
1

Autumn 2006 CSE P548 - Reorder Buffer 1

Reorder Buffer Implementation

Hardware data structures
� retirement register file (RRF)

(~ IBM 360/91 physical registers)
� physical register file that is the same size as the architectural

registers
� holds values of committed instructions

Autumn 2006 CSE P548 - Reorder Buffer 2

Reorder Buffer Implementation

Hardware data structures
� reorder buffer (ROB)

(~ R10K active list)
� provides in-order instruction commit
� circular queue with head & tail pointers
� holds 40 �executing� instructions in program order

(dispatched but not yet committed)
� field for either integer or FP result after it has been computed
� a result value is put in its register in the RRF after its producing

instruction has committed (i.e., reaches the head of the buffer &
is removed)

2

Autumn 2006 CSE P548 - Reorder Buffer 3

Reorder Buffer Implementation

Hardware data structures
� register alias table (RAT)

(~ R10K map table)
� provides register renaming

� important because very few GPRs in the x86 architecture
� indicates whether a source operand of a new instruction points

to the reorder buffer or the physical register file
� do an associative search of ROB destination registers for the

new source operands
� if found, consumer instruction points to the producer

instruction in the ROB
� the data hazard check before instruction dispatch

Autumn 2006 CSE P548 - Reorder Buffer 4

Reorder Buffer Implementation

Hardware data structures
� reservation station

(~ IBM 360/91 reservation stations, R10000 instruction queues)
� holds instructions waiting to execute
� provides forwarding to reduce RAW hazards

� result values go back to the reservation station (as well as
ROB) so dependent instructions have source operand
values

� provides out-of-order execution

3

Autumn 2006 CSE P548 - Reorder Buffer 5

Autumn 2006 CSE P548 - Reorder Buffer 6

Pentium Execution

In-order issue
� decode instructions
� rename registers via register alias table
� enter uops into reorder buffer for in-order completion
� detect structural hazards for reservation station

Out-of-order execution
� one reservation station, multiple entries
� check source operands for RAW hazards
� check structural hazards for separate integer, FP, memory units
� execute instruction
� result goes to reservation station & reorder buffer

In-order commit
� this & previous uops have completed
� write �G�PR registers
� rollback on interrupts

4

Autumn 2006 CSE P548 - Reorder Buffer 7

Pentium
fetch & decode pipeline

BTB access (1 stage)
instruction fetch & align for decoding (2.5 stages)
decode & uop generation (2.5 stages)
register renaming & instruction issue to reservation stations

(3 stages minimum)
integer pipeline

execute, resolve branch
write registers & commit

load pipeline
address calculation & to memory reorder buffer
integrated L1 & L2 data cache access

pipelined FP add & multiply

Autumn 2006 CSE P548 - Reorder Buffer 8

Pentium P6

5

Autumn 2006 CSE P548 - Reorder Buffer 9

Pentium P6

Autumn 2006 CSE P548 - Reorder Buffer 10

Pentium 4 (Netburst)

What the Pentium 4 looks like to me

Adopts the physical register file model
� physical register file

� 128 entries for both committed & in-flight operands
� ROB

� operand status only
� also 128 entries

� 2 register alias tables
� retirement RAT for operands of committed instructions
� front-end RAT for operands of in-flight instructions

6

Autumn 2006 CSE P548 - Reorder Buffer 11

Pentium Pipeline Comparisons

Autumn 2006 CSE P548 - Reorder Buffer 12

Pentium 4
Some bandwidth constraints: maximum for one cycle

� 16 bytes fetched
� 3 instructions decoded
� 6 µops issued to the reorder buffer
� 4 µops dispatched to reservation station & functional units
� 1 load & 1 store access to the L1 data cache
� 1 cache result returned
� 3 µops committed

if
� good instruction mix
� good instruction order
� operands available
� functional units available
� load & store to different cache banks
� all previous instructions already committed

7

Autumn 2006 CSE P548 - Reorder Buffer 13

Pool of Physical Registers vs. Reorder Buffer

Think about the advantages and disadvantages of these implementations
� book claims that physical register commit is simpler

� record that value no longer speculative in register busy table
� unmap previous mapping for the architectural register

� instruction issue simpler (physical register pool)
� only look in one place for the source operands (the physical

register file)

� book claims that deallocating register is more complicated with a
physical register pool

� have to search for outstanding uses in the active list
� but not done in practice: wait until the instruction that redefines

the architectural register commits

� faster to index map table to get source operands than do
associative search on ROB

� can have more outstanding results

Autumn 2006 CSE P548 - Reorder Buffer 14

Limits

Limits on out-of-order execution
� amount of ILP in the code
� scheduling window size

� need to do associative searches & its effect on cycle time
� relatively few instructions in window

� number & types of functional units
� number of locations for values
� number of ports to memory

