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COMPILER TECHNOLOGY HAVE INCREASED THE INTEREST IN PARALLEL

INSTRUCTION EXECUTION. A JOINT HP-INTEL TEAM DESIGNED THE |A-64

PROCESSOR INSTRUCTION SET ARCHITECTURE WITH PARALLELISM IN MIND.

e e eeee Microprocessors continue on the
relentless path to provide more performance.
Every new innovation in computing—dis-
tributed computing on the Internet, data min-
ing, Java programming, and multimedia data
streams—requires more cycles and comput-
ing power. Even traditional applications such
as databases and numerically intensive codes
present increasing problem sizes that drive
demand for higher performance.

Design innovations, compiler technology,
manufacturing process improvements, and
integrated circuit advances have been driving
exponential performance increases in micro-
processors. To continue this growth in the
future, Hewlett-Packard and Intel architects
examined barriers in contemporary designs
and found that instruction-level parallelism
(ILP) can be exploited for further perfor-
mance increases.

This article examines the motivation, oper-
ation, and benefits of the major features of
IA-64. Intel’s IA-64 manual provides a com-
plete specification of the IA-64 architecture.'

Background and objectives

IA-64 is the first architecture to bring ILP
features to general-purpose microprocessors.
Parallel semantics, predication, data specula-
tion, large register files, register rotation, con-

trol speculation, hardware exception deferral,
register stack engine, wide floating-point expo-
nents, and other features contribute to [A-64’s
primary objective. That goal is to expose,
enhance, and exploit ILP in today’s applica-
tions to increase processor performance.

ILP pioneers*® developed many of these
concepts to find parallelism beyond tradi-
tional architectures. Subsequent industry and
academic research®’ significantly extended
earlier concepts. This led to published works
that quantified the benefits of these ILP-
enhancing features and substantially improved
performance.

Starting in 1994, the joint HP-Intel IA-64
architecture team leveraged this prior work and
incorporated feedback from compiler and
processor design teams to engineer a powerful
initial set of features. They also carefully
designed the instruction set to be expandable to
address new technologies and future workloads.

Architectural basics

A historical problem facing the designers of
computer architectures is the difficulty of
building in sufficient flexibility to adapt to
changing implementation strategies. For
example, the number of available instruction
bits, the register file size, the number of
address space bits, or even how much paral-
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lelism a future implementation might employ
have limited how well architectures can evolve
over time.

The Intel-HP architecture team designed
IA-64 to permit future expansion by provid-
ing sufficient architectural capacity:

« a full 64-bit address space,

« large directly accessible register files,

« enough instruction bits to communicate
information from the compiler to the
hardware, and

« the ability to express arbitrarily large
amounts of ILP.

Figure 1 summarizes the register state; Figure
2 shows the bundle and instruction formats.

Register resources

IA-64 provides 128 65-bit general registers;
64 of these bits specify data or memory
addresses and 1 bit holds a deferred exception
token or not-a-thing (NaT) bit. The “Con-
trol speculation” section provides more details
on the NaT bit.

In addition to the general registers, IA-64
contains

« 128 82-bit floating-point registers,

« space for up to 128 64-bit special-pur-
pose application registers (used to sup-
port features such as the register stack and
software pipelining),

« eight 64-bit branch registers for function
call linkage and return, and

« 64 one-bit predicate registers that hold the
result of conditional expression evaluation.

Instruction encoding

Since IA-64 has 128 general and 128 float-
ing-point registers, instruction encodings use
7 bits to specify each of three register
operands. Most instructions also have a pred-
icate register argument that requires another
6 bits. In a normal 32-bit instruction encod-
ing, this would leave only 5 bits to specify the
opcode. To provide for sufficient opcode space
and to enable flexibility in the encodings, IA-
64 uses a 128-bit encoding (called a bundle)
that has room for three instructions.

Each of the three instructions has 41 bits
with the remaining 5 bits used for the tem-
plate. The template bits help decode and route

128 GRs 128 FRs 128 ARs
r0 fO arQ
rl fl arl
Static : :
r3l f31
r32 f32 .
Stacked/ . . .
rotating . Rotating :
rl26 f126 arl26
ri27 f127 arl27
B e - B e
64 + 1 bit 82 bits 64 bits
64 PRs
pO| e |pl5|pl6 XX p62|p63 ¢ 1 bit
D Rotating o

AR Application register
BR Branch register

FR Floating-point register
¢ 64 bits

8 BRs

GR General register

bo ot b6 | b7 PR Predicate register

Figure 1. 1A-64 application state.
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Op Register 1 | Register 2 | Register 3 | Predicate
-
14 bits 7 bits 7 bits 7 bits 6 bits
(b)

Figure 2. IA-64 bundle (a) and instruction (b) formats.

instructions and indicate the location of stops
that mark the end of groups of instructions
that can execute in parallel.

