutions for handling the typical resource
constraints and hardware realities as are faced by many
other mobile sensor systems in software design and im-
plementation.

• Building real working hardware and software has en-
riched our design decisions and gives us insights we
feel have value to the mobile research community as a
whole.

The remainder of this paper is structured as follows. Sec-
tion 2 gives context for the Impala system by presenting
the ZebraNet system itself and the system constraints. Sec-
tion 3 describes the layers and interfaces of Impala. Sec-
tion 4 discusses the way Impala schedules regular opera-
tions and handles irregular events. In Section 5, we present
Impala’s network interface. Section 6 presents some perfor-
mance evaluations. Finally, Section 7 presents related work
and Section 8 presents our conclusions.

2. THE ZEBRANET SYSTEM
ZebraNet is a mobile, wireless sensor network system aimed

at improving tracking technology via energy-efficient track-
ing nodes and store-and-forward communication techniques
[10]. While ZebraNet’s most immediate focus is wildlife
tracking across large regions with little communications in-
frastructure, its broader goals concern the deployment, man-
agement, and communications issues for large numbers of
both static and mobile sensors.

A ZebraNet hardware node includes global positioning
system (GPS), a simple microcontroller CPU, a wireless
transceiver, and non-volatile storage to hold logged data.
ZebraNet does not rely on constant communication access
to a base station or other nodes. Instead, it uses periodic
node discovery and node-to-node communication to propa-
gate data towards the base station in a store-and-forward
manner.

2.1 Hardware Overview
The ZebraNet hardware, which is depicted conceptually

in Figure 1 and pictured in Figure 2, is composed of energy-
efficient components ideal for use in mobile sensor networks.
The major functional components on the board are the mi-
crocontroller, GPS, external FLASH, radio, and battery with
solar chargers.

To control the hardware, we selected the Texas Instru-
ments Ultra-Low-Power MSP430F149 16-bit microcontroller.
This chip has 2KB of RAM, 60KB of internal FLASH mem-
ory, and two serial interfaces [24]. It runs off an uninter-
ruptible power supply as we expect it to run continuously.

The microcontroller operates in a dual-clock configura-
tion. It uses an 8MHz clock when accessing sensing, stor-
age, or communication peripherals and a 32KHz clock at all
other times. The 32KHz clock consumes half as much power
as the 8MHz clock and can be used instead of putting the
processor to sleep.

To log the node’s position, we selected the µ–blox GPS-
MS1E chip for its small size and its ability to quickly acquire
locks. It has a typical hot start acquisition time of two to
six seconds [4], although our experience has been that good
GPS fixes take 10-20 seconds to acquire. The GPS commu-
nicates with the microcontroller through an asynchronous
serial connection at a rate of 38,400 baud (the maximum
rate for this chip) over a port which it shares with the ex-
ternal FLASH. It runs off its own 3.3V power supply which
can be turned on and off by the software to conserve power.

To store data, we selected the ATMEL 4Mbit AT45DB-
041B DataFlash chip [1]. In our system, the node has enough

257

Figure 1: Conceptual diagram of a ZebraNet node.

memory capacity to store 26 days of its own positional data
and 52 collar-days of positional data received from other
nodes. The chip communicates with the microcontroller syn-
chronously at a baud rate of 667Kbaud. Sharing the serial
port with the GPS allows for the FLASH and the radio to
operate simultaneously. The FLASH is powered by the same
uninterruptible source as the microcontroller.

To transmit data between nodes, we selected the Max-
Stream 9XStream radio. It operates at 900MHz and is spec-
ified to broadcast data up to 5 miles [15]. In our configura-
tion, however, reliable ranges of 0.5-1 mile are more likely.
To transmit, the radio only requires around 1W of power.
This is possible because as a receiver, it has a sensitivity
of −107dBm. The radio communicates with the microcon-
troller through the second asynchronous serial connection
at a rate of 38,400 baud (chosen to match that of the GPS)
and with other nodes at an over-the-air rate of 19,200bps.
It runs off its own 5V power supply which, like the supply
for the GPS, can be turned on and off by the software to
conserve power.

To power the node, we use the Panasonic CGR18650A
2A hour Lithium ion battery [18]. Based on the specifica-
tions of this battery, we consider it fully charged at 4.2V
and dead at 3.1V. We chose 3.4V as the lower bound of its
functional range because at this voltage the radio and GPS
units rapidly drain the battery and, consequentially, cannot
function properly. The battery is recharged using solar cells
strategically placed around the collar.

As energy-efficiency is critical in mobile sensor networks,
the ZebraNet hardware features low-power components and
efficient power supplies. We measured the power consump-
tion of the system during a cycle in which it performed all
possible operations. We applied 4.0V to the board for all
measurements and the results are presented in Table 1. Ad-
ditionally, Figure 3 shows how radio transmissions consume
battery power over time.

Figure 2: Photo of a ZebraNet node.

Mode Current (mA) Power (mW)
CPU at 32KHz 2.40 9.6
CPU at 8MHz 4.83 19.32
GPS 142 568
Radio transmit 195 780
Radio receive 78.1 312.4

Table 1: Power consumption of hardware compo-
nents (measured at 4.0V).

2.2 Hardware-Imposed Constraints on System
Software Programming

The limitations of the hardware system have posed signif-
icant constraints on system software programming. Many
of them are representative of the challenges in other sensor
systems as well.

• Data and Program memory constraint The data
memory in the microcontroller is only 2KB. This af-
fects the program behavior in many aspects, especially
in data buffering. As are used to keep system states
and to handle large flows of network data, data buffers
often consume large amount of memory, and therefore
must be carefully allocated. Additionally, the program
memory is only 60KB. This requires software programs
to be concise.

• Energy constraint The energy budget is tight as we
use a solar-array to recharge the battery and to pro-
vide the energy essential to achieve the sensing and
communication tasks. As is estimated, we are able to
fully charge the battery in 50 hours of daylight. This
number can vary in either direction, however, depend-
ing on the orientation of the solar cells in relation to
the sun. Therefore, efforts must be made to maximally
save energy, and resorts must be provided to preserve
the system when the energy level is severely low.

• Device access constraint Device accesses must be
carefully scheduled to avoid conflicts which are likely
to happen due to hardware limitations. For exam-
ple, due to voltage regulation challenges, the GPS and
the radio should not be turned on at the same time
for interference-avoidance purposes. Additionally, the

258

Figure 3: Power consumption of the radio while
transmitting constantly for several hours.

GPS and the FLASH share the same serial connec-
tion to the microcontroller, and therefore, cannot be
accessed simultaneously.

