
1

Autumn 2006 CSE P548 - VLIW 1

VLIW Processors

VLIW (“very long instruction word”) processors

• instructions are scheduled by the compiler
• a fixed number of operations are formatted as one big instruction 

(called a bundle)
• usually LIW (3 operations) today
• change in the instruction set architecture,

i.e., 1 program counter points to 1 bundle (not 1 operation)

• want operations in a bundle to issue in parallel
• fixed format so could decode operations in parallel
• enough FUs for types of operations that can issue in parallel
• pipelined FUs

Autumn 2006 CSE P548 - VLIW 2

VLIW Processors

Roots of modern VLIW machines
Multiflow & Cydra 5 (8 to 16 operations) in the 1980’s

Today’s VLIW machines
Itanium (3 operations)
Transmeta Crusoe (4 operations)
embedded processors



2

Autumn 2006 CSE P548 - VLIW 3

VLIW Processors

Goal of the VLIW design: reduce hardware complexity
• less design time
• shorter cycle time
• better performance
• reduced power consumption

How VLIW designs reduce hardware complexity (in theory)
• less multiple-issue hardware

• no dependence checking for instructions within a bundle
• can be fewer paths between instruction issue slots & FUs

• simpler instruction dispatch
• no out-of-order execution, no instruction grouping

• no structural hazard checking logic
Compiler figures all this out.

Autumn 2006 CSE P548 - VLIW 4

VLIW Processors

Compiler support to increase ILP
• compiler creates each VLIW word
• greater need for good code scheduling than with in-order issue 

superscalars
• instruction doesn’t issue if 1 operation can’t



3

Autumn 2006 CSE P548 - VLIW 5

VLIW Processors

More compiler support to increase ILP
• detects hazards & hides latencies

• structural hazards
• no 2 operations to the same functional unit
• no 2 operations to the same memory bank

• data hazards
• no data hazards among instructions in a bundle

• control hazards
• predicated execution
• static branch prediction

• hiding latencies
• data prefetching
• hoisting loads above stores

Autumn 2006 CSE P548 - VLIW 6

Compiler Support for Increasing ILP

Compiler optimizations that increase ILP
• loop unrolling
• aggressive inlining: function becomes part of the caller code
• software pipelining: schedules instructions from different iterations 

together 
• trace scheduling & superblocks: schedule beyond basic block 

boundaries



4

Autumn 2006 CSE P548 - VLIW 7

ld R0,0(R1)
add R4,R0,R2
st R4,0(R1)

Compiler Support for Increasing ILP

Software pipelining

• a simple example

decrement index
termination test
conditional branch

Autumn 2006 CSE P548 - VLIW 8

Iteration n-2 Iteration n-1 Iteration n

ld R0,0(R1)
add R4,R0,R2 ld
st R4,0(R1) add ld

st add
st

Compiler Support for Increasing ILP

Software pipelining
• schedules instructions from different iterations together

decrement index
termination test
conditional branch



5

Autumn 2006 CSE P548 - VLIW 9

Compiler Support for Increasing ILP

Software pipelining
• handling memory accesses

st R4, 16(R1) stores into mem[i]
add R4, R0, R2 adds to mem[i-1]
ld R0, 0(R1) loads from mem[i-2]

• performance advantages: increasing ILP

• performance disadvantages: still executing loop control instructions

Autumn 2006 CSE P548 - VLIW 10

Global scheduling (trace scheduling & superblocks)
• schedule beyond basic block boundaries

A[i] = A[i] + B[i]
A[i] = 0?

B[i] = .. other code

C[i] = ..

• select a trace
• compact instructions within it
• compensate for crossing basic block boundaries

Compiler Support for Increasing ILP



6

Autumn 2006 CSE P548 - VLIW 11

Compiler optimizations that increase ILP
• unroll the trace
• trace scheduling: 

• trace entrances & exits at each iteration
• more difficulty & more compensation code than

• superblocks: trace exits at each iteration
• one trace entrance & multiple exits (each iteration)
• more difficulty & more compensation code than

• advantages depend on path frequencies, empty instruction slots, 
whether moved instruction is the beginning of a critical path, 
amount of compensation code on non-trace path

Compiler Support for Increasing ILP

Autumn 2006 CSE P548 - VLIW 12

IA-64 EPIC

Explicitly Parallel Instruction Computing, aka VLIW
IA-64 architecture, Itanium implementation

Bundle of instructions
• 128 bit bundles
• 3 instructions/bundle
• 2 bundles can be issued at once

• if issue one, get another



7

Autumn 2006 CSE P548 - VLIW 13

IA-64 EPIC

Registers
• 128 integer & FP registers

• implications for architecture?
• 128 additional registers for loop unrolling & similar optimizations

• implications for hardware?
• miscellaneous other registers
• implications for performance?

+

+

-

-

Autumn 2006 CSE P548 - VLIW 14

IA-64 EPIC

Full predicated execution
• supported by 64 one-bit predicate registers

• instructions can set 2 at once (comparison result & 
complement)

• example
cmp.eq r1, r2, p1, p2

(p1) sub 59, r10, r11

(p2) add r5, r6, r7



8

Autumn 2006 CSE P548 - VLIW 15

IA-64 EPIC

Full predicated execution
• implications for architecture?

