Reorder Buffer Implementation

Hardware data structures

* retirement register file (RRF)
(~ IBM 360/91 physical registers)

» physical register file that is the same size as the architectural
registers

* holds values of committed instructions
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Reorder Buffer Implementation

Hardware data structures

* reorder buffer (ROB)
(~ R10K active list)

* provides in-order instruction commit
« circular queue with head & tail pointers

» holds 40 “executing” instructions in program order
(dispatched but not yet committed)

« field for either integer or FP result after it has been computed

» aresult value is put in its register in the RRF after its producing
instruction has committed (i.e., reaches the head of the buffer &
is removed)
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Reorder Buffer Implementation

Hardware data structures

» register alias table (RAT)
(~ R10K map table)

« provides register renaming
» important because very few GPRs in the x86 architecture

« indicates whether a source operand of a new instruction points
to the reorder buffer or the physical register file

» do an associative search of ROB destination registers for the
new source operands

« if found, consumer instruction points to the producer
instruction in the ROB

 the data hazard check before instruction dispatch
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Reorder Buffer Implementation

Hardware data structures
* reservation station
(~ IBM 360/91 reservation stations, R10000 instruction queues)

* holds instructions waiting to execute
» provides forwarding to reduce RAW hazards

« result values go back to the reservation station (as well as
ROB) so dependent instructions have source operand
values

» provides out-of-order execution
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Pentium Execution

In-order issue

decode instructions

rename registers via register alias table

enter uops into reorder buffer for in-order completion
detect structural hazards for reservation station

Out-of-order execution

one reservation station, multiple entries

check source operands for RAW hazards

check structural hazards for separate integer, FP, memory units
execute instruction

result goes to reservation station & reorder buffer

In-order commit

this & previous uops have completed
write “G”PR registers
rollback on interrupts
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Pentium

fetch & decode pipeline
BTB access (1 stage)
instruction fetch & align for decoding (2.5 stages)
decode & uop generation (2.5 stages)

register renaming & instruction issue to reservation stations
(3 stages minimum)

integer pipeline
execute, resolve branch
write registers & commit
load pipeline
address calculation & to memory reorder buffer
integrated L1 & L2 data cache access
pipelined FP add & multiply
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Pentium P6

common fetch & decode pipeline (fetch unit)
BTB access

instruction fetch & align for decoding int
nops
decode & pop generation

|
|

register renaming
write pops to reservation station & ROB

integer pipeline

+ execution unit
ﬂ issue popsto ALUs
m execute, resolve branch
l commit unit

determine which instructions can retire

write registers & retire
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Pentium P6

commoaon fetch & decode pipeline (fetch unit)
BTB access

instruction fetch & align for decoding

decode & pop generation

[ ——

register renaming
write wops to reservation station

possible stalling before issue
Aqipeline

. |9 issue pops to LD/ST units
execution unit —— .
1 calculate effective address
[ possible stalling before access
11
= T L1 data cache access
12| 4
cacheaccess | 13
14 L2 data cache access
51 (bypass if L1hit)
¥
v, possible stalling before commit
commit unit 18| write registers &
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Pentium 4 (Netburst)

What the Pentium 4 looks like to me

Adopts the physical register file model
* physical register file

» 128 entries for both committed & in-flight operands
+ ROB

* operand status only

» also 128 entries
* 2register alias tables

« retirement RAT for operands of committed instructions
« front-end RAT for operands of in-flight instructions
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Pentium Pipeline Comparisons
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Pentium 4

Some bandwidth constraints: maximum for one cycle
* 16 bytes fetched
» 3instructions decoded
* 6 pops issued to the reorder buffer
* 4 uops dispatched to reservation station & functional units
* 1load & 1 store access to the L1 data cache
» 1 cache result returned
* 3 pops committed

e good instruction mix

* good instruction order

* operands available

» functional units available

» load & store to different cache banks

« all previous instructions already committed
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Pool of Physical Registers vs. Reorder Buffer

Think about the advantages and disadvantages of these implementations
* book claims that physical register commit is simpler
 record that value no longer speculative in register busy table
* unmap previous mapping for the architectural register

 instruction issue simpler (physical register pool)

« only look in one place for the source operands (the physical
register file)

» book claims that deallocating register is more complicated with a
physical register pool
» have to search for outstanding uses in the active list

» but not done in practice: wait until the instruction that redefines
the architectural register commits

- faster to index map table to get source operands than do
associative search on ROB

* can have more outstanding results
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Limits

Limits on out-of-order execution

* amount of ILP in the code

* scheduling window size
» need to do associative searches & its effect on cycle time
« relatively few instructions in window

* number & types of functional units

» number of locations for values

* number of ports to memory
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