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Background context 
 
We’ve seen three hard facts of life for computer systems: 
 

• concurrency is needed for performance:  to get both high throughput and low 
latency in the face of a mixture of I/O devices and CPUs, must exploit 
concurrency 

o parallelism – use multiple CPUs simultaneously 
o overlapping I/O and computation of the same job, or from multiple jobs, to 

overcome latency of device/network 
 

• concurrency in the face of data sharing creates consistency problems 
o need to use some form of synchronization or conflict detection to avoid 

races and resulting inconsistency (the concurrency control problem) 
 

• failures happen! 
o to software, hardware, and storage media (corruption or crash)! 
o and, as a result, we have to worry about partial computations and the 

correctness of computations after restart (the recovery problem) 
 
Nowhere is this more evident than when dealing with persistent data.  A database is a 
system that, amongst other things, solves concurrency control and recovery on behalf of 
programmers, shielding them from needing to worry about this. 
 
 
Transactions 
 
A turing-award-winning idea; a transaction is an abstraction provided to programmers 
that encapsulates a unit of work against a database.  Specifically, by wrapping a set of 
accesses and updates in a transaction, the database guarantees: 
 

• Atomicity 
o all or nothing:  either all operations in the transaction will complete 

successfully, or none of them will 
o said differently, after a transaction commits or aborts, the database will not 

reflect a partial result of that transaction.  all transactions will commit or 
abort. 

o Q:  if one were to guarantee failure-freeness, does atomicity come “for 
free”?  A: yes, though it is a wide definition of “failure” for this to be true, 
e.g., no rollback of conflicting or deadlocking transactions. 
 



• Consistency 
o transactions preserve some higher-level consistency constraints on the 

data:  a transaction on an internally consistent database leaves it in an 
internally consistent state 

o internal consistency == set of integrity constraints (e.g., salary of an 
employee cannot be negative) 

• Isolation 
o A transaction’s behavior is not impacted by the presence of other, 

concurrently executing transactions 
o said differently, a transaction will “see” only the state of the DB that 

would occur if the transaction were the only one running against the 
database, and it will produce results that it could produce if it were 
running alone 

o Q:  if one executes only a single transaction at a time, does “isolation” 
come for free?   A:  yes!  this is tied to the very definition of isolation. 

• Durability 
o The effects of committed transactions survive failures 

§ If there is non-volatile storage in the system:  the effects of a 
committed transaction must be reflected in non-volatile storage at 
all times. 

§ After a failure, the effects of committed transactions must be 
recoverable or already reflected in the DB. 

 
We’ll ignore the “C”, and focus on AID. 
 
 
Motivating examples 
 

 
 
 
 
 
 
 
 

Transfer: 
• assume statements operateson DB immediately, and DB is a single data structure 

o what happens if there is a crash after 03 but before 06? 
o database loses consistency – money is lost 

• Why? because the transfer is non-atomic 
o need some way of making sure entire transfer happens, or none 

 
ReportSum: 

• fine if ReportSum() executes before or after Transfer() 
• what happens if interleaved with Transfer()? 



• it depends on the interleaving…some are OK, some are not.  The following is not: 
 
 
 
 
 
 
 
 
 
 
 
 
Why is this not OK? 

• because ReportSum and Transfer both depend on the same data 
• and, Transfer is modifying that data 
• and, ReportSum sees both data that predates Transfer()  (B) and post-dates 

Transfer() (A) 
o violates this illusion of sequential execution!  we’ve lost isolation. 

 
 
Concurrency control, theory and practice 
 
We need to solve two different problems to really get a handle on isolation 
 

1. We know we need to interleave the operations of multiple transactions to get the 
efficiencies of concurrency.   Let’s call a specific interleaving a schedule 
(actually, it’s a partial ordering…more soon).  We have to decide which schedules 
are correct, and which are incorrect. 
 
The most widely accepted notion of correctness is serializability:  a schedule for a 
set of transactions produces the same output as some serial execution execution of 
those transactions (doesn’t matter which – why?). 
 
There are weaker notions of correctness that are possible too, that permit greater 
degrees of concurrency.  Notion of tradeoff between degree of consistency (weak 
vs strong) and the amount of concurrency possible. 
 

2. Once we have our notion of serializability dialed in, we need some mechanism for 
enforcing it.  Two main ways of doing it: 
 

a. using locks (or other synchronization primitives) to prevent conflicting 
accesses.  Two major issues:  deadlock avoidance/detection, and 
granularity-related tradeoff between lock overhead amount of concurrency 
allowed. 



b. optimistically permitting transactions to execute, detecting conflicts after 
the fact, and recovering from them with some sort of rollback. 