Distributing responsibility

To achieve high performance, most modern
microprocessors must determine instruction
dependencies, analyze and extract available
parallelism, choose where and when to execute
instructions, manage all cache and prediction
resources, and generally direct all other ongo-
ing activities at runtime. Although intended
to reduce the burden on compilers, out-of-
order processors still require substantial
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IA-64 ARCHITECTURE

{ .mii
add rl = r2, r3
sub r4 = r4, r5 ; |:|
O

shr r7 = r4, rl2 ;;

}

{ .mmi
1d8 r2 = [rl] ;; O
st8 [rl] = r23 ]
tbit pl,p2=r4,5

}

{ .mbb

1d8 r45 = [r55]
(p3)br.call bl=funcl
(p4)br.cond Labell

}
{ .mfi

std4 [rd45]=ré6

fmac f1=£2,f3

add r3=r3,8 ;; L
}

Figure 3. Example instruction groups.

if ( (a==0) || (b<=5) ||
(ct=d) Il (f & 0x2) ){
r3 = 8;

}

Figure 4. Compound conditional code.

cmp.ne pl = r0,r0
add t = -51 i7

cmp.eqg.or pl = 0,a
cmp.ge.or pl = 0,t
cmp.ne.or pl = ¢,d
tbit.or p1 = 1,£,1 ;;

(pl) mov r3 = 8

Figure 5. Example parallel compare. The
newly computed predicate is used in the

third instruction group, shown here in plain

type.

amounts of microarchitec-
ture-specific compiler support
to achieve their fastest speeds.
IA-64 strives to make the
best trade-offs in dividing
responsibility between what
the processor must do at run-
time and what the compiler
can do at compilation time.

ILP

Compilers for all current
mainstream microprocessors
produce code with the under-
standing that regardless of how
the processor actually executes
those instructions, the results
will appear to be executed one
ata time and in the exact order
they were written. We refer to
such architectures as having
sequential in-order execution
semantics, or simply sequen-
tial semantics.

Conforming to sequential
semantics was easy to achieve
when microprocessors execut-
ed instructions one at a time
and in their program-specified
order. However, to achieve
acceptable
improvements, designers have

performance

had to design multiple-issue,
out-of-order execution proces-
sors. The IA-64 instruction set
addresses this split between the
architecture and its imple-
mentations by providing par-
allel execution semantics so
that processors don’t need to
examine register dependencies
to extract parallelism from a
serial program specification.
Nor do they have to reorder
instructions to achieve the
shortest code sequence.

IA-64 realizes parallel execution semantics

in the form of instruction groups. The com-

piler creates instruction groups so that all

instructions in an instruction group can be

safely executed in parallel. While such a

grouping may seem like a complex task, cur-

rent compilers already have all of the infor-
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mation necessary to do this. IA-64 just makes
it possible for the compiler to express that
parallelism.

The code in Figure 3 shows four instruction
groups of various sizes. The gray bars indicate
the extent of the instruction groups, which are
terminated by double semicolons (;;).

Control flow parallelism

While instruction groups allow indepen-
dent computational instructions to be placed
together, expressing parallelism in computa-
tion related to program control flow requires
additional support. As an example, many
applications execute code that performs com-
plex compound conditionals like the one
shown in Figure 4.

In this example, the conditional expression
needs to compute the logical Or of four small-
er expressions. Normally, such computations
can only be done as a sequence of test/branch
computations or in a binary tree reduction (if
the code meets certain safety requirements).
Since such compound conditionals are com-
mon, IA-64 provides parallel compares that
allow compound And and Or conditions to
be computed in parallel.

Figure 5 shows IA-64 assembly code for the
C code in Figure 4. Register p1 is initialized to
false in the first instruction group; the condi-
tions for each of the Or'd expressions is com-
puted in parallel in the second instruction
group; the newly computed predicate is used
in the third instruction group, shown here in
plain type.

The parallel compare operation (the
instructions in boldface) will set p1 to be true
if any of the individual conditions are true.
Otherwise, the value in p1 remains false.