• Radio packet size constraint The physical packet
size of our radio hardware is only 64 bytes, an order of
magnitude smaller than the Ethernet packet size, for
example. This means the multi-level packet header in
the traditional TCP/IP model will cost a significant
communication overhead. Therefore, we need a spe-
cial network protocol that requires a low overhead to
accomplish the essential network communication ser-
vices.

• FLASH data storage constraint For the FLASH
memory, new data cannot be written to an address be-
fore the data currently at that address is erased, and
the smallest erasable unit is a 264-byte page. This
means writing data to one location will affect data at
other locations. Therefore, a global FLASH organiza-
tion is required to achieve efficient data storage.

• GPS sensing time constraint The time for the GPS
unit to acquire an accurate position lock is typically 10
to 20 seconds. This considerable delay in data acquisi-
tion implies an asynchronous access and control model
is preferred to a synchronous model for operating this
sensing device.

3. A STATIC VIEW OF IMPALA: LAYERS
AND INTERFACES

The Impala operating system and middleware service model
is driven by several issues applicable to ZebraNet and to
general sensor network applications as a whole. The first
issue is that long-term sensing and communication tasks
of sensor network applications require dependable schedul-
ing of regular operations. Sensor networks are designed to
run for indefinite periods of time without human interven-
tion. Many sensing and communication operations occur on
a predictable timetable. ZebraNet, for example, executes
GPS position sensing and wireless radio communication pe-
riodically. In addition to these operations, the system must
perform many other routine system computations and main-
tenance. Therefore, Impala must provide clean mechanisms
to schedule recurring operations.

A second issue is that sensor network applications require
efficient handling of irregular events. Fundamentally, sensor
nodes are event-driven systems. Events such as sensor data
capture and network data reception occur frequently and

are the primary triggers of system computations. An event
may result from a single or a sequence of hardware inter-
rupts. Depending on the application programming interface,
promiscuous hardware interrupts can be made transparent
to applications and delivered only as a few types of abstract
events. However, an appropriate event abstraction should
balance between simplifying application programming and
maintaining the granularity of application-level processing.
Additionally, events may be handled by different compo-
nents of the system, and therefore, require efficient event
filtering and dispatching.

Thirdly, sensor network applications require specialized
network support. As data gathering is the primary goal of
sensor networks, sensor nodes often use aggressive flooding
strategies to maximize the chance of finding a path to the
desired destination. The resultant multicasts and broad-
casts are common communication patterns. Transmissions
are required to be reliable in scenarios where data integrity
is critical. On the other hand, data can be unreliable in cases
where packets can be lost without compromising our goals.
For example, peer discovery messages are considered unreli-
able as the nodes are mobile and may not be in range of the
other nodes. Additionally, due to the severe resource con-
straints and limited hardware capabilities of sensor nodes,
efforts must be made to minimize the overhead in commu-
nication, buffering, and processing.

The fourth issue is that the complexity of sensor network
systems requires dynamic software adaptation. The scale of
sensor network systems can be on the order of thousands of
nodes; therefore, coordinating the communication and com-
putation across the system is complex. Depending on node
topology, network connectivity, and node mobility, over its
lifetime the system may encounter a number of different sce-
narios for each of which a different communication protocol
may be appropriate. As such, it is nearly impossible for a
single protocol to be appropriate all the time. Some amount
of adaptivity is crucial for applications to properly handle
an interesting range of possible parameter values.

Finally, the long-term deployment and inaccessibility of
sensor network systems require automatic remote software
update. It is inevitable that software updates will be re-
quired during the lifetime of a sensor network. Because sen-
sors are typically deployed in large numbers in inaccessible
places, updates must be deployed wirelessly. Therefore, Im-
pala needs to support automatic remote software updates
so that new software can be plugged in at any time. Ze-
braNet offers very clear motivation for remote software up-
dates, since we clearly do not want to have to tranquilize
and re-capture a collection of collared animals each time we
need to update the software.

We previously presented Impala focusing on its middle-
ware support for inherent software modularization, dynamic
software adaptation, and remote software update, and pro-
totyped it within the HP/Compaq iPAQ pocket PC hand-
helds [12]. In this paper, we describe Impala as implemented
on the real ZebraNet hardware nodes focusing on its operat-
ing system functionalities in hardware/software interfacing,
system operation scheduling, event handling, and network
communication support. Thus far, Impala’s dynamic soft-
ware adaptation and update have only been implemented
on iPAQs. We plan to port these to Zebranet nodes in the
near future.

259

Figure 4: Impala system architecture: layers and
interfaces.

3.1 Impala System Layers
Figure 4 shows the static view of Impala with three sys-

tem layers: the uppermost, application layer, the Impala
layer, and the firmware layer. Services and events are the
major interfaces between layers. Through the service inter-
face, the firmware layer exports numerous hardware access
and control functions to the Impala layer. The Impala layer,
however, protects these firmware functions from direct use
by the application layer, and only exports the ones needed by
applications in a reduced or protected form. It also exports
its own network interface to the application layer. The sub-
sections below discuss in more detail the services exported
from firmware to Impala and from Impala to applications.

3.2 Services Exported from Firmware to
Impala

The firmware layer contains the programs for accessing
and controlling individual hardware components. There are
six major firmware modules.

The CPU firmware provides Impala with CPU mode con-
trol choices based on system performance requirements. The
microcontroller CPU in the system can run off an 8MHz
clock source or a 32KHz clock source which consumes about
half as much power. Impala activates the high-speed clock
when the system is performing data sensing and network
communication. It switches to the low-speed clock to save
power when possible.

The radio firmware provides Impala with the capability to
send and receive packets. Data is spooled in and out of the
radio in a byte stream. The radio firmware ensures that the
byte stream input to the radio is encapsulated correctly into
physical packets, and the packets, possibly received from
different sources, are restored correctly from the byte stream
output from the radio. It signals a packet event to Impala
when a packet is completely received.

The GPS firmware provides Impala with an asynchronous
interface for obtaining time and position data. First, it con-
figures the GPS unit to start a sensing operation. This op-
eration may take 10 to 60 seconds depending on the time
required to get an accurate position fix. Meanwhile, it ana-
lyzes the information output from the GPS unit to identify

a position fix. If a position fix is obtained, it terminates the
sensing operation, saves the data, and signals a GPS data
event to Impala.

The FLASH firmware provides Impala with FLASH access
and control functions. It partitions the FLASH into five sec-
tions for different storage purposes, such as local data, global
data, diagnostic information, etc. Data can be sequentially
written in and read out of each section in any amount, and
can be erased in 264-byte pages or in 8-page blocks.

The timer firmware provides Impala with up to eight soft-
ware timers. Each timer can be claimed and released by any
program. The owner of a timer can set it for an arbitrary
amount of time, cancel it, and reset it. Once the timer allo-
cated to the application expires, the timer firmware signals
an application timer event to Impala. Timers are the pri-
mary mechanism for Impala’s regular operation scheduling.

