Reorder Buffer Implementation

Hardware data structures

* retirement register file (RRF)
(~ IBM 360/91 physical registers)

» physical register file that is the same size as the architectural
registers

* holds values of committed instructions

Autumn 2006 CSE P548 - Reorder Buffer 1

Reorder Buffer Implementation

Hardware data structures

* reorder buffer (ROB)
(~ R10K active list)

* provides in-order instruction commit
« circular queue with head & tail pointers

» holds 40 “executing” instructions in program order
(dispatched but not yet committed)

« field for either integer or FP result after it has been computed

» aresult value is put in its register in the RRF after its producing
instruction has committed (i.e., reaches the head of the buffer &
is removed)

Autumn 2006 CSE P548 - Reorder Buffer 2

Reorder Buffer Implementation

Hardware data structures

» register alias table (RAT)
(~ R10K map table)

« provides register renaming
» important because very few GPRs in the x86 architecture

« indicates whether a source operand of a new instruction points
to the reorder buffer or the physical register file

» do an associative search of ROB destination registers for the
new source operands

« if found, consumer instruction points to the producer
instruction in the ROB

 the data hazard check before instruction dispatch

Autumn 2006 CSE P548 - Reorder Buffer

Reorder Buffer Implementation

Hardware data structures
* reservation station
(~ IBM 360/91 reservation stations, R10000 instruction queues)

* holds instructions waiting to execute
» provides forwarding to reduce RAW hazards

« result values go back to the reservation station (as well as
ROB) so dependent instructions have source operand
values

» provides out-of-order execution

Autumn 2006 CSE P548 - Reorder Buffer

?_raarnztt'n : Simple Decoder >
1
Buf? Reorder

('ggt{azt%ya) 8K Instruction Cache . f‘— .
4

Simple Decoder] | 3 By Buffer
\ (40 entries) |

Instruction : - - ;
- |Fetch Unit = i] 'la*a\1 | lalals

Reservation Station
(20 entries)

integer
U

Memory Reorder
Buffer (MOB)

.. ! %':taem,y) I 8K Dual-Ported Data Cache

System Bus Interface

164 data

Autumn 2006 CSE P548 - Reorder Buffer

Pentium Execution

In-order issue

decode instructions

rename registers via register alias table

enter uops into reorder buffer for in-order completion
detect structural hazards for reservation station

Out-of-order execution

one reservation station, multiple entries

check source operands for RAW hazards

check structural hazards for separate integer, FP, memory units
execute instruction

result goes to reservation station & reorder buffer

In-order commit

this & previous uops have completed
write “G”PR registers
rollback on interrupts

Autumn 2006 CSE P548 - Reorder Buffer

Pentium

fetch & decode pipeline
BTB access (1 stage)
instruction fetch & align for decoding (2.5 stages)
decode & uop generation (2.5 stages)

register renaming & instruction issue to reservation stations
(3 stages minimum)

integer pipeline
execute, resolve branch
write registers & commit
load pipeline
address calculation & to memory reorder buffer
integrated L1 & L2 data cache access
pipelined FP add & multiply

Autumn 2006 CSE P548 - Reorder Buffer

Pentium P6

common fetch & decode pipeline (fetch unit)
BTB access

instruction fetch & align for decoding int
nops
decode & pop generation

|
|

register renaming
write pops to reservation station & ROB

integer pipeline

+ execution unit
ﬂ issue popsto ALUs
m execute, resolve branch
l commit unit

determine which instructions can retire

write registers & retire

Autumn 2006 CSE P548 - Reorder Buffer

Pentium P6

commoaon fetch & decode pipeline (fetch unit)
BTB access

instruction fetch & align for decoding

decode & pop generation

[——

register renaming
write wops to reservation station

possible stalling before issue
Aqipeline

. |9 issue pops to LD/ST units
execution unit —— .
1 calculate effective address
[possible stalling before access
11
= T L1 data cache access
12| 4
cacheaccess | 13
14 L2 data cache access
51 (bypass if L1hit)
¥
v, possible stalling before commit
commit unit 18| write registers &
Autumn 2006 17 retire 9

Pentium 4 (Netburst)

What the Pentium 4 looks like to me

Adopts the physical register file model
* physical register file

» 128 entries for both committed & in-flight operands
+ ROB

* operand status only

» also 128 entries
* 2register alias tables

« retirement RAT for operands of committed instructions
« front-end RAT for operands of in-flight instructions

Autumn 2006 CSE P548 - Reorder Buffer 10

Pentium Pipeline Comparisons

Prefeteh Cecode | Decode | Execute Wrile=back

P& Microarchitecture

‘ Feich Fetch ‘Dem-de Decedde | Decode | Rename | ROE Rl | Rely/Sch | Dispateh | Execute

Pe Microarchiteetire

TC Mt [P TC Fetch Drive Alloc Kenama CQueue Schadule
i] | | i | |

Schedule| Schedule | Dispatch | Dispatch | Reg File | Reg File Ewecute | Flags BranchCk Drive

WatBurst Microarchitectura
Autumn 2006 CSE P548 - Reorder Buffer 11

Pentium 4

Some bandwidth constraints: maximum for one cycle
* 16 bytes fetched
» 3instructions decoded
* 6 pops issued to the reorder buffer
* 4 uops dispatched to reservation station & functional units
* 1load & 1 store access to the L1 data cache
» 1 cache result returned
* 3 pops committed

e good instruction mix

* good instruction order

* operands available

» functional units available

» load & store to different cache banks

« all previous instructions already committed

Autumn 2006 CSE P548 - Reorder Buffer 12

Pool of Physical Registers vs. Reorder Buffer

Think about the advantages and disadvantages of these implementations
* book claims that physical register commit is simpler
 record that value no longer speculative in register busy table
* unmap previous mapping for the architectural register

 instruction issue simpler (physical register pool)

« only look in one place for the source operands (the physical
register file)

» book claims that deallocating register is more complicated with a
physical register pool
» have to search for outstanding uses in the active list

» but not done in practice: wait until the instruction that redefines
the architectural register commits

- faster to index map table to get source operands than do
associative search on ROB

* can have more outstanding results
Autumn 2006 CSE P548 - Reorder Buffer 13

Limits

Limits on out-of-order execution

* amount of ILP in the code

* scheduling window size
» need to do associative searches & its effect on cycle time
« relatively few instructions in window

* number & types of functional units

» number of locations for values

* number of ports to memory

Autumn 2006 CSE P548 - Reorder Buffer 14