Control parallelism is also present when a
program needs to select one of several possible
branch targets, each of which might be con-
trolled by a different conditional expression.
Such cases would normally need a sequence of
individual conditions and branches. IA-64
provides multiway branches that allow sever-
al normal branches to be grouped together and
executed in a single instruction group. The
example in Figure 6 demonstrates a single mul-
tiway branch that either selects one of three
possible branch targets or falls through.

As shown in these examples, the use of par-
allel compares and multiway branches can



{ .mii

cmp.eq pl,p2 rl,r2
cmp.ne p3,p4 = 4, r5

cmp.lt p5,p6 r8,r9

}

{ .bbb

(pl) br.cond labell

(p3) br.cond label2

(p5) br.call b4 = label3
}

// fall through code here

Figure 6. Multiway branch example.

substantially decrease the critical path related
to control flow computation and branching.

Influencing dynamic events

While the compiler can handle some activi-
ties, hardware better manages many other areas
including branch prediction, instruction
caching, data caching, and prefetching. For
these cases, IA-64 improves on standard
instruction sets by providing an extensive set
of hints that the compiler uses to tell the hard-
ware about likely branch behavior (taken or not
taken, amount to prefetch at branch target) and
memory operations (in what level of the mem-
ory hierarchy to cache data). The hardware can
then manage these resources more effectively,
using a combination of compiler-provided
information and histories of runtime behavior.

Finding and creating parallelism

[A-64 not only provides new ways of
expressing parallelism in compiled code, it also
provides an array of tools for compilers to cre-
ate additional parallelism.

Predication

Branching is a major cause of lost perfor-
mance in many applications. To help reduce
the negative effects of branches, processors use
branch prediction so they can continue to exe-
cute instructions while the branch direction
and target are being resolved. To achieve this,
instructions after a branch are executed spec-
ulatively until the branch is resolved. Once
the branch is resolved, the processor has deter-
mined its branch prediction was correct and
the speculative instructions are okay to com-
mit, or that those instructions need to be

if (rl == r2 )
r9 = rl0 - rll;
else
r5 = r6 + r7;

(@

Time
e (if r1 ==r2) branch
» Speculative instructions executed
 Branch resolved (misprediction)
» Speculative instructions squashed
» Correct instructions executed

(b)

Figure 7. Example conditional (a) and condi-
tional branch use (b).

thrown away and the correct set of instruc-
tions fetched and executed.

When the prediction is wrong, the proces-
sor will have executed instructions along both
paths, but sequentially (first the predicted
path, then the correct path). Thus, the cost of
incorrect prediction is quite expensive. For
example, in the code shown in Figure 7a, if
the branch at the beginning of the fragment
mispredicts, the flow of events at runtime will
proceed, as shown in Figure 7b.

To help reduce the effect of branch mis-
predictions, IA-64 provides predication, a fea-
ture that allows the compiler to execute
instructions from multiple conditional paths
at the same time, and to eliminate the branch-
es that could have caused mispredictions. For
example, the compiler can easily detect when
there are sufficient processor resources to exe-
cute instructions from both sides of an if-then-
else clause. Thus, it’s possible to execute both
sides of some conditionals in the time it would
have taken to execute either one of them
alone. The following code shows how to gen-
erate code for our example in Figure 7a:

cmp.eq pl, p2 = rl, r2;;
(pl) sub r9 = rl0, rll
(p2) add r5 = r6, r7

The cmp (compare) generates two predi-
cates that are set to one or zero, based on the
result of the comparison (p1 will be set to the
opposite of p2). Once these predicates are gen-
erated, they can be used to guard execution:
the add instruction will only execute if p2 has
a true value, and the sub instruction will only
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Time
l * Compare (rl ==r2)

* Both sides executed simultaneously

Figure 8. Using predication.

Figure 9. Control path through a function.
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execute if p1 has a true value.

Figure 8 shows the time flow
for the code with predication
after the branch has been
removed. By using predication
to simplify control flow, the
compiler exposes a larger pool
of instructions in which to find
parallel work. Although some
of these instructions will be
cancelled during execution, the

added parallelism allows the
sequence to execute in fewer
cycles.®

In general, predication is

performed in IA-64 by evalu-
ating conditional expressions
with compare (cmp) opera-
tions and saving the resulting
true (1) or false (0) values in a
special set of 1-bit predicate
registers. Nearly all instruc-
tions can be predicated. This
simple, clean concept pro-
vides a very powerful way to increase the abil-
ity of an [A-64 processor to exploit parallelism,
reduce the performance penalties of branches
(by removing them), and support advanced
code motion that would be difficult or impos-
sible in instruction sets without predication.