The timer firmware also maintains a system clock, accu-
rate to one millisecond when the CPU is operating on the
8MHz clock, and periodically corrected by the global GPS
time. The ability to maintain a globally-synchronized sys-
tem clock across all ZebraNet sensor nodes allows Impala’s
network interface to use a simple timeslot-based mechanism
for media access.

Finally, the watchdog firmware provides Impala with sys-
tem monitoring and recovery capabilities. It reboots the
system if it is stuck in illegal operations or unexpected fault.

3.3 Services Exported from Impala to
Applications

The application layer contains all the applications and
programs for ZebraNet. In our first version of ZebraNet,
the primary application software running on each node are
the communication protocols which log sensor position data
and work to propagate the data back to the base station.
In future sensor systems, however, application software will
be more complex and include precomputation, data filtering
and fusing, and database queries in addition to data com-
munication.

Currently, we have implemented a baseline flooding appli-
cation. For data sensing, it stores the GPS position samples
in the FLASH as they become available. For data prop-
agation, it performs periodic, synchronized communication
with other nodes. The communication has two stages. In
the first stage, each node sends out a peer discovery mes-
sage through unreliable broadcast. If another node hears
this message, that means it has found a neighbor within
range to which it can forward data. Therefore, in the next
stage, each node floods its position data to all the discovered
single-hop neighbors through reliable multicast. To manage
data storage, each node uses the local FLASH section for
local GPS data and the global FLASH section for GPS data
from other nodes. The global FLASH section is used as
a medium for our store-and-forward routing scheme. Since
new data cannot be written into a FLASH region before the
old data is totally erased, and the smallest erasable unit is a
264-byte page, each section is maintained as a cyclic buffer
in which data is stored sequentially.

To support these application activities, Impala exports
three primary services. First, it exports the system clock
and a pre-allocated timer to the application to perform var-
ious time-based operations, such as the periodic, synchro-
nized data communication. However, the application is re-
stricted from modifying the system clock or accessing other

260

Figure 5: Timeline schedule of Impala regular oper-
ations.

system timers as these may interfere with other pre-scheduled
system operations. Second, it exports protected FLASH
read and write accesses to the application for data storage
and retrieval. If the application attempts to access an unau-
thorized FLASH section or to access the FLASH when it is
not available, the access request will be rejected. Finally,
it exports an asynchronous network transmission interface
that allows the application to pass a number of outgoing
messages down to the Impala layer and be notified later
when the transmissions are complete.

4. A DYNAMIC VIEW OF IMPALA:
OPERATIONS AND EVENTS

The dynamic view of Impala is comprised of regular com-
puting and maintenance operations required by the long-
term sensing and communication tasks, and irregular events
incurred by the the inherent event-driven attribute of sen-
sor network applications. Thus, Impala’s system activity
model has two aspects to its personality. For regular op-
erations, Impala acts as an operation scheduler that sched-
ules and coordinates system operations based on application
goals, hardware constraints, and energy budget. For irreg-
ular events, it acts as an event filter that captures and dis-
patches events to different system components and initiates
chains of processing.

4.1 Regular Operation Scheduling
Impala uses timers to trigger various operations. To ground

our discussion in a concrete example, Figure 5 shows a time-
line schedule of repeating ZebraNet operations in which a
node iterates through a cycle of sending/receiving data, ob-
taining GPS position, and then sleeping.

When scheduling and coordinating system operations, Im-
pala faces a number of hardware attributes and constraints.
First, GPS-aided time calibration allows network-wide op-
eration synchronization. Since ZebraNet sensor nodes have
ongoing access to global GPS time, sensor nodes can be eas-
ily synchronized. This is especially important for network
communication in which all nodes need to turn on and off
their radio simultaneously and transmit in assigned times-
lots to avoid collisions.

Second, voltage regulation challenges discourage simul-
taneous radio and GPS operations. ZebraNet’s radio and
GPS are both high amperage components. Designing a volt-
age regulator allowing their simultaneous operation is chal-
lenging and also leads to extra power loss in the regulator.
Therefore, we define a networking phase for radio communi-
cations and a GPS sensing phase for GPS sensing to alter-

nate the use of the two devices. We choose to execute radio
communications before GPS sensing as the former needs to
be synchronized and the latter may take various length of
periods.

Third, non-trivial radio wake-up time affects network com-
munication schedule. At the beginning of the networking
phase, all sensor nodes wake up the radio from low power
mode simultaneously. This takes at least 40 milliseconds
[15] and the time can vary on different radios. Therefore,
we reserve a fixed period for radio wake-up to accommodate
this extra overhead, align the radio transmission and recep-
tion across all the nodes, and prevent possible data loss due
to incoherent radio states.

Fourth, potentially long GPS sensing time mandates asyn-
chronous GPS sensing operation. In some cases, it takes the
GPS as little as 2-6 seconds to get a position fix [4], but typ-
ically an accurate fix takes between 10-40 seconds. Because
of the large variation, the GPS sensing task is a split trans-
action. We first perform an asynchronous sensing operation
and this is followed some time later by a data delivery event.

Fifth, port sharing of GPS and FLASH prohibits simul-
taneous GPS and FLASH access. Microcontrollers are com-
monly pin-constrained, and ours is no exception. In our de-
sign, the GPS and the FLASH share the same serial hard-
ware on the microcontroller and an access mode switch is
required on that port. For this reason, we must coordinate
the operations on these two devices and guard against ap-
plications attempting simultaneous accesses.

Finally, stringent energy budget requires energy conser-
vation whenever possible. Energy is always a critical issue
in mobile wireless sensor networks. The battery capacity
of the ZebraNet nodes can support the full level of system
activities for one to three days. The solar array can extend
this time indefinitely, but solar cell area is limited, so we
need to conserve energy whenever possible. Impala achieves
this with two approaches. First, ZebraNet has an 8-minute
GPS data sampling interval to ensure that we capture sig-
nificant movements of zebras while minimizing redundant
data records. This determines the desirable frequency and
volume of other system activities, and makes it unreason-
able in terms of energy consumption for the entire system
to be fully active all the time. Therefore, Impala has a sleep
phase in which the system is put into low power mode with
only minimum resources available for system maintenance.
Impala also turns off individual peripherals before they en-
ter a long idle mode. Second, although the energy supply of
our system is designed to fulfill the energy consumption un-
der typical conditions, we still need to preserve the system
in the case of energy deprivation. Therefore, Impala adapts
its operation scheduling to the energy availability. It skips
the energy-intensive phases such as networking and GPS
sensing if the energy level is inadequate for the subsequent
operations.