 
 
Serializability: 
 

• a schedule is just a partial ordering of the operations performed by a set of 
transactions 

• a schedule (an ordering) is partial, since it only needs to specify two kinds of 
dependencies in the schedule: 

o all operations of a given transaction, for which an order is specified by the 
transaction, must appear in that order in the schedule.  (Q: is it possible for 
operations to not need an order in a transaction?  A: yes, of course!  e.g., 
compute an aggregate over a set of tuples, doesn’t matter which order.) 

o the ordering of conflicting operations from different transactions must be 
specified.  two operations conflict if they both operate on the same data 
and at least one is a write() 

• two schedules are equivalent if (a) they contain the same transactions and 
operations, and (b) they order all conflicting operations of non-aborting 
transactions in the same way 

• example serial schedule: 

 
 

A schedule is serializable if and only if it is equivalent to some serial schedule! 
 
The following is serializable, because it is equivalent to the above: 
 

 
 
The following is not serializable, since any serial execution of Transfer and ReportSum 
will have both writes of Transfer preceding both reads of ReportSum (or vice versa): 

 
 
 
How does one implement serializability with locks? 
 

• pretty deep and complex topic 
• high-order bit:  2-phase locking 

o two kinds of locks 
§ shared lock (S) – read-only permission 
§ exclusive lock (X) – read or write 

o compatibility matrix between them 



§ if a transaction holds a lock, no other transaction can hold a 
conflicting lock 

 
o assume a transaction is well-formed: always grabs an S while reading, and 

an X while writing. 
§ well-formedness is not sufficient to enforce serializability!  why? 
§ because you also have to think about when it is safe to release a 

lock, otherwise the bad schedule from above can still happen. 
o two-phase locking says: 

§ once a transaction has released a lock, it is not allowed to obtain 
any additional locks (provides a kind of barrier – is a promise not 
to read/modify new items not already expressed through locks) 

• growing phase:  transaction acquires locks 
• shrinking phase:  transaction releases locks 

o two-phase locking is sufficient, but not necessary 
§ are some serializable schedules that 2PL excludes!  (see above) 

 
 
 
Recovery – coping with failures 
 
 
Useful to have a model of the database.  Two-level storage: 
 

• fast, page-allocated, volatile, lower-capacity RAM 
o want to use RAM wherever possible to speed things up, but suffer from (a) 

lower capacity than the DB, and (b) non-volatile after crash, so need to 
page stuff out for durability 

• slow, page-allocated, non-volatile, high-capacity secondary storage (flash or disk) 
o data is durable in here in case of crash 
o think of there being a data structure that contains consistent data 

§ cannot simply overwrite, since not atomic 
§ need to either shadow (Gray paper) or use a write-ahead log 

(Franklin) 
 
How to get durability and atomicity in spite of crashes?  Need to be able to do two kinds 
of things, logically: 
 

• need to be able to remove the effects of an incomplete / aborted transaction, in 
order to preserve atomicity 

o UNDO 
o Q: can we avoid having to keep undo information explicitly? 



§ need to undo if have modified the main data structure; can decide 
to only modify data structure after a commit, in which case don’t 
need an explicit undo record. 

• need to be able to re-instate effects of committed transactions that have not yet 
reached the main data structure 

o REDO 
o Q: can we avoid having to keep redo information explicitly? 

§ can avoid REDO if there is some way to do pointer-swap style 
atomic commit. 

 
Buffer management strategies: 
 

• STEAL:   if the buffer manager allows an update made by an uncommitted 
transaction to overwrite the most recently committed value on non-volatile 
storage, it supports STEAL 

o otherwise, NO-STEAL 
o obviously, NO-STEAL obliges buffer manager to keep stuff in memory 

until commit, or to write to a temporary location 
o STEAL is more efficient, but need logging (undo) 

• FORCE:  if the buffer manager ensures that all updates made by a transaction are 
reflected on non-volatile storage before the transaction is allowed to commit 

o otherwise NO-FORCE 
o if NO-FORCE, need some logging for durability (redo) 

 
NO-STEAL / FORCE place the fewest demands on the UNDO/REDO part of recovery 
management, but are the least efficient. 
 
Aries:  super-hairy but awesome STEAL / NO-FORCE recovery manager. 
 
 
Logging: 

• sequential file that stores info about transactions and state of the system 
• each entry is a log record with a log sequence number (position in the log) 

o entry can be an update to a record 
o entry can be a system checkpoint – information about what’s in the buffer 

pool, active transactions, etc. 
• physical logging 

o location of modified data in DB image, plus the data itself 
o if support for UNDO (i.e., STEAL is used), then the before image (old 

value) must be in a log record 
o if support for REDO (i.e., NO-FORCE is used), then the after image (new 

value) must be in a log record 
o physical records are idempotent, which is great, but large, which isn’t 

• logical logging 
o high-level information; less chatty, but more complex – logical actions 

might not be atomic, which complicates recovery. 



 
Write-ahead logging (WAL) 

• a protocol for ensuring that in the event of a crash, the recovery log contains 
sufficient information to perform the necessary REDO and UNDO work. 

• protocol has two requirements: 
a. all log records about an updated page must be written to non-volatile 

storage before the page itself is allowed to be overwritten in non-volatile 
storage  (to permit UNDO in case of STEAL) 

b. a transaction is not committed until all of its log records, including the 
commit record, have been written to stable storage (to permit REDO in 
case of NO-FORCE) 

 
Woohoo! 
 