Scheduling and speculation

Compilers attempt to increase parallelism
by scheduling instructions based on predic-
tions about likely control paths. Paths are
made of sequences of instructions that are
grouped into basic blocks. Basic blocks are
groups of instructions with a single entry
pointand single exit point. The exit point can
be a multiway branch.

If a particular sequence of basic blocks is
likely to be in the flow of control, the com-
piler can consider the instructions in these
blocks as a single group for the purpose of
scheduling code. Figure 9 illustrates a program
fragment with multiple basic blocks, and pos-
sible control paths. The highlighted blocks
indicate those most likely to be executed.

Since these regions of blocks have more
instructions than individual basic blocks, there
is a greater opportunity to find parallel work.
However, to exploit this parallelism, compilers
must move instructions past barriers related to

control low and data flow. Instructions that
are scheduled before it is known whether their
results will be used are called speculative.

Of the code written by a programmer, only
a small percentage is actually executed at run-
time. The task of choosing important instruc-
tions, determining their dependencies, and
specifying which instructions should be exe-
cuted together is algorithmically complex and
time-consuming. In non-EPIC architectures,
the processor does much of this work at run-
time. However, a compiler can perform these
tasks more efficiently because it has more
time, memory, and a larger view of the pro-
gram than the hardware.

The compiler will optimize the execution
time of the commonly executed blocks by
choosing the instructions that are most criti-
cal to the execution time of the critical region
as a whole. Within these regions, the compil-
er performs instruction selection, prioritiza-
tion, and reordering.

Without the IA-64 features, these kinds of
transformations would be difficult or impos-
sible for a compiler to perform. The key fea-
tures enabling these transformations are
control speculation, data speculation, and
predication.

Control speculation

IA-64 can reduce the dynamic effects of
branches by removing them; however, notall
branches can or should be removed using
predication. Those that remain affect both the
processor at runtime and the compiler during
compilation.

Since loads have a longer latency than most
computational instructions and they tend to
start time-critical chains of instructions, any
constraints placed on the compiler’s ability to
perform code motion on loads can limit the
exploitation of parallelism. One such con-
straint relates to properly handling exceptions.
For example, load instructions may attempt
to reference data to which the program hasn’t
been granted access. When a program makes
such an illegal access, it usually must be ter-
minated. Additionally, all exceptions must also
be delivered as though the program were exe-
cuted in the order the programmer wrote it.
Since moving a load past a branch changes the
sequence of memory accesses relative to the
control flow of the program, non-EPIC archi-



IA-64 virtual memory model

Virtual memory is the core of an operating system’s multitasking and
protection mechanisms. Compared to 32-bit virtual memory, management
of 64-bit address spaces requires new mechanisms primarily because of
the increase in address space size: 32 bits can map 4 Ghytes, while 64 bits
can map 16 billion Ghytes of virtual space.

A linear 32-bit page table requires 1 million page table entries (assum-
ing a 4-Kbyte page size), and can reside in physical memory. A linear 64-
bit page table would be 4 hillion times larger—too big to be physically
mapped in its entirety. Additionally, 64-bit applications are likely to popu-
late the virtual address space more sparsely. Due to larger data structures
than those in 32-bit applications, these applications may have a larger
footprint in physical memory.

All of these effects result in more
pressure on the processor's address o
translation structure: the transla- rl
tion look-aside buffer. While grow- rr2| Region ID |

Region
registers

same TLB entries can be shared between different processes, such as
shared code or data.

Protection keys

While RIDs provide efficient sharing of region-size objects, software
often is interested in sharing objects at a smaller granularity such as in
object databases or operating system message queues. IA-64 protection
key registers (PKRs) provide page-granular control over access while con-
tinuing to share TLB entries among multiple processes.

As shown in Figure A, each TLB entry contains a protection key field that
is inserted into the TLB when creating that translation. When a memory

63 6160 Virtual address

Fo— =

ing the size of on-chip TLBs helps,

|A-64 provides several architectur- 7
al mechanisms that allow operat- 24

ing systems to significantly increase y Search

Virtual region number (VRN)

Virtual page number Offset

(VPN)

y Search

the use of available capacity:

Region ID | Key

VPN

Rights [Physical page number (PPN)

e Regions and protection keys
enable much higher degrees

Translation look-aside buffer (TLB)

of TLB entry sharing. | |

e Multiple page sizes reduce 24
TLB pressure. 1A-64 supports Y
4-Kbyte to 256-Mbyte pages. pkro| Key

e TLB entries are tagged with pkrl

pkr2
address space identifiers
(called region IDs) to avoid [
TLB flushing on context
switch.

f Search
Rights

Figure A. Address translation.