4.2 Event Handling Model
Impala’s event handling model is designed to attack three

fundamental issues. First, sensor network systems require
an efficient event-based application programming interface.
Events are originated from hardware interrupts. Dealing
with these interrupts not only involves considerable pro-
gramming efforts but also requires detailed hardware knowl-
edge. Therefore, Impala has an event abstraction that en-
capsulates miscellaneous hardware interrupts into abstract

261

Figure 6: Impala event handling model.

events to simplify application programming while maintain-
ing the granularity of application-level processing.

Impala implements four types of abstract events that are
essential for ZebraNet applications. An event is generated
and enqueued by an event signaler, dequeued and dispatched
by Impala’s event filter, and processed by an application
event handler. Figure 6 shows the abstract events and Im-
pala’s event handling components. A network packet event
represents for the arrival of a network packet. Impala’s net-
work interface generates this type of events after it receives a
packet from the radio firmware and examines the validity of
the data. A network send done event represents for the com-
pletion or failure of a network message transmission. The
network interface generates this type of events after it has
completed the transmission or a failure has occurred. An
application timer event represents for the time to execute
a pre-scheduled application operation. The timer firmware
generates this type of events after the application timer ex-
pires. A GPS data event represents for the capture of a GPS
position fix. The GPS firmware generates this type of events
after it analyzes the information output from the GPS unit
and identifies a position fix.

Second, concurrency is an inherent attribute of sensor net-
work systems. Information may be simultaneously captured
from sensors, manipulated, and streamed onto a network
[7]. In addition, some low-level processing has real-time re-
quirements. In ZebraNet, for example, bytes output from
the radio will be lost if not processed in time. Therefore,
Impala has an hierarchical event handling model that pro-
cesses simple hardware interrupts in short/atomic routines
and handles complex software events in long/preemptable
routines. This not only achieves concurrency among multi-
ple flows of processing but also allows low-level processing to
interleave with and, if needed, override high-level processing.

For simplicity reasons, our implementation uses a single-
thread approach. Hardware interrupt handlers are non-
interruptible routines that respond to hardware interrupts
and generate software events. Impala’s event filter is an
interruptible program that runs on the single thread. It
constantly checks the incoming events and invokes the ap-
plication event handlers to process them.

Finally, event prioritization is desirable in sensor network
systems. Some events are urgent and require immediate pro-

cessing, such as the network packet events. Some events are
time-constrained, but are not sensitive to small delays, such
as the application timer events. Other events are highly
latency-tolerant, such as the GPS data events. Therefore,
event prioritization allows events with different time con-
straints to be processed in the desired order. As is shown in
Figure 6, Impala’s event filter maintains an event queue for
each type of events and associates each queue with a priority
for event processing.

5. IMPALA NETWORK INTERFACE
The network interface, as a middleware service, is cru-

cial in mobile wireless sensor systems. As in many other
mobile wireless sensor networks, ZebraNet uses peer-to-peer
communication. Unlike many others, the sparse connectiv-
ity caused us to choose pairwise store-and-forward routing,
rather than common path-based approaches. To support the
application layer which studies various store-and-forward
routing strategies, Impala’s network interface focuses on the
networking model within one hop.

Although networking models have been fully explored in
the traditional wireless mobile TCP/IP networks, many dis-
tinctive characteristics of sensor network greatly change the
design space.

5.1 Impact of Communication Characteristics
on Network Sessions

The special communication pattern of sensor network ap-
plications like ZebraNet changes the message model. Data
gathering is often a major goal of sensor networks. In Ze-
braNet, in particular, data is frequently collected by the
sensing devices, and must all eventually be transmitted to
the base station. Sensor nodes often use aggressive flooding
strategy to maximize the chance of finding a path to the
base station. This leads to the common use of multicast
and broadcast protocols. Furthermore, transmissions must
be reliable in some cases, but for energy reasons, are pre-
ferred to be unreliable in other less critical uses. Impala’s
network services must support these different uses.

Impala uses session-based transport control. A session is
a message designated by the application to have network
transaction semantics. Sessions can vary from 1 to 32K
bytes, can be unicast, multicast, or broadcast, can transmit
data from FLASH or from application RAM buffer, and can
use reliable or unreliable transmission. The varying size and
styles leverage the MAC layer techniques described in the
next subsection. We chose session transmission to be con-
nectionless, because connection-oriented approaches seemed
a poor match for the unpredictable motion of sensor nodes
in our system. Connectionless sessions also reduces compute
and communication overhead which is obviously desirable in
sensor systems.

To implement sessions, Impala maintains a send session
queue that contains the session descriptors for all the ses-
sions that applications have given Impala. Figure 7 shows
the information contained in a session descriptor at the send-
ing node. Each session is assigned with a 4-bit session ID. A
session descriptor contains the attributes of a session and,
for reliable sessions, keeps track of the networking states
of all destinations. The linked list of “destination states”
are a set of linked records each holding the per-destination
packet/ACK information.

At the receiver side, Impala also maintains a receive ses-

262

Figure 7: Session descriptor at sending node.

Figure 8: Receiver-side per-session record of packet
reception.

sion list that contains the session holders for all the sessions
being received from the network. Figure 8 shows the session
information stored at the destination node. Each session can
be uniquely identified by the source node ID and the session
ID. To avoid wraparound, no sensor node can have more
than 16 outstanding send sessions. A session holder con-
tains the attributes of a session and also buffers the session
packets received but not yet delivered to the application.

5.2 Timeslot-based Media Access Control
Since ZebraNet sensor nodes have ongoing access to glo-

bally-synchronized GPS time, sensor node activities can be
easily synchronized. Impala takes advantage of this time
synchronization and uses simple, round-robin, timeslot-based
media access control. We chose this partly for simplicity
(code size and energy), but also because the round-robin
nature of the approach means that the MAC layer always
knows which nodes should be acknowledging reception in
each timeslot. This allows simple yet efficient timeout and
retransmission mechanisms described in the next subsection.

In the timeslot-based media access control, each node is
statically assigned with a unique timeslot for transmission in

Figure 9: Data sends and related acknowledgments
in the timeslot model.

an iteration. A sensor node uses its timeslot to both trans-
mit data packets and acknowledge previously-received pack-
ets. Figure 9 shows an example of time-slotted transmissions
between multiple sensor nodes. ZebraNet only expects tens
of nodes, so this non-scalable solution is acceptable and more
efficient. In a larger network, one might choose to use a hy-
brid time/contention algorithm in which a small number of
nodes share a timeslot.

