
1

Autumn 2006 CSE P548 - Multiprocessors 1

Issues in Multiprocessors

Which programming model for interprocessor communication
• shared memory

• regular loads & stores
• Sun, SGI, Cray, Convex, KSR, Sequent

• message passing
• explicit sends & receives
• TMC, Intel, IBM

Which execution model
• control parallel

• identify & synchronize different asynchronous threads
• data parallel

• same operation on different parts of the shared data space

Autumn 2006 CSE P548 - Multiprocessors 2

Issues in Multiprocessors

How to express parallelism
• language support

• High-Performance Fortran, ZPL
• runtime library constructs

• coarse-grain, explicitly parallel C programs
• automatic (compiler) detection

• implicitly parallel C & Fortran programs, e.g., SUIF & PTRANS 
compilers

Application development
• embarrassingly parallel programs could be easily parallelized
• development of different algorithms for same problem



2

Autumn 2006 CSE P548 - Multiprocessors 3

Issues in Multiprocessors

How to get good parallel performance
• recognize or create parallelism
• transform programs to increase parallelism without decreasing 

processor locality
• decrease sharing costs

Autumn 2006 CSE P548 - Multiprocessors 4

Flynn Classification

SISD: single instruction stream, single data stream
• single-context uniprocessors

SIMD: single instruction stream, multiple data streams
• exploits data parallelism
• example: Thinking Machines CM

MISD: multiple instruction streams, single data stream
• machine pipeline 
• example: Intel iWarp (systolic array), streaming processors

MIMD: multiple instruction streams, multiple data streams
• multiprocessors
• multithreaded processors
• parallel programming & multiprogramming 
• relies on control parallelism: execute & synchronize different 

asynchronous threads of control
• example: most processor companies have MP configurations



3

Autumn 2006 CSE P548 - Multiprocessors 5

CM-1

Autumn 2006 CSE P548 - Multiprocessors 6

Systolic Array



4

Autumn 2006 CSE P548 - Multiprocessors 7

MIMD

Low-end
• bus-based

• simple, but a bottleneck
• simple cache coherency protocol

• physically centralized memory
• uniform memory access (UMA machine)
• Sequent, & Alpha-, PowerPC- or SPARC-based servers

Autumn 2006 CSE P548 - Multiprocessors 8

Low-end MP



5

Autumn 2006 CSE P548 - Multiprocessors 9

MIMD

High-end
• higher bandwidth, multiple-path interconnect

• more scalable
• more complex cache coherency protocol (if shared memory)
• longer latencies

• physically distributed memory
• non-uniform memory access (NUMA machine)
• could have processor clusters
• SGI, Convex, Cray, IBM, Intel

Autumn 2006 CSE P548 - Multiprocessors 10

High-end MP



6

Autumn 2006 CSE P548 - Multiprocessors 11

Comparison of Issue Capabilities

Autumn 2006 CSE P548 - Multiprocessors 12

Shared Memory vs. Message Passing

Shared memory
+ simple parallel programming model

• global shared address space
• not worry about data locality but

get better performance when program for data placement
lower latency when data is local

• but can do data placement if it is crucial, but don’t 
have to

• hardware maintains data coherence
• synchronize to order processor’s accesses to shared data

• like uniprocessor code so parallelizing by programmer or 
compiler is easier

⇒ can focus on program semantics, not interprocessor 
communication



7

Autumn 2006 CSE P548 - Multiprocessors 13

Shared Memory vs. Message Passing

Shared memory
+ low latency (no message passing software) but

overlap of communication & computation
latency-hiding techniques can be applied to message passing 

machines
+ higher bandwidth for small transfers but

usually the only choice

Autumn 2006 CSE P548 - Multiprocessors 14

Shared Memory vs. Message Passing

Message passing
+ abstraction in the programming model encapsulates the 

communication costs but
more complex programming model
additional language constructs
need to program for nearest neighbor communication

+ no coherency hardware
+ good throughput on large transfers but

what about small transfers?
+ more scalable (memory latency doesn’t scale with the number of 

processors) but
large-scale SM has distributed memory also

• hah! so you’re going to adopt the message-passing 
model?



8

Autumn 2006 CSE P548 - Multiprocessors 15

Shared Memory vs. Message Passing

Why there was a debate
• little experimental data
• not separate implementation from programming model
• can emulate one paradigm with the other

• MP on SM machine
message buffers in local (to each processor) memory

copy messages by ld/st between buffers
• SM on MP machine

ld/st becomes a message copy
sloooooooooow

Who won?


