AN ANALYSIS OF THE ALPHA INSTRUCTION SET
ARCHITECTURE

1. Introduction
In this document we present the results of a set of experiments performed on the Alpha 21164
instruction set architecture using the jpegtran application (which is to be found at /ans/bin/jpegtran) on a
sample JPEG image file. “jpegtran” is a UNIX utility for applying various kinds of transformations on
image files in that format (e.g. image rotation, transposition, etc.). We chose to instrument this application
because:
a) Tt is relatively large (168K) and therefore allowed us to generate a sufficient amount of data for
analysis;
b) In a graphical application, it is more likely to encounter some of the “new™ instructions
introduced specifically to meet the needs of this type of software.

2. Instruetion mix analysis

For our first experiment, we measured the execution frequency of different classes of instractions.
The following statistics were obtained by instrumenting jpegtran and running it on a sample input JPEG
iage file:

Instruction Type Instruection Count Frequency
Integer arithmetic and logic 3,956,006 53371%
Floating point arithmetic 0 0.00%
Data transfer 2,385,380 32.18%
Conditional branch 198,711 10.78%
Unconditionat branch 238,926 3.22%
Subroutine calls / returns 18,916 0.26%
Miscellaneous 0 0.00%
Prefetch 0 0.00%
Conditional move 800 0.01%
Multimedia 0 0.00%
Total 7,398,739 99.829%

The results, summarized above, matched our intuitive expectations. As can be seen from the table,
majority of the instructions executed were ALU operations, which is typically the casc in any type of
application. Interestingly enough, no floating-point operations were performed. This may be attibated to
the fact that graphics applications tend to be very computationally intensive, performing convolations o a
large set of similar basic data structures. For this reason, this type of application is usaally designed ina
way that would heavily exploit the least expensive operations from the instruction set, which in turn wouald
significantly improve performance. Since integer arithmetic is much “cheaper” in CPU time than floating-
point arithmetic, we might expect to see graphics applications utilizing very few floating point instcuctions,
if any.

Another interesting observation is that, according to our measurements, conditional branches
accounted for roughly 75% of all control flow instractions. That means that only one in every four control
flow instructions was a subroutine call, a subroutine return or a jump. This could be attributed to the type of
application. Graphics applications may tend to have a slightly lower percentage of subroutine cails and
returns becanse most of the computation involves transformations (convelutions) performed in a small
number of subroutines, thus the nuiber of calls and returns from subroutines is less than usual. Ona
different note, since control flow changes in this application are primarily attribated to branches, and since
changes in the conteol flow of a program have a significant effect on perforinance, optimizing the execution
of branch instractiens in this architecture is important.

A litle surprisingly, the “new” instructions (conditional moves, data prefetches, multimedia)
accounted for a very small portion of the total number of instructions executed. Our explanation for the



displayed infrequency is that these instructions were not widely used by compilers at the time of the
creation of the jpegtran application.

3. Branch Analysis

In cur second experiment, we cbtained measurements froin a saimple execution of our instrumented
application for different types of branches. We recorded both the direction of the branch (forward or
backward), as well as whether the branch was taken or not. Following is a summary of the results collected:

Branch Type Instruction Count Frequency
Forward branches taken 187,194 23.44%
Forward branches not taken 292,753 36.65%
Baclward branches taken 244,617 30.63%
Backward branches not taken 14,147 9.28%
Total 798,711 - 100.00%

Notably, 76% of all backward branches were taken, compared to just 39% of all forward branches.
The reason for the big difference is that the typical way of implementing loop structures is through
backward branches. Loops in turn are usually executed multiple timnes, which explains why three in every
four backward branches were taken and only one fell threagh. Ancther interesting observation is that the
frequency of forward branches taken was lower than the frequency of forward branches not taken. Based
on these observations, we claim that a static branch predication scheine which predicts all backward
branches as taken and all forward branches as not taken will most likely yield the best performance for this
particalar application. In this case, the compiler should organize the generated code in such a way that
favers forward branches not taken, in order to yield better correct prediction rates from the underlying
architecture.