5.3 Optimizing Acknowledgments based on
MAC characteristics

Due to processing constraints in sensor systems, as well
as the inefficiency of copies in FLASH memory, we choose
to compress the traditional layered protocol architecture to
reduce data copies and management overhead. In particular,
Impala unifies the session-based transport control with the
timeslot-based media access control.

Acknowledgment, timeout and retransmission are the mech-
anisms involved in reliable session transmissions. In each
timeslot, the receiver-side Impala scans the sessions and
bundles pending acknowledgments into one or more pack-
ets. Upon receiving an acknowledgment packet, the sender-
side Impala extracts the acknowledgments and updates its
per-session ACK records accordingly.

The session-based transport control, which is aware of the
round-robin, timeslot-based MAC, adopts a simple but effi-
cient timeout/retransmission mechanism. Since every sensor
node has an assigned transmit slot, by the time one gets to
transmit, it knows that previously transmitted packets from
previous rounds should have already been received and ac-
knowledged by destinations. Therefore, if those packets have
not been acknowledged, the node knows that either session
or acknowledgment packets have been lost, and retransmits
the unacknowledged packets. This timeout and retrans-
mission mechanism allows retransmission to occur at the
earliest possible time and improves communication perfor-
mance. Figure 10 shows the transmission-acknowledgment-
retransmission procedure spanning several timeslots between
one sender and two receivers.

Timeout mechanisms are important in mobile wireless
sensor networks, because nodes may walk away in the mid-
dle of a conversation. Impala times out a destination af-
ter four retransmissions of the same set of packets or after
the destination has been silent through two retransmissions.
If all destinations have timed out, the sender-side Impala
terminates the session and reports a failure. Likewise, the
receiver-side Impala also times out a session after the source
has been silent for four timeslot iterations.

5.4 Data Buffering Constraints
Traditional networking models require substantial mem-

263

Figure 10: Data send, acknowledgment, and retrans-
mission sequence in ZebraNet.

ory for data buffering. Limited memory in sensor systems
necessitates rethinking the data buffering model. For exam-
ple, ZebraNet sensor nodes have ample FLASH memory, but
have only 2KB of RAM. Since FLASH can be delayed, and
since there are restrictions on rewriting it, we have adopted
two mechanisms to reduce the memory used for data buffer-
ing.

The first mechanism we use is to replace data buffer-
ing with data indexing. Whether the application data be-
ing sent is from the fairly-large FLASH memory, or from
the RAM-based application buffer, Impala pins the data,
records its memory location, and transmits it directly from
there, rather than copying it into a large network buffer.
Data indexing minimizes the amount of RAM required for
network transmission, and allows the transmission volume,
and therefore, the network throughput not to be throttled
by the limited memory.

Our second optimization mechanism is to replace session
buffering with packet buffering in network reception. Rather
than buffering the potentially-huge session before deliver-
ing it to the application, Impala only buffers the individual
in-order packets. It delivers the packets to the application
immediately, even when subsequent packets in the same ses-
sion are still under transmission. This incremental delivery
is also a nice match for the stream-oriented nature of many
sensing applications.

5.5 Packets and Packet Event Delivery
Packet delivery, as opposed to session delivery, does affect

the application programming style, but we feel it is a good
match for the incremental, stream-based processing we an-
ticipate. In traditional TCP-oriented application program-
ming, the application has plenty of TCP buffers and can fin-
ish processing one session from one sender before switching
to another session from another sender. This programming
style is not applicable in ZebraNet, however. Rather than
handling session data which should be semantically com-
plete and can be stored in the FLASH memory right away,
applications now have to handle packet data which can be
incomplete and interleaved by different senders.

In ZebraNet, the small physical packet size of the radio
hardware also impacts the design of packet format. Because
the natural packets are so small, the traditional multi-level

network protocol headers will constitute a considerable com-
munication overhead. We instead adopt a packet format
that contains a minimal packet header; this minimal header
is essentially a shorthand reference to a previously-sent, full-
length packet header that is sent once per session and is
applicable to all packets in the session.

Upon receiving a session packet, the receiver-side Impala
checks the packet header and tries to associate it with an
existing session holder. If there is a match, Impala next
checks the packet sequence number; it will buffer an in-order
packet and drop an out-of-order or duplicate packet. If this
packet doesn’t match any existing session holder, Impala
will check if the packet contains a session header. If so, it
creates a new session holder and buffers the packet. If not,
it drops the packet.

5.6 Asynchronous Network Transmission
As mentioned before, Impala has an event-based appli-

cation programming model in which the application is pro-
grammed essentially by creating a comprehensive set of event
handlers. All application-level event handlers are required
to complete within a limited amount of time for two rea-
sons. First, this allows us to make quality-of-service guar-
antees about Impala’s maximum response time to external
events. Second, this helps prevent poorly-behaved appli-
cations from livelocking the node. Because the applica-
tion cannot wait arbitrary periods for lengthy events like
network transmissions, we hand these over to Impala and
perform them asynchronously. Impala provides applications
with an asynchronous transmission model consisting of net-
work hooks for sending data and for learning that a send
has completed.

6. IMPALA EVALUATIONS
The Impala middleware system, including the firmware

layer, the Impala layer, and a baseline application, has been
implemented on the ZebraNet hardware nodes. To evalu-
ate Impala’s overhead and performance, we have conducted
some preliminary measurements and analysis focusing on
the following system aspects: the static and dynamic mem-
ory requirements, the operation scheduling and event han-
dling overheads, and the network interface performance.

6.1 Static Memory Footprint
Since our system faces severe memory constraints, it is

important for us to minimize code size and RAM usage.
Figure 11 shows the program memory and data memory
footprints of different system layers.

For program memory, the network interface requires 5712
instruction bytes, and is the largest component in the Impala
layer. The FLASH, GPS, and timer modules are the major
components in the firmware layer. The application layer is
lean because we only implemented one basic application.

For data memory, the network interface in the Impala
layer claims 51 bytes of data memory. In the firmware layer,
the GPS module requires a 125-byte buffer to receive infor-
mation from the GPS unit, and the radio module requires a
64-byte buffer to receive packets from the radio.

As depicted in Figure 11, our code currently consumes
less than one-third of the total program memory, and we
statically allocate less than one-sixth of our RAM which
leaves ample memory for dynamic allocation and for future
expansions to our system.

264

Figure 11: Program memory footprint and data
memory footprint.

Figure 12: Dynamic memory requirement.

6.2 Dynamic Memory Requirement
Dynamic memory allocation is required by Impala’s net-

work interface which claims and releases memory buffers for
on-the-fly network transmission and reception.