• implications for the hardware?

• implications for exploiting ILP?

Autumn 2006 CSE P548 - VLIW 16

Template in each bundle that indicates:
• type of operation for each instruction
• instruction order in bundle
• examples (2 of 24)

• M: load & manipulate the address (e.g., increment an index)
• I: integer ALU op
• F: FP op
• B: transfer of control
• other, e.g., stop (see below)

• restrictions on which instructions can be in which slots
• schedule code for functional unit availability (i.e., template 

types) & latencies

IA-64 EPIC



9

Autumn 2006 CSE P548 - VLIW 17

IA-64 EPIC

Template, cont’d.
• a stop bit that delineates the instructions that can execute in 

parallel
• all instructions before a stop have no data dependences

• implications for hardware:
• simpler issue logic, no instruction slotting, no out-of-order issue
• potentially fewer paths between issue slots & functional units
• potentially no structural hazard checks
• hardware not have to determine intra-bundle data dependences

Autumn 2006 CSE P548 - VLIW 18

IA-64 EPIC

Branch support
• full predicated execution

• hierarchy of branch prediction structures in different pipeline stages
• 4-target BTB for repeatedly executed taken branches

• an instruction puts a specific target in it (i.e., the BTB is 
exposed to the architecture)

• larger back-up BTB
• correlated branch prediction for hard-to-predict branches

• instruction hint that branches that are statically easy-to-
predict should not be placed in it

• private history registers, 4 history bits, shared PHTs
• separate structure for multi-way branches

• branch prediction instruction for target forecasting
• branch prediction instruction for storing a prediction



10

Autumn 2006 CSE P548 - VLIW 19

IA-64 EPIC

ISA & microarchitecture seem complicated (some features of an out-of-
order processors)

• not all instructions in a bundle need stall if one stalls (a scoreboard 
keeps track of produced values that will be source operands for 
stalled instructions)

• branch prediction hierarchy
• dynamically sized register stack, aka register windows

• special hardware for register window overflow detection
• special instructions for saving & restoring the register stack

• register remapping to support rotating registers on the “register 
stack” which aid in software pipelining

• array address post-increment & loop control

Autumn 2006 CSE P548 - VLIW 20

IA-64 EPIC

More complication
• don’t want to store speculative values to memory

• special instructions check integer register poison bits to detect 
whether value is speculative (for nonspeculative code or 
exceptions)

• OS can override the ban on storing (e.g., for a context switch)
• different mechanism for speculative floating point values

• backwards compatibility
• x86 (IA-32)
• PA-RISC compatible memory model (segments)



11

Autumn 2006 CSE P548 - VLIW 21

Trimedia TM32

Designed for the embedded market
Classic VLIW

• no hazard detection in hardware
• nops “guarantee” that dependences are followed

• instructions decompressed on fetching

Autumn 2006 CSE P548 - VLIW 22

Superscalars vs. VLIW

Superscalar has more complex hardware for instruction scheduling
• instruction slotting or out-of-order hardware
• more paths or more complicated paths between instruction issue 

structure & functional units
• dependence checking logic between parallel instructions
• functional unit hazard checking
• possible consequences:

• slower cycle times
• more chip real estate
• more power consumption



12

Autumn 2006 CSE P548 - VLIW 23

Superscalars vs. VLIW

VLIW has more functional units if supports full predication
• paths between instruction issue structure & more functional units
• possible consequences:

• slower cycle times
• more chip real estate
• more power consumption

Autumn 2006 CSE P548 - VLIW 24

Superscalars vs. VLIW

VLIW has larger code size
• estimates of IA-64 code of up to 2X - 4X over x86

• 128b holds 4 (not 3) instructions on a RISC superscalar
• sometimes nops if don’t have an instruction of the correct type
• branch targets must be at the beginning of a bundle
• predicated execution to avoid branches
• extra, special instructions

• check for exceptions
• check for improper load hoisting (memory aliases)
• allocate register windows for local variables
• branch prediction

• consequences:



13

Autumn 2006 CSE P548 - VLIW 25

Superscalars vs. VLIW

VLIW requires a more complex compiler
• consequence: more design effort or poor quality code if good 

optimizations aren’t implemented

Superscalars can more efficiently execute pipeline-dependent code
• consequence: don’t have to recompile if change the implementation

What else?


	VLIW Processors
	VLIW Processors
	VLIW Processors
	VLIW Processors
	VLIW Processors
	Compiler Support for Increasing ILP
	Compiler Support for Increasing ILP
	Compiler Support for Increasing ILP
	Compiler Support for Increasing ILP
	Compiler Support for Increasing ILP
	Compiler Support for Increasing ILP
	IA-64 EPIC
	IA-64 EPIC
	IA-64 EPIC
	IA-64 EPIC
	IA-64 EPIC
	IA-64 EPIC
	IA-64 EPIC
	IA-64 EPIC
	IA-64 EPIC
	Trimedia TM32
	Superscalars vs. VLIW
	Superscalars vs. VLIW
	Superscalars vs. VLIW
	Superscalars vs. VLIW