4. Block size analysis

In this experiment, we measured both the lengths of basic blocks and uninterrupted code sequences
in the application. Following are the histograms of the results obtained:

JPEGTHAN: Basic Block Size and Frequency

300000 T T
270858

250000 243224 [pas107]
200000

Absolute number of 150000

AGCUITENCRS
102308
100000
8011
5505, 55390

50000

28151

. 196 y5a50] 137988813912
£ 560 443 1108141565} 10} 501 | 551 l_wbssﬂk,‘:b
p-
1 2 3 4 5 8 7 & 8 10 11 12 12 14 15 16 17 18 19 20 21 22 23 24

Number of instructions per block



JPEGTRAN: {ength and frequency of uninterrupted code sequences

250000

200000

1504000

Absolule numbar of
DOOUIIENCes

100000

50000

1 2 3 4 5 4] 7 8 a 1m0 N 12 14 14 118 16 17 18 19 20
Number of instruations per sequenae

Block Type Maximum Sequence Length Average Length
Basic block (static) 65 6.36
Dynamic block (uninterrupted sequence) 107 9.87

Our analysis shows that the number of instructions in a basic block (static) are typically less than the
nwsnber of instructions in a dynawmic block (i.c., an uninterrupted code sequence). For instance 69% of all
basic blocks had 6 or less instructions, as compared only 45% of all uninterrupted sequences of executed
instractions. Differences in dynamic and static sizes of straight-line code sequehces can be attributed to the
fact that a faicly large proportion of branches in this application are not taken. Since they account for about
half (45%) of all branches, different siatic blocks may soinetimes be executed as a straight-line code
sequence. An interesting observation however is that, despite these differences, both static and dynaimic
lengths of uninterrupted instruction sequences are relatively short-- the average length in both cases is less
than 10 instructions. Because of these short instruction sequences, we can conclude that branches occur
relatively frequently in this application. The frequency of branches in our instrumented prograin shows that
the threat of potential stalls from contrel dependencies is very high. This is especially true in superscalar
processors, since branches will arrive n tines faster in an n-issue processor. Without accurate branch
prediction hardware, stalls froin contrel dependencies could occur at every clock cycle in a multiple issne
machine.

5. Instruction and block frequency analysis

In our final experiment, onr goal was to determine whether certain portions of the code were
executed more frequently than others, and 1measure the relative differences in the execution frequency. The
results obtained are presented in the following tables:



Table 1. Block execution frequency

Frequency of Number of Percentage of the Number of Percentage of the
execution blocks total number of execuied total mamber of
(in times) blocks blocks executed blocks
over 100,000 3 0.06% 614,451 52.12%
10,000 to 100,000 21 0.44% 230,848 19.81%
1,000t0 10,000 92 1.92% 2F1. 482 23.81%
100w 1,000 .4 1.88% 34,060 2.92%
10 to 100 153 3.19% 6,471 0.56%
1to 10 1,081 22.53% 2,168 0.19%
0 3,358 69.99% 0 0.00%
Total 4,798 100.01% 1,165,480 100.01%
Jable 2. Instruction exccution frequency
Freguency of Number of Percentage of the Number of Percentage of the
execution instructions total number of executed total mumber of
(in times) instructions insiructions executed instructions
over 100,000 21 0.09% 4,353,072 58.713%
10,000 to 100,000 112 0.48% 1,219,682 16.45%
1,000t0 10,000 536 2.30% 1,563,342 21.09%
1000 1,000 601 2.51% 232,572 3.14%
10to 100 47 3.20% 31,947 043%
1to 10 5,883 25.20% 11,858 0.16%
0 15,449 66.16% 0 0.00%
Total 23,349 100.00% 7,412,473 100.009%

Assuming constant CP1, we see that about 95% of execution time is being spent on only 2.5% of
the blocks, and almost 70% of the blocks are not being executed at alll The saine observation can be made
for instruction execution: 95% of the execution time is spent on about 3% of the instructions, while over
63% of the instractions are not being exccuted at all. These results are consistent with the use of Aindahl’s
law - most of the execution timme is spent on a small subset of the instructions in the application. Based on
these observations, we can clearly see the importance of caches. Since a small part of the program is
executed very frequently, the instructions in the application have high spatial locality. The architecture can
exploit this locality to design a sinall but fast metnory component, which provides a significant
improvement in performance.