On the sender side, Impala allocates memory buffers for
application sessions passed down for asynchronous trans-
mission. The memory size is linearly related to the total
number of destinations for a reliable multicast session, and
is constant for an unreliable broadcast session. Figure 12
shows the dynamic memory requirements for buffering ses-
sions with up to four destinations. Since data in the FLASH
is indexed rather than buffered by the network interface, the
sender side memory requirements are drastically reduced.

On the receiver side, Impala allocates memory buffers for
packets that have not been delivered to the application.
The memory size is linearly related to the total number of
buffered packets. Figure 12 shows the dynamic memory re-
quirements for buffering up to four packets.

We conducted an experiment to examine the queuing sta-
tus of the received packets, and therefore, the worst-case es-
timate of the receiver side dynamic memory requirement. In
this experiment, we generated a continuous flow of network
packets at the highest rate, and monitored the maximum
number of buffered packets over time. It turned out that the
packet queue contains at most one packet over time. This
is because the application-level packet processing including

Table 3: Event handling overhead.

FLASH write and other computations is significantly faster
than the over-the-air radio transception rate so that packet
delivery is never delayed. Nevertheless, extra packet buffer-
ing on occasional basis will still be needed when the system
is expanded to perform multiple FLASH or CPU-intensive
tasks.

6.3 Operation Scheduling and Event Handling
Overhead

The operation scheduling overhead often comes from ma-
nipulating hardware devices before or after a device oper-
ation, and setting up timers for a future operation. Mini-
mizing the operation scheduling overhead is essential to the
proper implementation of our system. If the scheduling of
the operation takes an excessive amount of time, the op-
eration itself may be delayed. This may have unintended
consequences such as causing the individual nodes to lose
the time synchronization.

Table 2 shows the CPU times for scheduling various Im-
pala operations. The time to turn on the radio for transcep-
tion is 50ms as Impala has to wait for the radio to wake up
from low-power mode. We compensate for this delay by re-
serving a radio wake-up period at the beginning of all radio
communications. The time to power off the radio is 11ms
as Impala has to wait for the pin signal that indicates the
radio send buffer is empty. All other scheduling overheads
are less than 1ms.

We evaluate the event handling overhead by measuring
the latency of delivering the application events by Impala’s
event filter. This overhead determines how fast we can re-
spond to a signaled event. The times to generate and process
some of these events are presented in the next subsection.

Table 3 lists the event handling overhead for all appli-
cation events. Take the network packet event for an ex-
ample, the handling overhead involves traversal of an event
queue, invoking the upper level event handler, and releasing
dynamically-allocated memory buffers.

6.4 Network Interface Performance
We evaluate Impala’s network interface in its processing

overhead for packet reception and transmission, its commu-
nication overhead caused by packet headers, and its com-
munication latency in reliable multicast.

6.4.1 Packet Reception Processing Overhead
For packet reception, Impala propagates an incoming net-

work packet from the radio hardware, to the radio firmware,
to the network interface through interrupts and callouts.
Then the packet is enqueued by the network interface un-
til the event filter dequeues and delivers it to the applica-
tion. Table 4 shows the processing time to receive a network
packet in each system layer.

Understanding the major overhead in each layer requires
more detailed analysis. The radio hardware layer processing

265

Table 2: Operation scheduling overhead.

Table 4: Packet reception processing time by system layers.

Table 5: Memory and FLASH-related operation
cost.

Table 6: Packet reception processing time by the
network interface for different packet types.

is basically bottlenecked by the over-the-air baud rate. Our
radio transmits and receives at 19.2Kbps, which implies a
throughput of 26.67ms per packet. However, the measured
packet reception rate is 30.47ms per packet. This means the
hardware layer adds 14% extra cost for bit synchronization,
checksum computation, etc. The firmware layer receives the
packet byte by byte and the overhead mainly comes from
processing the last byte as it needs to hand over the entire

buffered packet to the upper layer and wipe out the old con-
tent of the buffer for the next packet. Table 5 shows the
costs of some common memory and FLASH-related opera-
tions. The middleware layer is mainly responsible for exam-
ining and buffering the packet by the network interface, and
retrieving and delivering it by the event filter. Table 6 also
shows the cost for examining and buffering different types
of packets. As dynamic memory allocation are frequently
used by the network interface to buffer new packets, these
costs mostly come from memory-related operations. Finally,
the application layer’s major overhead comes from FLASH
access as packets are eventually stored in there.

6.4.2 Packet Transmission Processing Overhead
On the transmission side, the network interface provides

the applications with an asynchronous operation for net-
work transmission. As we described before, sessions can be
dropped into the network interface by the application at any
time. The time to drop an unreliable broadcast session, such
as a peer discovery message, is 496 cycles. The time to drop
a reliable multicast session, such as a GPS data session, is
901 cycles.

When the networking time comes, the network interface
will update session states, compute the information to send,
copy data between FLASH and RAM, and invoke the radio
firmware to transfer data to the radio send buffer. All these
operations are in parallel with the actual data transmission
by the radio hardware. Figure 13 shows the time spent on
each system component for transmitting a packet.

266

Figure 13: Packet transmission processing time by
system components.

Table 7: Header size and payload size for different
packet types.

6.4.3 Communication Overhead by Packet Header
Due to the small physical packet size of the radio hard-

ware, packet headers become a significant communication
overhead. Impala’s network interface uses a special protocol
to reduce the header size and improve the data throughput.
Table 7 shows the header size and payload size for differ-
ent packet types. The payload size can vary depending on
how much data it carries for a session packet or how many
acknowledgments it contains for an ACK packet.

In addition to the packet header, the first packet of an
unreliable broadcast session also contains a 4-byte session
header, and the first packet of a reliable multicast session
also contains eight or more bytes of session header, depend-
ing on the number of destinations.

6.4.4 Communication Latency in Reliable Multicast
The network interface is designed to support connection-

less reliable multicast which is a common communication
pattern in ZebraNet. We conducted a simulation to eval-
uate the efficiency of our multicast scheme. In this sim-
ulation, one node performs reliable multicast to a number
of destinations. We compare the communication latency of
two multicast approaches. One approach uses a number of
reliable node-to-node transmissions, and the other uses Im-
pala’s reliable multicast mechanism. Both approaches use
the same timeslot-based media access control as in ZebraNet
for latency measurements.

Figure 14 shows the observed data delivery latencies for
different number of destinations and different packet loss
rates. We set the timeslot capacity to be 64 packets and the
total transmission volume to be 6400 packets. The packet
loss rate is the probability of dropping a packet. It is simu-
lated to account for all packet loss occasions such as network
disconnectivity, bad signal reception, bit error, etc. In a
baseline scenario when the packet loss rate is zero and there

Figure 14: Communication latency in Impala’s
multicast scheme and node-to-node transmission
scheme.

is only one destination, both multicast schemes finish the
transmission within 100 timeslot iterations. In other cases,
Impala’s multicast scheme achieves constant data delivery
latency with regard to the number of destinations, while the
node-to-node transmission scheme explodes with growing
number of destinations. This is because the node-to-node
transmission has to split the network bandwidth among dif-
ferent transmission pairs. However, the impact of network
bandwidth split becomes less evident as the packet loss rate
increases. This is because Impala’s multicast scheme is more
sensitive to packet loss as it must retransmit to all the des-
tinations once a packet is lost at a single destination.

