
CSE552 – Steve Gribble
Practical BFT

What is practical BFT?

• Byzantine consensus protocol
o Byzantine in the sense of BGP
o Consensus in the sense of paxos

§ Sequence of operations
§ “agents” [replicated state machines] must agree upon operations

and their order
§ clients are more or less trusted, and can suggest any operation

• with the caveat that agents must agree, so a malicious client
can still do damage but it is consistent damage

o mechanisms in place to prevent faulty primary from preventing forward
progress

§ Byzantine failures can be designed to stall
§ In paxos, liveness is only threatened by network delays and timing

coincidences from multileaders
§ In PBFT, have to prevent “malicious” timing attacks

• Scheme:
o Client sends request to primary, hears back directly from backups
o If doesn’t hear back soon enough, then client broadcasts directly to

backups, which relay to primary
o Because ordering is important, need to agree on order

§ Hence, have primary set order
§ Requires PBFT to also maintain consensus on who is primary
§ Basically a fault-tolerant token-holder subconsensus problem

• Assumes:
o Valid signatures on all replicas
o A non-faulty replica cannot have its signature forged by somebody else
o Some bounds on response times to ensure liveness

§ Still possible to not hit consensus, but really only in case that
responses are delayed arbitrarily, i.e., no recovery happens

o At most k faults for 3k+1 replicas
§ K+1 assertion of same value proves at least one non-faulty replica

asserts that value
§ 2K+1 votes for same value convinces all replicas that this value

has majority within non-faulty nodes and should be considered true

Assume everybody agrees on a view:

• Normal case operation:
o Client sends signed <REQUEST, op, T, client> message to primary

§ T = timestamp
§ Primary interacts with backups

o Backups eventually send response messages to client
§ <REPLY, v, T, c, i, r>signed_I
§ v = “current view”
§ I = backup number
§ R = response

o If client sees f+1 replies with same T,R, and with valid signatures, it
accepts the result

o If client times out before seeing replies, it retransmits REQUEST by
broadcasting directly to all replicas

§ This is what helps kickstart a viewchange later
o If client still times out, gives up! No consensus possible, and not clear if

operation succeeded.

• OK, so drill down into the “Primary interacts with backups”
o Three phase operation: pre-prepare, prepare, and commit

o Primary multicasts request to backups, preserving signature

§ <<PRE-PREPARE>, v, n, d>signed_p, m>
• n = a sequence number
• d = digest of message [why?]

§ so that message could be sent using different protocol
§ so that primary doesn’t have to sign entire message

o backup accepts preprepare message iff:
§ signatures in request and preprepare are correct
§ d is digest for m
§ backup is actually in view v [why?]

• so ordering is set by a single primary
§ it hasn’t accepted prepare for view v and sequence n before
§ sequence number between low, high water mark

• so primary can’t exhaust sequence number space
o outcome of preprepare is that backups know they need to kibitz with each

other to see if enough of them have agreement

o prepare: get replicas to make an order stable
§ each backup multicasts <PREPARE, v, n, d, i>signed_I to all other

replicas, and adds both preprepare and its sent prepare messages to
log

§ each backup accepts PREPARE messages and adds those to log
too, if:

• signatures are correct, view number matches local view,
and sequence number between watermarks

• thus, if anybody disagrees on view, everybody will
discover this

§ predicate prepared(m,v,n,i) true iff replica I has inserted into its log
(request m, preprepare for m with view v and seq # n, and 2f
prepares from different backups that match the preprepare)

• thus, if prepared(m,v,n,I) is true, all replicas will eventually
agree upon order of messages, and validity of messages

o because all non-faulty replicas will eventually have
the prepared predicate as true

o commit: make order stable across views

§ a replica (including primary) multicasts a commit message
• <COMMIT, v, n, D(m), I>signed_I

§ when prepared(m,v,n,I) becomes true
§ replicas accept commit messages and insert in log provided

everything matches up
§ two new predicates:

• committed(m,v,n): true iff prepared (m,v,n,I) is true for a
set of f+1 non-faulty replicas

o which is what you want to guarantee that those non-
faulty replicas will send response to client

• committed-local(m,v,n,I) is true iff prepared(m,v,n,I) is true
and I has accepted 2f+1 commits (including maybe its own)

o if committed-local is true for some I, then
committed is true

o if committed-local is true for some I, then it will
become true for at least f+1 non-faulty replicas

§ a replica executes operation requested by m once committed-local
is true and all previous op sequence numbers have been executed

• messages can commit out of order, that’s ok

The wrinkles:

• garbage collection- when can you eliminate stuff from logs?
o A replica can eliminated a message’s gunk from log when that replica is

convinced that at least f+1 non-faulty replicas have executed the operation
• Intuition: periodically generate checkpoints of service state

o Prove that checkpoint is correct
§ If can prove it, can eliminate messages behind checkpoint
§ Also, can use that checkpoint to recover another replica

o Proof:
§ Snapshot-like algo
§ At some event trigger (like sequence number = 0 mod 100) all

replicas issues <CHECKPOINT,n,d,I>signed_I message and sends
to everybody

• N is latest sequence number in checkpoint state
• D = digest of checkpoint state
• Checkpoint must be put somewhere on stable storage

§ Everybody collects these checkpoint messages in their logs
§ When somebody has 2f+1 of them, that person has proof.

o Checkpoints becoming stable (proven) are also used to advance high/low
water marks

• can also use checkpoints for view changes
o basically, when anybody wants to advance view (because it believes

primary has conked out), that replica sends out a view-change message
that contains new view number, and a proof of last stable checkpoint it
knows about

o also includes “leftover” state of prepared messages that aren’t in the
checkpoint

§ since those are used to commit these “leftovers”
o need a bunch of people (2f+1) to independently decide to send out view-

change messages before a view change happens
§ this prevents starvation through frequent view change

o when view change is initiated, the initiator stops processing non view
change messages (viewchange, checkpoint, and new-view)

o primary for new view terminates the viewchange protocol

Benchmarks

• lies, damn lies!
• Ran Andrew benchmark with a single client
• This means that:

o Each operation does full RTT before next is issued
o Means that server is underutilized
o Means that overhead of crypto isn’t included
o Only seeing effect of extra round-trip of protocol

