Issues in Multiprocessors

Which programming model for interprocessor communication
« shared memory
 regular loads & stores
¢ Sun, SGlI, Cray, Convex, KSR, Sequent
* message passing
» explicit sends & receives
e TMC, Intel, IBM

Which execution model
« control parallel
* identify & synchronize different asynchronous threads
« data parallel

« same operation on different parts of the shared data space
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Issues in Multiprocessors

How to express parallelism
» language support
« High-Performance Fortran, ZPL
< runtime library constructs
« coarse-grain, explicitly parallel C programs
e automatic (compiler) detection

« implicitly parallel C & Fortran programs, e.g., SUIF & PTRANS

compilers

Application development

« embarrassingly parallel programs could be easily parallelized

« development of different algorithms for same problem
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Issues in Multiprocessors

How to get good parallel performance
e recognize or create parallelism

« transform programs to increase parallelism without decreasing
processor locality

« decrease sharing costs
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Flynn Classification

SISD: single instruction stream, single data stream
 single-context uniprocessors

SIMD: single instruction stream, multiple data streams
« exploits data parallelism
« example: Thinking Machines CM

MISD: multiple instruction streams, single data stream
¢ machine pipeline
« example: Intel iWarp (systolic array), streaming processors

MIMD: multiple instruction streams, multiple data streams
e multiprocessors
* multithreaded processors
» parallel programming & multiprogramming

« relies on control parallelism: execute & synchronize different
asynchronous threads of control

< example: most processor companies have MP configurations
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Figure 1. Connection Machine system organization.
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MIMD

Low-end
* bus-based
» simple, but a bottleneck
 simple cache coherency protocol
» physically centralized memory
 uniform memory access (UMA machine)
« Sequent, & Alpha-, PowerPC- or SPARC-based servers
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Low-end MP
One or One or One or One or
more levels more levels more levels more levels
of cache of cache of cache of cache
I/0O System

Main memory
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MIMD

High-end

 higher bandwidth, multiple-path interconnect
* more scalable
» more complex cache coherency protocol (if shared memory)
* longer latencies

 physically distributed memory

« non-uniform memory access (NUMA machine)

 could have processor clusters

e SGl, Convex, Cray, IBM, Intel
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Comparison of Issue Capabilities
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Shared Memory vs. Message Passing

Shared memory
+ simple parallel programming model
 global shared address space
* not worry about data locality but
get better performance when program for data placement
lower latency when data is local

» but can do data placement if it is crucial, but don’t
have to

» hardware maintains data coherence
* synchronize to order processor’s accesses to shared data

« like uniprocessor code so parallelizing by programmer or
compiler is easier

= can focus on program semantics, not interprocessor
communication
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Shared Memory vs. Message Passing

Shared memory
+ low latency (no message passing software) but
overlap of communication & computation

latency-hiding technigues can be applied to message passing
machines

+ higher bandwidth for small transfers but
usually the only choice
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Shared Memory vs. Message Passing

Message passing

+ abstraction in the programming model encapsulates the
communication costs but

more complex programming model

additional language constructs

need to program for nearest neighbor communication
+ no coherency hardware
+ good throughput on large transfers but

what about small transfers?

+ more scalable (memory latency doesn't scale with the number of
processors) but

large-scale SM has distributed memory also
« hah! so you're going to adopt the message-passing
model?
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Shared Memory vs. Message Passing

Why there was a debate
« little experimental data
* not separate implementation from programming model
e can emulate one paradigm with the other

¢ MP on SM machine
message buffers in local (to each processor) memory
copy messages by ld/st between buffers
* SM on MP machine
Id/st becomes a message copy
sloooooooooow

Who won?
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