
Time, Clocks, and the Ordering of Events in a Distributed System

Motivating example: a distributed compilation service

• FTP server storing source files, object files, executable file
• stored files have timestamps, set by client and preserved by server

• basic procedure to depcheck(A)

o consider file A that depends on file B
§ if timestamp(A) < timestamp(B)

• compile B
o compile:

§ depcheck of B
§ fetch file
§ compile file
§ store result

• does this work?

o need client clocks to be tightly synchronized
§ offset must be less than time to fetch/compile a file

• alternative is to use logical clocks, obviously

Basic idea behind causal ordering

- Three concepts we have to pin down: process, events, and messages

o what is a process?
§ threads on a multiprocessor? Processes on OS? Etc.

o three kinds of events in a distributed system
§ local computation
§ send(M)
§ receive(M)

o what is a message?
§ shared memory communication?

Lamport’s happens before (“à”) relation

• within a process, if P1 comes before P2, then P1 à P2
o why?
o can we have P1, P2 concurrent with each other?

• across processes: message has two events, a = send(m), b = receive(m)

o a à b
o why?

§ in shared memory, aren’t a,b at the same time? (No!)
• transitivity

o if a à b and b à c, then a à c
o why?
o interpretation of happens before as “could have influenced”, i.e., causality

• Physical interpretation: a à b if you can move from a to b in the diagram by

following time within a process or message lines across processes

• two different events a, b are concurrent if neither a à b nor b à a
o interpretation as “could not have influenced”

Abstract logical clock

We want to build a system of clocks that respect causality

• each process Pi has a local clock Ci
• time of an event “a” at Pi is Ci(a)
• we want to logically synchronize the clocks, so that there is a global notion of

time C(a) = Ci(A)
o for this to be meaningful, the global clock C must respect lamport’s “clock

condition”
§ for any events a, b: if a à b then C(a) < C(b)
§ so, an event that happens before is earlier in global logical time

o there are two subconditions that, if they are respected, imply the clock
condition

§ C1: if a, b are events in Pi and a is before b, then Ci(a) < Ci(b)
§ C2: if a = send(m) and b = receive(m), then Ci(a) < Cj(b)

Imposes a series of tickpoints on the diagram

• C1: at least one tick between any two events on a process line
• C2: at least one tick between the send and receive of a message

and then straighten the lines:

Implementing logical clocks

There are many different implementations of logical clocks that are consistent with
Lamport’s clock conditions. He gives one:

• Each process Pi maintains a local counter Ci
• IR1:

o Each process Pi increments Ci between any two successive events
• IR2:

o Each process piggybacks timestamp Tm on a message it sents, where Tm
is Ci at the time of sending m

§ If a = send(m) by Pi, then m contains Tm = Ci(a)
§ On receiving m, Pj sets Cj to max(Cj, Tm+1)
§ The receipt of m is a separate event that then separately advances

Cj

• Properties of this implementation?
o Respects causality

§ If a à b, then C(a) < C(b)
o But, converse is not true

§ If C(a) < C(b), don’t know that a à b
§ Why? Both cases are possible

• Could be concurrent
• Could be causally preceeding

Global ordering

• Use logical clock to set order
• If tie, use process IDs as tiebreaker
• i.e., global order is (Logical timestamp) . (process ID)

Problems with causal ordering

• There could be events outside of the system that have causal influence on the
evolution of the system

o e.g., users telephoning each other. System could choose to order events in
way that breaks the telephone causality, since it doesn’t know the events
are causally related.

o Is there a way to implement a system that captures all forms of causality?
§ Hypothetically, yes – this is the Einstein relativity and physical

clocks

§ Need to keep clocks in tight synchronization with each other, in
particular, any pair of clocks’ offsets must be less than min
transmission time between them

o Hard question:
§ If all you can do to synchronize clocks is use the messages inherent

in the system, can you synchronize tightly enough to meet this
bound?

§ Lamport argues yes

• Causal ordering doesn’t actually imply influence, just potential influence
o Causal consistency algorithms tend to overconstrain as a result

Q: how far from physical time can logical time diverge? I.e., if logical time says two
events are concurrent, how far apart in time could they actually occur?

• Arbitrarily far, as clocks can run at independent rates until interaction occurs
• Depends on clock synchronization, depends on how long until interaction (or

transitive interaction) occurs.

Alternate system of logical clocks: vector timestamps, a.k.a. version vectors

Remember that with Lamport clocks, if a à b, then C(a) < C(b), but the converse is not
true.

We can build a logical clock that satisfies the clock condition, but for which the converse
is true: a vector clock.

• Each node maintains a vector of counters, one for each node in the system
• IR1:

o If two events a and b in Pi, and b is after a, then Pi sets VCi[i] = VCi[i]+1
• IR2:

o If a is “Pi sends m” and b is “Pj receives m”, then:
§ Pi increments VCi[i] and copies its full vector clock into m
§ For each k, VCj[k] = max(VCj[k], timestamp[k])

Need to know how to compare vector clocks:

VCi < VCj iff for all k, VCi[k] <= VCj[k] and there is one k s.t. VCi[k] < VCj[k]

It’s basically the partial order captured perfectly.

Back to distributed make

- How to fix?

o Use different ordering: causal ordering
o Make clocks more strongly synchronized

§ Physical clock ordering is consistent with “happens-before”
relationship if and only if length(event + msg transmit) > d

• Makes sure timestamps cannot go backwards
§ How tight? If clocks | Ci – Cj | < d for all I,j then need length

(compilation + msg transmit) > d
• Not always true, especially as compiles get faster

o Or, change timestamps at file server!!
§ Why does this work?