Regions

As shown in Figure A, bits 63 to 61 of a virtual address index into eight
region registers that contain 24-bit region identifiers (RIDs). The 24-bit RID
is concatenated with the virtual page number (VPN) to form a unique lookup
into the TLB. The TLB lookup generates two main items: the physical page
number and access privileges (keys, access rights, and access bits among
others). The region registers allow the operating system to concurrently
map 8 out of 2% possible address spaces, each 28" bytes in size. The oper-
ating system uses the RID to distinguish shared and private address spaces.
Typically, operating systems assign specific regions to specific uses. For
example, region 0 may be used for user private application data, region 1
for shared libraries and text images, region 2 for mapping of shared files,
and region 7 for mapping of the operating system kernel itself.

On context switch, instead of invalidating the entire TLB, the operat-
ing system only rewrites the user’s private region registers with the RID
of the switched-to process. Shared-region’s RIDs remain in place, and the

Protection
key registers

62 Y
PPN

Offset

Physical address

reference hits in the TLB, the processor looks up the matching entry’s key
in the PKR register file. A key match results in additional access rights
being consulted to grant or deny the memory reference. If the lookup fails,
hardware generates a key miss fault.

The software key miss handler can now manage the PKR contents as a
cache of most recently used protection keys on a per-process basis. This
allows pracesses with different permission levels to access shared data
structures and use the same TLB entry. Direct address sharing is very useful
for multiple process computations that communicate through shared data
structures; one example is producer-consumer multithreaded applications.

The IA-64 region model provides protection and sharing at a large gran-
ularity. Protection keys are orthogonal to regions and allow fine-grain
page-level sharing. In bath cases, TLB entries and page tables for shared
objects can be shared, without requiring unnecessary duplication of page
tables and TLB entries in the form of virtual aliasing.
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1d8.s r1=[r2]
userl
instrA
instrA instrB
instrB
e br
br
Barrier
1d8 r1=[r2] chk.s
userl
@ (b)

Figure 10. Comparing the scheduling of control speculative
computations in traditional (a) and I1A-64 (b) architectures. |A-
64 allows elevation of loads and their uses above branches.

1d8.a r1=[r2]
userl
instrA instrA
instrB instrB
store .s.tlore
1d8 r1=[r2] chk.a
userl
(@ ()

Figure 11. Data speculation example in traditional (a) and I1A-64
(b) architectures. IA-64 allows elevation of load and use even

above a store.
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tectures constrain such code motion.

IA-64 provides a new class of load instruc-
tions called speculative loads, which can safe-
ly be scheduled before one or more prior
branches. In the block where the programmer
originally placed the load, the compiler sched-
ules a speculation check (chk.s), as shown in
Figure 10. In IA-64, this process is referred to
as control speculation. While the example
shown is very simple, this type of code motion
can be very useful in reducing the execution
time of more complex tasks such as searching
down a linked list while simultaneously check-
ing for NULL pointers.

At runtime, if a speculative load results in
an exception, the exception is deferred, and a
deferred exception token (a NaT) is written
to the target register. The chk.s instruction
checks the target register for a NaT, and if

present, branches to special “fix-up” code
(which the compiler also generates). If need-
ed, the fix-up code will reexecute the load
nonspeculatively, and then branch back to the
main program body.

Since almost all instructions in IA-64 will
propagate NaTs during execution (rather than
raising faults), entire calculation chains may be
scheduled speculatively. For example, when one
of the operand registers to an add instruction
contains a NaT, the add doesn’t raise a fault.
Rather, it simply writes a NaT to its target reg-
ister, thus propagating the deferred exception.
If the results of two or more speculative loads
are eventually used in a common computation,
NaT propagation allows the compiler to only
insert a single chk.s to check the result of mul-
tiple speculative computations.

In the event that a chk.s detects a deferred
exception on the result of this calculation chain,
the fix-up code simply reexecutes the entire
chain, this time resolving exceptions as they’re
discovered. This mechanism is termed control
speculation because it permits the expression of
parallelism across a program’s control fow.
Although the hardware required to support con-
trol speculation is simple, this mechanism lets
the compiler expose large amounts of paral-
lelism to the hardware to increase performance.

