Issues in Multiprocessors

Which programming model for interprocessor communication
« shared memory
 regular loads & stores
¢ Sun, SGlI, Cray, Convex, KSR, Sequent
* message passing
» explicit sends & receives
e TMC, Intel, IBM

Which execution model
« control parallel
* identify & synchronize different asynchronous threads
« data parallel

« same operation on different parts of the shared data space

Autumn 2006 CSE P548 - Multiprocessors

Issues in Multiprocessors

How to express parallelism
» language support
« High-Performance Fortran, ZPL
< runtime library constructs
« coarse-grain, explicitly parallel C programs
e automatic (compiler) detection

« implicitly parallel C & Fortran programs, e.g., SUIF & PTRANS

compilers

Application development

« embarrassingly parallel programs could be easily parallelized

« development of different algorithms for same problem

Autumn 2006 CSE P548 - Multiprocessors




Issues in Multiprocessors

How to get good parallel performance
e recognize or create parallelism

« transform programs to increase parallelism without decreasing
processor locality

« decrease sharing costs

Autumn 2006 CSE P548 - Multiprocessors

Flynn Classification

SISD: single instruction stream, single data stream
 single-context uniprocessors

SIMD: single instruction stream, multiple data streams
« exploits data parallelism
« example: Thinking Machines CM

MISD: multiple instruction streams, single data stream
¢ machine pipeline
« example: Intel iWarp (systolic array), streaming processors

MIMD: multiple instruction streams, multiple data streams
e multiprocessors
* multithreaded processors
» parallel programming & multiprogramming

« relies on control parallelism: execute & synchronize different
asynchronous threads of control

< example: most processor companies have MP configurations
Autumn 2006 CSE P548 - Multiprocessors




|
N
g Front end 0
(DEC VAX or
Symbolics)
Bus interface
Connection Machine
Paralle! Processor Unit
Connection Machine Connection Machine Front end 1 |
16,384 processors 16,384 processors (DEC VAX OF
—s
Symbolics)
L Bus interface
W B lsequencer] \\Sequencsr s
] 3
- | o
Front end 2
Sequencer] [Sequencer (DEC VAX Or |4
— e 1 2 -—t Symbolics)
L Bus imerface
Connection Machine Connection Machine
16.384 processors 16.384 processors
Frontend 3
1 [ (DEC vAX or
1 I Symbolics)
Connection Machine VO System Bus interface
I [ I I
Data Data Data Graphic :
Vault Vault Vault Display Network |
Figure 1. Connection Machine system organization.
Autumn 2006 CSE P548 - Multiprocessors
WBAUR % O
ok wy s rley oy vlox BASTY Ve
cd ¥ x=® T Cowr d¥ oy +da UJU%

Autumn 2006 CSE P548 - Multiprocessors




MIMD

Low-end
* bus-based
» simple, but a bottleneck
 simple cache coherency protocol
» physically centralized memory
 uniform memory access (UMA machine)
« Sequent, & Alpha-, PowerPC- or SPARC-based servers

Autumn 2006

CSE P548 - Multiprocessors

Low-end MP
One or One or One or One or
more levels more levels more levels more levels
of cache of cache of cache of cache
I/0O System

Main memory

Autumn 2006

CSE P548 - Multiprocessors




MIMD

High-end

 higher bandwidth, multiple-path interconnect
* more scalable
» more complex cache coherency protocol (if shared memory)
* longer latencies

 physically distributed memory

« non-uniform memory access (NUMA machine)

 could have processor clusters

e SGl, Convex, Cray, IBM, Intel

Autumn 2006 CSE P548 - Multiprocessors 9

High-end MP

) EmH ) m

Mroce: -\q I'rocessor (Illn |--...|.I':
+cach .I,-’I \.: cache cache /

-

Autumn 2006 CSE P548 - Multiprocessors 10




Comparison of Issue Capabilities

Single-chip

Superscalar Multip <or

horizo ntal waste

) Issueslols
--

] il O
= HECIC HEEEN
¢ moO0 EmOED
g LI I
£ HHEEN ]
l LI HEEN
1] OO0
LI EELI]
/ Il Thread1 Il Threcad 4
I Thread2
vertical waste
Autumn 2006 CSE P548 - Multiprocessors 11

Shared Memory vs. Message Passing

Shared memory
+ simple parallel programming model
 global shared address space
* not worry about data locality but
get better performance when program for data placement
lower latency when data is local

» but can do data placement if it is crucial, but don’t
have to

» hardware maintains data coherence
* synchronize to order processor’s accesses to shared data

« like uniprocessor code so parallelizing by programmer or
compiler is easier

= can focus on program semantics, not interprocessor
communication

Autumn 2006 CSE P548 - Multiprocessors 12




Shared Memory vs. Message Passing

Shared memory
+ low latency (no message passing software) but
overlap of communication & computation

latency-hiding technigues can be applied to message passing
machines

+ higher bandwidth for small transfers but
usually the only choice

Autumn 2006 CSE P548 - Multiprocessors 13

Shared Memory vs. Message Passing

Message passing

+ abstraction in the programming model encapsulates the
communication costs but

more complex programming model

additional language constructs

need to program for nearest neighbor communication
+ no coherency hardware
+ good throughput on large transfers but

what about small transfers?

+ more scalable (memory latency doesn't scale with the number of
processors) but

large-scale SM has distributed memory also
« hah! so you're going to adopt the message-passing
model?

Autumn 2006 CSE P548 - Multiprocessors 14




Shared Memory vs. Message Passing

Why there was a debate
« little experimental data
* not separate implementation from programming model
e can emulate one paradigm with the other

¢ MP on SM machine
message buffers in local (to each processor) memory
copy messages by ld/st between buffers
* SM on MP machine
Id/st becomes a message copy
sloooooooooow

Who won?

Autumn 2006 CSE P548 - Multiprocessors

15