7. RELATED WORK
We have developed a system that combines aspects from

the sensor networking community and from the mobile ad-
hoc networking community. In this section, we look at how
our system compares to new technologies in both of these
distinct fields.
Sensing Hardware: A number of energy-efficient sensor
nodes have been developed in the past few years [20][6][16][21].
The two devices that most closely parallel our nodes are
Berkeley’s Mica2 Mote and UCLA’s Medusa-WK2.

The Mica2 Mote has a 4MHz, 8-bit processor and uses
the same off-chip FLASH memory chip and serial interfaces
as our nodes. Medusa-MK2 features a dual microcontroller
scheme which uses the same processor as the Mica2 in situ-
ations that require minimal computational power and a 40
MHz ARM processor to operate its on-board GPS unit and
other attachable high energy consuming sensors.

However, once deployed, both of the aforementioned nodes
are intended to remain close together to form a densely pop-
ulated network. This allows them to use extremely low-
power radios with a very limited range. ZebraNet nodes,
on the other hand, are intended to be extremely mobile and
distributed over a large area. Having a sparsely populated
mobile network demands a more powerful radio with a much
larger range.

In addition, due to the high power consumption of our
radio and GPS, we cannot hope to run the system continu-
ously for months at a time on one set of batteries. Nor can
we reduce the duty cycle of data collection and still achieve
our objectives. To compensate, we use a rechargeable bat-
tery with solar cells distributed around the collar.

267

Sensing Operating Systems and Middleware: Vari-
ous operating systems and middleware layers have emerged
to control sensor nodes [5][7][11][13][22]. Two such systems
that closely relate to Impala are TinyOS and Maté.

TinyOS, the popular operating system designed to run on
the Motes, has many low level characteristics in common
with Impala. For example, both Impala and TinyOS place
an emphasis on event handling through hardware interrupts
and the utilization of on-the-fly processing to conserve mem-
ory.

One big difference between our system and TinyOS is a
result of the differences in the nodes on which they will be
used. The Mote is designed to accommodate a variety of
interchangeable sensors. This is reflected in TinyOS’s em-
phasis on concurrency-intensive operations which allow the
system to handle multiple flows of data from independent
sensors simultaneously. Impala uses a combination of polling
and interrupt handling to allow for a similar interleaving of
scheduled and unscheduled events. In the ZebraNet system,
however, Impala takes advantage of the fact that we have a
fixed number of sensors that work in a predetermined fash-
ion by using hardware timers to schedule all major events.
This allows us to save a great deal of power through the use
of the dual clock scheme and the timely use of energy-hungry
components.

Maté is a virtual machine that lies on top of the operat-
ing system and is designed to provide a layer of security and
a basis for automatically updating nodes via virally propa-
gated programs. ZebraNet does not need the added security
Maté provides, but the ability to perform viral software up-
dates was implemented in the original version of Impala [12]
designed for palmtop computers and will be implemented on
the ZebraNet nodes in the near future.
Protocols and Routing Schemes: Our peer-to-peer rout-
ing scheme has roots in a number of proposed routing meth-
ods designed to make communication in mobile ad-hoc net-
works more efficient. DSR [9] and AODV [19] send out
route discovery messages which perform similar roles to our
peer discovery messages. The difference is that DSR and
AODV attempt to discover a complete route to a destination
whereas our algorithm only attempts to discover a node’s
immediate neighbors. This modification is essential to our
system because under normal circumstances there will not
be a complete route to the base station; rather, data is ex-
pected to propagate slowly from node to node until the base
station comes into range.

Directed Diffusion [8] uses a data-centric scheme in which
messages are passed through the network in a series of in-
dependent neighbor-to-neighbor communications very simi-
lar to our peer-to-peer transmissions. However, this scheme
would not work well in our system because our network has
a very low connectivity and our topology is changing too
fast for important messages to arrive in a timely fashion.
Sensing Application Studies: In addition to ZebraNet,
there are other concurrently running efforts to use sensors
to monitor wildlife or in other mobile applications. The
VAFalcons project places solar powered satellite transmit-
ters on Falcons and uses satellite telemetry to determine the
animal’s position [25]. Similarly, the Pacific Ocean Salmon
Tracking Project places acoustic tags on juvenile salmon [2].
The sound emitted from the tags is recorded by receivers
strategically placed along known migration routes and can
be used to closely reconstruct the exact movements of the

fish. Both projects, however, rely on an expensive, high-tech
fixed infrastructure to gather data; therefore, the nodes do
not need to interact with one another.

A stationary sensor network composed of Motes running
TinyOS has been deployed on an uninhabited island off the
coast of Maine to monitor the nesting habitats of certain
birds along with environmental conditions such as tempera-
ture and humidity [14][23]. The group conducted a success-
ful multiple month experiment in which data was collected
and transmitted through the network using a CSMA MAC
layer to protect against collisions. This deployment, along
with a similar deployment at the James Reserve in Idyllwild,
CA [3], is providing the sensor network community with a
great deal of insight into the numerous issues relevant to a
real-world deployment.

8. CONCLUSION
This paper presents our implementation of ZebraNet, a

system that utilizes mobile sensor networking technologies
to monitor zebra migrations on energy-constrained hard-
ware. ZebraNet nodes are controlled by the Impala middle-
ware system, which efficiently handles scheduled operations
as well as the event-driven operations characteristic of sen-
sor networks. Through this implementation, we show that
this architecture has low overhead and can offer effective
improvements on the performance, energy-efficiency, and ro-
bustness of the system. In accomplishing this goal, we also
show that traditional networking layers can be strategically
optimized to help us meet our stringent resource constraints.

Several lessons have been learned from our implementa-
tion experiences. First, even with algorithms that empha-
size memory efficiency, ZebraNet nodes have the potential to
exhaust all available memory. Meanwhile, we have 4Mbits
supply of FLASH storage. The technology exists for us to
add orders of magnitude more without consuming any more
power or area. This added FLASH could then be used in
a light-weight virtual memory scheme. A smart algorithm
could minimize the number of writes to the FLASH and per-
form load leveling to extend the life of the FLASH module.