Data speculation

Popular programming languages such as C
provide pointer data types for accessing mem-
ory. However, pointers often make it impos-
sible for the compiler to determine what
location in memory is being referenced. More
specifically, such references can prevent the
compiler from knowing whether a store and
a subsequent load reference the same memo-
ry location, preventing the compiler from
reordering the instructions.

IA-64 solves this problem with instructions
that allow the compiler to schedule a load
before one or more prior stores, even when the
compiler is not sure if the references overlap.
This is called data speculation; its basic usage
model is analogous to control speculation.

When the compiler needs to schedule a load
ahead of an earlier store, it uses an advanced load
(Id.a), then schedules an advanced load check
instruction (chk.a) after all the intervening store
operations. See the example in Figure 11.

An advanced load works much the same as



a traditional load. However, at runtime it also
records information such as the target register,
memory address accessed, and access size in
the advanced load address table. The ALAT is
a cachelike hardware structure with content-
addressable memory. Figure 12 shows the
structure of the ALAT.

When the store is executed, the hardware
compares the store address to all ALAT entries
and clears entries with addresses that overlap
with the store. Later, when the chk.a is exe-
cuted, hardware checks the ALAT for the
entry installed by its corresponding advanced
load. If an entry is found, the speculation has
succeeded and chk.a does nothing. If no entry
is found, there may have been a collision, and
the check instruction branches to fix-up code
to reexecute the code (just as was done with
control speculation).

Because the fix-up mechanism is general,
the compiler can speculate not only the load
but also an entire chain of calculations ahead
of any number of possibly conflicting stores.

Compared to other structures such as
caches, the chip area and effort required to
implement the ALAT are smaller and simpler
than equivalent structures needed in out-of-
order processors. Yet, this feature enables the
compiler to aggressively rearrange compiled
code to exploit parallelism.

Register model

Most architectures provide a relatively small
set of compiler-visible registers (usually 32).
However, the need for higher performance has
caused chip designers to create larger sets of
physical registers (typically around 100),
which the processor then manages dynami-
cally even though the compiler only views a
subset of those registers.

The IA-64 general-register file provides 128
registers visible to the compiler. This approach
is more efficient than a hardware-managed
register file because a compiler can tell when
the program no longer needs the contents of
a specific register. These general registers are
partitioned into two subsets: 32 static and 96
stacked, which can be renamed under soft-
ware control. The 32 static registers (0 to r31)
are managed in much the same way as regis-
ters in a standard RISC architecture.

The stacked registers implement the IA-64
register stack. This mechanism automatically

provides a compiler with a set
of up to 96 fresh registers (r32

-

Stores CAM on the addr field

to rl27) upon procedure

entry. While the register stack reg #

addr

Size

provides the compiler with

the illusion of unlimited reg- reg #

addr

Size

ister space across procedure
calls, the hardware actually

saves and restores on-chip
reg #

physical registers to and from

addr

Size

memory.

By explicitly managing reg-
isters using the register alloca-
tion instruction (alloc), the
compiler controls the way the
physical register space is used.
Figure 13’s example shows a register stack con-
figured to have eight local registers and three
output registers.

The compiler specifies the number of reg-
isters that a routine requires by using the alloc
instruction. Alloc can also specify how many
of these registers are local (which are used for
computation within the procedure), and how
many are output (which are used to pass para-
meters when this procedure calls another).
The stacked registers in a procedure always
start at r32.

On a call, the registers are renamed such
that the local registers from the previous stack
frame are hidden, and what were the output
registers of the calling routine now have reg-
ister numbers starting at r32 in the called rou-
tine. The freshly called procedure would then
perform its own alloc, setting up its own local
registers (which include the parameter regis-
ters it was called with), and its own output
registers (for when it, in turn, makes a call).
Figure 14a (next page) shows this process.

On a return, this renaming is reversed, and
the stack frame of the calling procedure is
restored (see Figure 14b).

The register stack really only has a finite
number of registers. When procedures request
more registers than are currently available, an
automatic register stack engine (RSE) stores
registers of preceding procedures into memo-
ry in parallel with the execution of the called
procedure. Similarly, on return from a call,
the RSE can restore registers from memory.

