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Preview

What RISC ISAs look like today
• the original model 
• the new instructions

• what they do
• why they’re used

64b architectures
• issues with backwards compatibility to old “word” sizes

RISC vs. CISC
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RISC Instruction Set Architecture

Simple instruction set
• opcodes are primitive operations

use instructions in combination for more complex operations
• data transfer, arithmetic/logical, control

• few & simple addressing modes (register, immediate, 
displacement/indexed)

Load/store architecture
• load/store values from/to memory with explicit instructions
• compute in general purpose registers

Easily decoded instruction set
• fixed length instructions
• few instruction formats, many fields in common, a field in many 

formats is in the same bit location in all of them
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Why RISC?

Why was RISC invented/reinvented?
• simplicity makes for:

• faster processing
• easier compiler optimizations
• lower power

Good match for today’s implementations
• pipelining: simple instructions do almost the same amount of work
• superscalars: instructions with simple & regular formatting can be 

decoded in parallel
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RISC Instruction Set Architecture

Still some issues
• condition codes vs. condition registers 
• GPR organization: register windows vs. flat register file
• sizes of immediates
• support for integer divide & FP operations
• how CISCy do we get?
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32 reg GPR
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Increase in Word Size

64-bit architectures
• linear address space (no segmentation), i.e., memory size
• 64b registers & datapath
• 64b addresses (used in loads, stores, indirect branches)
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Backwards Compatibility

Problem: have to be able to execute the “old” 32b codes, with 32b data,
on 64b hardware

Some general approaches
• start all over: design a new 64-bit instruction set (Alpha)
• 2 instruction subsets, mode for each (MIPS-III)

• 32b instructions from previous architecture
• new 64b instructions: ld/st, arithmetic, shift, conditional branch
• illegal-instruction trap on 64b instructions in 32 bit mode
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Backwards Compatibility

ld/st
• datapath is 64b; therefore manipulate 64b values in 1 instruction
• when loading 32b data in 64b mode, sign extend the value 
• when loading 32b data in 32b mode, zero extend the value for 

backwards compatibility to 32b binaries

shift right
• need to sign/zero-extend from correct bit (either 31 or 63) 

Autumn 2006 CSE P548 - Instruction Set Design 10

Backwards Compatibility

Handling conditions
• condition registers

• still use the GPRs
• separate 64b/32b integer add & subtract instructions

• separate 64b & 32b integer condition codes
• 1 set of arithmetic instructions sets them both
• conditional branches (positive/negative or 0/not 0) &      

overflow instructions (overflow/not overflow)                   
test a specific CC set
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New Instructions

Purpose:
• for better performance

• to better match changes in process technology
(e.g., a bigger discrepancy between CPU & memory speeds)

• to better match new microarchitectures
(e.g., deeper pipelines)

• to take advantage of new compiler optimizations
(e.g., cache-conscious optimizations)

• to support new, compute-intensive applications
(e.g., multimedia)

• impulse to CISCyness (they think it’s for better performance)
(e.g., multiple loop-related operations)
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New Instructions

predicated execution (wait for branch prediction)
data prefetching (wait for memory hierarchy)

loop support
• combine simple instructions that handle common programming 

idioms
• scaled add/subtract/compare
• branch on count

• are these a good idea?
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New Instructions

multimedia instructions
• targeted for graphics, audio and video data
• partitioned arithmetic

• 64b wasted on common data
• arithmetic on two 32b, four 16b or eight 8b data
• example operations: add, subtract, multiply, compare

• special instructions that manipulate < 64b data: 
• expand, pack, partial store
• complex operations that are executed frequently (edges on 

convolution , pixel distance instruction for motion estimation)
• examples: MMX, VIS
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New Instructions

multimedia instructions
• ramifications on the architecture

• new instructions
• new formats

• ramifications on the implementation
• mostly part of FP hardware

• already handles multicycle operations
• “register partitioning” already done to implement single-

precision arithmetic
• surprisingly small proportion of die
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New Instructions

multimedia instructions
• ramifications on the programming:

• call assembly language library routines
• write assembly language code

• ramifications on performance
• ex: VIS pixel distance instruction eliminates ~50 RISC 

instructions
• ex: 5.5X speedup to compute absolute sum of differences on 

16x16-pixel image blocks 
Bottom line: 

+ increase performance on an important compute-intensive 
application that uses MM instructions a lot

+ with a small hardware cost 
- but a large programming effort
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CISC Instruction Set Architecture, aka x86

Complex instruction set
• more complex opcodes 

• ex: transcendental functions, string manipulation
• ex: different opcodes for intra/inter segment transfers of control

• more addressing modes
• 7 data memory addressing modes + multiple displacement 

sizes
• restrictions on what registers can be used with what modes

Register-memory architecture
• operands in computation instructions can reside in memory
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CISC Instruction Set Architecture, aka x86

Complex instruction encoding
• variable length instructions

(different numbers of operands, different operand sizes, prefixes for 
machine word size, postbytes to specify addressing modes, etc.)

• lots of formats, tight encoding

More complex register design
• special-purpose registers

More complex memory management
• segmentation with paging
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Backwards Compatibility is Harder with CISCs

Must support:
• registers with special functions

• when it is recognized that register speed, not how a register is
used, is what matters

• multiple instruction formats & data sizes
• when have to translate CISC instructions  to RISClike micro-

instructions to easily pipeline the implementation
• special categories of instructions

• even though they are no longer used
• real addressing, segmentation without paging, segmentation with 

paging
• when addressing range is obtained with address size

• stack model for floating point
• when most programs use arbitrary memory operand addresses
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RISC vs. CISC

Which is best?
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RISC vs. CISC

Advantage of RISC depends on (among other things):
• chip technology
• processor complexity

Pre-1990: chip density was low & processor implementations were simple
• single-chip RISC CPUs (1986) & on-chip caches
• instruction decoding “large” part of execution cycle for CISCs
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RISC vs. CISC

Post-1990: chip density is high & processor implementations are complex
• both RISC & CISC implementations fit on a chip with multiple big

caches & more functionality (dynamic instruction scheduling, page 
handling hardware, etc.)

• instruction decoding smaller time component:
• multiple-instruction issue
• out-of-order execution
• speculative execution & sophisticated branch prediction
• chip multiprocessors
• multithreaded processors

• CISC implementations translate CISC instructions to RISC micro-
instructions to be more compatible with pipelining
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Other Important Factors

Clock rate
• dense process technology (currently 90nm)
• superpipelining (all pipelines manipulate primitive instructions)

Compiler technology
• architecture features that help compilation

• simple, orthogonal ISA
• lots of general purpose registers
• operations without side effects

Ability of the design team 
New/old architecture

• application base
Power consumption
$$$
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Wrap-up

What RISC ISAs look like today
• the original model 
• the new instructions

• what they do
• why they’re used

64b architectures
• issues with backwards compatibility to old “word” sizes

(makes you realize how pervasive the “word” size is – it’s not just 
the addressable memory space)

RISC vs. CISC is not the simplistic debate it used to be
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