Second, Impala dominates the control on device schedul-
ing and power management. On one hand, this protects the
system from being abused by untrusted applications, and
yields maximum gain in energy-efficiency as Impala has the
best overview of system activities. On the other hand, it
may also “hardwire” choices in ways that are awkward to
particular applications. Therefore, we plan to design mech-
anisms for Impala to have input from the applications on
the execution of these operations.

Thirdly, in our system, FLASH access and CPU-to-radio
transfer are both synchronous and time-consuming opera-
tions. Using hardware interrupts to signal the completion
of these operations seems a better option in terms of saving
the CPU time than having the CPU busy waiting. How-
ever, the second one requires a much simpler implementa-
tion and yet still does not sacrifice system concurrency or
significantly degrade system performance. This is because
these long operations are always interruptible so that other
computations can break in and exploit CPU cycles when the
FLASH access or CPU-to-radio transfer is in progress.

Finally, the reliable multicast mechanism is crucial to our
mobile sensor system. However, in sparsely connected mo-
bile sensor networks where packet loss and retransmissions
are frequent and network bandwidth is precious, the reli-

268

able multicast service should be used at the discretion of
the application programmers. Depending on data integrity
requirements, one might choose to use unreliable broadcast
to improve data throughput.

The process of developing real working hardware and soft-
ware for a highly mobile, sparsely populated network has
given us a unique perspective on many issues relating to
mobile sensor networking technologies. The design choices
and performance measurements presented in this paper offer
some concrete experience that can contribute to the existing
wealth of knowledge in the sensor networks research commu-
nity.

ACKNOWLEDGMENTS
This work was supported in part by an NSF Information
Technology Research grant (ITR-0205214). In addition, we
gratefully acknowledge the Mpala Research Foundation for
their support of the Mpala Research Centre which has en-
abled our deployment of this system.

9. REFERENCES
[1] ATMEL. AT45DB041B, 4M bit, 2.7-Volt Only

Serial-Interface Flash with Two 264-Byte SRAM
Buffers data sheet. http://www.atmel.com/, June
2003.

[2] Census of Marine Life. POST: Pacific Ocean Salmon
Tracking Project. http://www.postcoml.org/, 2003.

[3] Center for Embedded Networked Sensing. Research
infrastructure: James reserve local area power system
and network enhancements.
http://www.cens.ucla.edu/Project-Descriptions/
Research_Infrastructure/index.html.

[4] P. Eggenburger. GPS-MS1E Miniature GPS Receiver
Module Data sheet. http://www.u-blox.ch/, Oct.
2001.

[5] D. Gay, P. Levis, R. von Behren, M. Welsh,
E. Brewer, and D. Culler. The nesC Language: A
Holistic Approach to Networked Embedded Systems.
In Proceedings of Programming Language Design and
Implementation (PLDI) 2003, 2003.

[6] J. Hill and D. Culler. Mica: A Wireless Platform for
Deeply Embedded Networks. In Micro, IEEE,
volume 22, pages 12–24, 2002.

[7] J. Hill, R. Szewczyk, et al. System Architecture
Directions for Networked Sensors. In Proceedings of
the 9th International Conference on Architectural
Support for Programming Languages and Operating
Systems, Apr. 2000.

[8] C. Intanagonwiwat, R. Govindan, and D. Estrin.
Directed Diffusion: A Scalable and Robust
Communication Paradigm for Sensor Networks. In
Proceedings of the Sixth Annual International
Conference on Mobile Computing and Networking
(MOBICOM ’00), Aug. 2000.

[9] D. Johnson and D. Maltz. Dynamic Source Routing in
Ad-Hoc Wireless Networks. In Mobile Computing,
pages 153–181. Kluwer Academic Publishers, 1996.

[10] P. Juang, H. Oki, Y. Wang, et al. Energy-Efficient
Computing for Wildlife Tracking: Design Tradeoffs
and Early Experiences with ZebraNet. In Proceedings
of the 10th International Conference on Architectural

Support for Programming Languages and Operating
Systems (ASPLOS-X), Oct. 2002.

[11] P. Levis and D. Culler. Maté: A Tiny Virtual Machine
for Sensor Networks. In Proceedings of the 10th
International Conference on Architectural Support for
Programming Languages and Operating Systems
(ASPLOS-X), Oct. 2002.

[12] T. Liu and M. Martonosi. Impala: A Middleware
System for Managing Autonomic, Parallel Sensor
Systems. In ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming (PPoPP ’03),
June 2003.

[13] S. Madden, M. Franklin, J. Hellerstein, and W. Hong.
The design of an acquisitional query processor for
sensor networks. In SIGMOD, 2003.

[14] A. Mainwaring, J. Polastre, R. Szewczyk, D. Culler,
and J. Anderson. Wireless sensor networks for habitat
monitoring. In ACM International Workshop on
Wireless Sensor Networks and Applications
(WSNA’02), Atlanta, GA, Sept. 2002.

[15] Maxstream. 9XStream, wireless modem data sheet
and OEM manual. http://www.maxstream.net/, June
2002.

[16] R. Min, M. Bhardwaj, S. Cho, N. Ickes, E. Shih,
A. Sinha, A. Wang, and A. P. Chandrakasan.
Energy-centric enabling technologies for wireless
sensor networks. In IEEE Wireless Communications,
volume 9, pages 28–39, Aug. 2002.

[17] Mpala Wildlife Foundation. Mpala research centre.
http://www.mpalafoundation.org/researchctr/.

[18] Panasonic. CGR18650A, 2A-hour Lithium-Ion
battery, cylindrical Model.
http://www.panasonic.com/, Aug. 2003.

[19] C. E. Perkins and E. M. Royer. Ad hoc On-Demand
Distance Vector Routing. In Proceedings of the 2nd
IEEE Workshop on Mobile Computing Systems and
Applications, Feb. 1999.

[20] Rockwell Science Center. Wireless integrated network
sensors (WINS). http://wins.rsc.rockwell.com/.

[21] A. Savvides and M. Srivastava. A distributed
computation platform for wireless embedded sensing.
In Proceedings of International Conference on
Computer Design (ICCD), 2002.

[22] Sun Microsystems. Java 2 Platform, Micro Edition.
http://java.sun.com/j2me/, Nov. 2002.

[23] R. Szewczyk, J. Polastre, A. Mainwaring, and
D. Culler. Lessons from a Sensor Network Expedition.
In First European Workshop on Wireless Sensor
Networks, Jan. 2004.

[24] Texas Instruments. MSP430x1xx Family
Ultra-Low-Power Micro-controller User’s Guide.
http://www.ti.com/, 2002.

[25] The Center for Conservation Biology. VAFALCONS.
http:
//fsweb.wm.edu/ccb/vafalcons/falconhome.cfm,
2002.

269