As described here, RSE behavior is syn-
chronous; however, IA-64 allows processors
to be built with asynchronous RSEs that can

-
chk.a/ld.c CAM on reg # field

Figure 12. ALAT organization.

r4a2
Qut r40
r39

Local
r32

Figure 13. Initial register
stack frame after using the

alloc instruction: eight local

and three output.
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ra3 ra2
Qut ra42 Qut r40
ral r39
ra2 r34 Local Local
aut aut oca oca
r40 rs2 r32 r32
r39
Local
r32
br. call alloc 10, 2 br.ret
(@) (b)

Figure 14. Procedure call (a) and return (b).

Iteration 1

| ] speculatively spill and fill reg-

@)

Iteration 2

isters in the background
while the processor core con-
tinues normal execution.

This allows spills and fills to

be performed on otherwise

unused memory ports before

Time

-_ -

(b)

Figure 15. Sequential (a) versus pipelined (b)

execution.
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the spills and fills are actual-
ly needed.

Compared to conventional
architectures, IA-64’s register
stack removes all the save and
restore instructions, reduces
data traffic during a call or
return, and shortens the critical path around
calls and returns. In one simulation performed
on a PA-RISC-hosted database code, adding
RSE functionality to PA-RISC removed 30%
of the loads and stores, while consuming only
5% of the execution ports dynamically.

Software pipelining

Computers are very good at performing iter-
ative tasks, and for this reason many programs
include loop constructs that repeatedly per-
form the same operations. Since these loops
generally encompass a large portion of a pro-
gram’s execution time, it’s important to expose
as much loop-level parallelism as possible.

Although instructions in a loop are exe-
cuted frequently, they may not offer a sufh-
cient degree of parallel work to take advantage
of all of a processor’s execution resources.
Conceptually, overlapping one loop iteration
with the next can often increase the paral-
lelism, as shown in Figure 15. This is called
software pipelining, since a given loop itera-

tion is started before the previous iteration
has finished. It’s analogous to the way hard-
ware pipelining works.

While this approach sounds simple, with-
out sufficient architectural support a number
of issues limit the effectiveness of software
pipelining because they require many addi-
tional instructions:

* managing the loop count,

¢ handling the renaming of registers for the
pipeline,

e finishing the work in progress when the
loop ends,

e starting the pipeline when the loop is
entered, and

e unrolling to expose cross-iteration
parallelism.

In some cases this overhead could increase
code size by as much as 10 times the original
loop code. Because of this, software pipelining
is typically only used in special technical com-
puting applications in which loop counts are
large and the overheads can be amortized.

With IA-64, most of the overhead associ-
ated with software pipelining can be elimi-
nated. Special application registers to
maintain the loop count (LC) and the pipeline
length for draining the software pipeline (the
epilog count, or EC) help reduce overhead
from loop counting and testing for loop ter-
mination in the body of the loop.

In conjunction with the loop registers, spe-
cial loop-type branches perform several activ-
ities depending on the type of branch (see
Figure 16). They



* automatically decrement
the loop counters after
each iteration,

* test the loop count val-
ues to determine if the
loop should continue,

ctop, cexit

== 0 (epilog)

(Special
unrolled
loops)

and
Prolog/kernel) | =0
e cause the subset of the ( g )
general, floating, and | T | c=1c |
predicate registers to be +
automatically renamed | e | | - | | . | | CCiEC |
after each iteration by + + +
decrementing a register +
rename base (rrb) register. | PR[6€’] =1 | | PR[Gf] =0 | | PR[Gf] =0 | | PR[G;J’] =0 |
For each rotation, all the | RRB- | | _ RRB- | | RRB- | [ RRB=RRB |
rotating registers appear to - | | -
move up one higher register ctop: branch ¥ EC Epilog count ctop: fall-through ¥

position, with the last rotating
register wrapping back around
to the bottom. Each rotation
effectively advances the soft-
ware pipeline by one stage.

The set of general registers that rotate are
programmable using the alloc instruction. The
set of predicate (p16 to p63) and floating (32
to f127) registers that rotate is fixed. Instruc-
tions br.ctop and br.cexit provide support for
counted loops (similar instructions exist to
support pipelining of while-type loops).

The rotating predicates are important
because they serve as pipeline stage valid bits,
allowing the hardware to automatically drain
the software pipeline by turning instructions
on or off depending on whether the pipeline
is starting up, executing, or draining. Mahlke
et al. provide some highly optimized specific
examples of how software pipelining and
rotating registers can be used.”

