
1

Autumn 2006 CSE P548 - Instruction Set Design 1

Preview

What RISC ISAs look like today
• the original model
• the new instructions

• what they do
• why they’re used

64b architectures
• issues with backwards compatibility to old “word” sizes

RISC vs. CISC

Autumn 2006 CSE P548 - Instruction Set Design 2

RISC Instruction Set Architecture

Simple instruction set
• opcodes are primitive operations

use instructions in combination for more complex operations
• data transfer, arithmetic/logical, control

• few & simple addressing modes (register, immediate,
displacement/indexed)

Load/store architecture
• load/store values from/to memory with explicit instructions
• compute in general purpose registers

Easily decoded instruction set
• fixed length instructions
• few instruction formats, many fields in common, a field in many

formats is in the same bit location in all of them

2

Autumn 2006 CSE P548 - Instruction Set Design 3

Autumn 2006 CSE P548 - Instruction Set Design 4

Why RISC?

Why was RISC invented/reinvented?
• simplicity makes for:

• faster processing
• easier compiler optimizations
• lower power

Good match for today’s implementations
• pipelining: simple instructions do almost the same amount of work
• superscalars: instructions with simple & regular formatting can be

decoded in parallel

3

Autumn 2006 CSE P548 - Instruction Set Design 5

RISC Instruction Set Architecture

Still some issues
• condition codes vs. condition registers
• GPR organization: register windows vs. flat register file
• sizes of immediates
• support for integer divide & FP operations
• how CISCy do we get?

Autumn 2006 CSE P548 - Instruction Set Design 6

32 reg GPR

4

Autumn 2006 CSE P548 - Instruction Set Design 7

Increase in Word Size

64-bit architectures
• linear address space (no segmentation), i.e., memory size
• 64b registers & datapath
• 64b addresses (used in loads, stores, indirect branches)

Autumn 2006 CSE P548 - Instruction Set Design 8

Backwards Compatibility

Problem: have to be able to execute the “old” 32b codes, with 32b data,
on 64b hardware

Some general approaches
• start all over: design a new 64-bit instruction set (Alpha)
• 2 instruction subsets, mode for each (MIPS-III)

• 32b instructions from previous architecture
• new 64b instructions: ld/st, arithmetic, shift, conditional branch
• illegal-instruction trap on 64b instructions in 32 bit mode

5

Autumn 2006 CSE P548 - Instruction Set Design 9

Backwards Compatibility

ld/st
• datapath is 64b; therefore manipulate 64b values in 1 instruction
• when loading 32b data in 64b mode, sign extend the value
• when loading 32b data in 32b mode, zero extend the value for

backwards compatibility to 32b binaries

shift right
• need to sign/zero-extend from correct bit (either 31 or 63)

Autumn 2006 CSE P548 - Instruction Set Design 10

Backwards Compatibility

Handling conditions
• condition registers

• still use the GPRs
• separate 64b/32b integer add & subtract instructions

• separate 64b & 32b integer condition codes
• 1 set of arithmetic instructions sets them both
• conditional branches (positive/negative or 0/not 0) &

overflow instructions (overflow/not overflow)
test a specific CC set

6

Autumn 2006 CSE P548 - Instruction Set Design 11

New Instructions

Purpose:
• for better performance

• to better match changes in process technology
(e.g., a bigger discrepancy between CPU & memory speeds)

• to better match new microarchitectures
(e.g., deeper pipelines)

• to take advantage of new compiler optimizations
(e.g., cache-conscious optimizations)

• to support new, compute-intensive applications
(e.g., multimedia)

• impulse to CISCyness (they think it’s for better performance)
(e.g., multiple loop-related operations)

Autumn 2006 CSE P548 - Instruction Set Design 12

New Instructions

predicated execution (wait for branch prediction)
data prefetching (wait for memory hierarchy)

loop support
• combine simple instructions that handle common programming

idioms
• scaled add/subtract/compare
• branch on count

• are these a good idea?