The combination of these loop features and
predication enables the compiler to generate
compact code, which performs the essential
work of the loop in a highly parallel form. All
of this can be done with the same amount of
code as would be needed for a non-software-
pipelined loop. Since there is little or no code
expansion required to software-pipeline loops
in TA-64, the compiler can use software
pipelining much more aggressively as a gen-
eral loop optimization, providing increased
parallelism for a broad set of applications.

Although out-of-order hardware approach-
es can approximate a software-pipelined

cexit: fall-through

LC Loop count

Figure 16. Loop-type branch behavior.

approach, they require much more complex
hardware, and do not deal as well with prob-
lems such as recurrence (where one loop iter-
ation creates a value consumed by a later loop
iteration). Full examples of software-pipelined
loops are provided elsewhere in this issue.?

Summary of parallelism features

These parallelism tools work in a synergis-
tic fashion, each supporting the other. For
example, program loops may contain loads
and stores through pointers. Data speculation
allows the compiler to use the software-
pipelining mechanism to fully overlap the exe-
cution, even when the loop uses pointers that
may be aliased. Also, scheduling a load early
often requires scheduling it out of its basic
block and ahead of an earlier store. Speculative
advanced loads allow both control and data
speculation mechanisms to be used at once.
This increased ILP keeps parallel hardware
functional units busier, executing a program’s
critical path in less time.

Wluile designers and architects have a
model for how [A-64 features will be
implemented and used, we anticipate new
ways to use the IA-64 architecture as software

and hardware designs mature. Each day
brings discoveries of new code-generation

cexit: branch
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IA-64 floating-point architecture

The IA-64 FP architecture is a unique combination of features targeted at graphical and
scientific applications. It supports both high computation throughput and high-precision for-
mats. The inclusion of integer and logical operations allows extra flexibility to manipulate
FP numbers and use the FP functional units for complex integer operations.

The primary computation workhorse of the FP architecture is the FMAC instruction, which
computes A OB + C with a single rounding. Traditional FP add and subtract operations are
variants of this general instruction. Divide and square root is supported using a sequence of
FMAC instructions that produce correctly rounded results. Using primitives for divide and
square root simplifies the hardware and allows overlapping with other operations. For exam-
ple, a group of divides can be software pipelined to provide much higher throughput than a
dedicated nonpipelined divider.

The XMA instruction computes A [IB + C with the FP registers interpreted as 64-bit inte-
gers. This reuses the FP functional units for integer computation. XMA greatly accelerates
the wide integer computations common to cryptography and computer security. Logical and
field manipulation instructions are also included to simplify math libraries and special-case
handling.

The large 128-element FP register file allows very fast access to a large number of FP (or
sometimes integer) variables. Each register is 82-bits wide, which extends a double-extend-
ed format with two additional exponent bits. These extra-exponent bits enable simpler math
library routines that avoid special-case testing. A register's contents can be treated as a sin-
gle (32-bit), double (64-bit), or double-extended (80-bit) formatted floating-point number that
complies with the IEEE/ANSI 754 standard. Additionally, a pair of single-precision numbers
can be packed into an FP register. Most FP operations can operate on these packed pairs to
double the operation rate of single-precision computation. This feature is especially useful
for graphics applications in which graphic transforms are nearly doubled in performance over
a traditional approach.

All of the parallel features of |A-64—predication, speculation, and register rotation—
are available to FP instructions. Their capabilities are especially valuable in loops. For exam-
ple, regular data access patterns, such as recurrences, are very efficient with rotation. The
needed value can be retained for as many iterations as necessary without traditional copy
operations. Also, If statements in the middle of software-pipelined loops are simply handled
with predication.

To improve the exposed parallelism in FP programs, the IEEE standard-mandated flags
can be maintained in any of four different status fields. The flag values are later committed
with an instruction similar to the speculative check. This allows full conformance to the stan-
dard without loss of parallelism and performance.

techniques and new approaches to old algo-
rithms. These discoveries are validating that
ILP does exist in programs, and the more you
look, the more you find.

ILP is one level of parallelism that IA-64 is
exploiting, but we continue to pursue other
sources of parallelism through on-chip and
multichip multiprocessing approaches. To
achieve best performance, it is always best to
start with the highest performance uniproces-
sor, then combine those processors into mul-
tiprocessor systems.

In the future, as software and hardware tech-
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nologies evolve, and as the size and computa-
tion demands of workloads continue to grow,
ILP features will be vital to allow processors’
continued increases in performance and scala-
bility. The Intel-HP architecture team designed
the TA-64 from the ground up to be ready for
these changes and to provide excellent perfor-
mance over a wide range of applications. Hllfl
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