7

Autumn 2006 CSE P548 - Instruction Set Design 13

New Instructions

multimedia instructions
• targeted for graphics, audio and video data
• partitioned arithmetic

• 64b wasted on common data
• arithmetic on two 32b, four 16b or eight 8b data
• example operations: add, subtract, multiply, compare

• special instructions that manipulate < 64b data:
• expand, pack, partial store
• complex operations that are executed frequently (edges on

convolution , pixel distance instruction for motion estimation)
• examples: MMX, VIS

Autumn 2006 CSE P548 - Instruction Set Design 14

New Instructions

multimedia instructions
• ramifications on the architecture

• new instructions
• new formats

• ramifications on the implementation
• mostly part of FP hardware

• already handles multicycle operations
• “register partitioning” already done to implement single-

precision arithmetic
• surprisingly small proportion of die

8

Autumn 2006 CSE P548 - Instruction Set Design 15

New Instructions

multimedia instructions
• ramifications on the programming:

• call assembly language library routines
• write assembly language code

• ramifications on performance
• ex: VIS pixel distance instruction eliminates ~50 RISC

instructions
• ex: 5.5X speedup to compute absolute sum of differences on

16x16-pixel image blocks
Bottom line:

+ increase performance on an important compute-intensive
application that uses MM instructions a lot

+ with a small hardware cost
- but a large programming effort

Autumn 2006 CSE P548 - Instruction Set Design 16

CISC Instruction Set Architecture, aka x86

Complex instruction set
• more complex opcodes

• ex: transcendental functions, string manipulation
• ex: different opcodes for intra/inter segment transfers of control

• more addressing modes
• 7 data memory addressing modes + multiple displacement

sizes
• restrictions on what registers can be used with what modes

Register-memory architecture
• operands in computation instructions can reside in memory

9

Autumn 2006 CSE P548 - Instruction Set Design 17

CISC Instruction Set Architecture, aka x86

Complex instruction encoding
• variable length instructions

(different numbers of operands, different operand sizes, prefixes for
machine word size, postbytes to specify addressing modes, etc.)

• lots of formats, tight encoding

More complex register design
• special-purpose registers

More complex memory management
• segmentation with paging

Autumn 2006 CSE P548 - Instruction Set Design 18

Backwards Compatibility is Harder with CISCs

Must support:
• registers with special functions

• when it is recognized that register speed, not how a register is
used, is what matters

• multiple instruction formats & data sizes
• when have to translate CISC instructions to RISClike micro-

instructions to easily pipeline the implementation
• special categories of instructions

• even though they are no longer used
• real addressing, segmentation without paging, segmentation with

paging
• when addressing range is obtained with address size

• stack model for floating point
• when most programs use arbitrary memory operand addresses

10

Autumn 2006 CSE P548 - Instruction Set Design 19

RISC vs. CISC

Which is best?

Autumn 2006 CSE P548 - Instruction Set Design 20

RISC vs. CISC

Advantage of RISC depends on (among other things):
• chip technology
• processor complexity

Pre-1990: chip density was low & processor implementations were simple
• single-chip RISC CPUs (1986) & on-chip caches
• instruction decoding “large” part of execution cycle for CISCs

11

Autumn 2006 CSE P548 - Instruction Set Design 21

RISC vs. CISC

Post-1990: chip density is high & processor implementations are complex
• both RISC & CISC implementations fit on a chip with multiple big

caches & more functionality (dynamic instruction scheduling, page
handling hardware, etc.)

• instruction decoding smaller time component:
• multiple-instruction issue
• out-of-order execution
• speculative execution & sophisticated branch prediction
• chip multiprocessors
• multithreaded processors

• CISC implementations translate CISC instructions to RISC micro-
instructions to be more compatible with pipelining

Autumn 2006 CSE P548 - Instruction Set Design 22

Other Important Factors

Clock rate
• dense process technology (currently 90nm)
• superpipelining (all pipelines manipulate primitive instructions)

Compiler technology
• architecture features that help compilation

• simple, orthogonal ISA
• lots of general purpose registers
• operations without side effects

Ability of the design team
New/old architecture

• application base
Power consumption
$$$

12

Autumn 2006 CSE P548 - Instruction Set Design 23

Wrap-up

What RISC ISAs look like today
• the original model
• the new instructions

• what they do
• why they’re used

64b architectures
• issues with backwards compatibility to old “word” sizes

(makes you realize how pervasive the “word” size is – it’s not just
the addressable memory space)

RISC vs. CISC is not the simplistic debate it used to be

	Preview
	RISC Instruction Set Architecture
	
	Why RISC?
	RISC Instruction Set Architecture
	
	Increase in Word Size
	Backwards Compatibility
	Backwards Compatibility
	Backwards Compatibility
	New Instructions
	New Instructions
	New Instructions
	New Instructions
	New Instructions
	CISC Instruction Set Architecture, aka x86
	CISC Instruction Set Architecture, aka x86
	Backwards Compatibility is Harder with CISCs
	RISC vs. CISC
	RISC vs. CISC
	RISC vs. CISC
	Other Important Factors
	Wrap-up

