
CSE552 paxos // 04-29-13 // gribble

CSE 552
Paxos
Steve Gribble
Department of Computer Science & Engineering
University of Washington

CSE552 paxos // 04-29-13 // gribble

Remember from last time...

DB

Network

web
FE

vs
DB

replica

Network

web FE web FEweb FE

DB
replica

DB
replica

CSE552 paxos // 04-29-13 // gribble

Replication for availability

Execute multiple replicas of a server
- keep the replicas “in sync” somehow

- if a replica fails, there is enough redundancy in the system for
clients to receive service from the surviving replicas

CSE552 paxos // 04-29-13 // gribble

Strawman #1

Simple idea:
- each client sends all writes to all available replicas

Issues?

CSE552 paxos // 04-29-13 // gribble

Issue: ordering

Have to make sure each replica processes requests in
the same order as other replicas
- somehow, the replicas need to agree on the order of inputs

CSE552 paxos // 04-29-13 // gribble

Issue: determinism

Replicas need to be deterministic, otherwise they can
diverge
- determinism: the next state is a function only of the input and

the current state

- non-determinism
‣ many potential sources: checking the system time, multithreaded

timing, etc.

CSE552 paxos // 04-29-13 // gribble

Issue: recovery

Failed replicas will miss requests from clients
- need to have some mechanism for them to play catch-up

after they recover

CSE552 paxos // 04-29-13 // gribble

Strawman #2
Primary-backup
- clients communicate with a single replica (the primary)

‣ primary chooses order of requests

‣ primary updates the backups

‣ primary “resolves” non-determinism

- backups detect failure of the primary using timeout
‣ clients failover to a backup in case of primary failure

Issues?

CSE552 paxos // 04-29-13 // gribble

Issue: failure detection

The usual problem: how long of a timeout to set for our
failure detector?
- too short and primary will be falsely accused of failure

- too long and availability/performance is affected

CSE552 paxos // 04-29-13 // gribble

Issue: lag

When is it safe for the primary to ACK a client’s request?
- option #1: wait until all backups are updated

‣ slow but safe

- option #2: once primary is updated, but before backups
‣ fast but unsafe

CSE552 paxos // 04-29-13 // gribble

Issue: primary election

If primary fails, which backup should become the new
primary?
- issue becomes complicated in the case of multiple

simultaneous perceived failures -- laggy networks or
partitions, for example

- need to come to agreement on who the primary is, otherwise
have dueling primaries

CSE552 paxos // 04-29-13 // gribble

Issue: recovery

Same problem as with initial strawman
- once primary has failed, need to bring it back online and play

catch-up with the new primary

CSE552 paxos // 04-29-13 // gribble

Paxos

A set of protocols for dealing with replicated state
machines
- attempts to solve several problems

‣ agreeing on the order and value of inputs

‣ dealing with asynchrony (both of network and of processors)

• hence, dealing with failure (both of network and of processors)

CSE552 paxos // 04-29-13 // gribble

The “synod” protocol

The basic building block of Paxos
- goal: get the system to agree on a single value

- three roles: proposers, acceptors, learners
‣ proposers issue a series of rounds of proposals, suitably

constrained

‣ a value is “chosen” when a majority of acceptors accept it

‣ sometime later, learners learn that the value is chosen

CSE552 paxos // 04-29-13 // gribble

Outline

Synod
- how it works

- why it works

Replicated state machine protocol
- how it works

- optimizations

CSE552 paxos // 04-29-13 // gribble

Outline

Synod
- how it works

- why it works

Replicated state machine protocol
- how it works

- optimizations

CSE552 paxos // 04-29-13 // gribble

Synod

Two phase protocol
- phase 1: proposer decides it wants to propose a value, and

to do that, has to learn constraints on what can be proposed

- phase 2: proposer proposes a value, acceptors accept or
reject it

CSE552 paxos // 04-29-13 // gribble

Phase 1, step a
Proposer:
- selects an unused proposal number N

‣ each proposer owns some subset of proposal number space

‣ e.g., proposal number = localcount.proposerID

- sends “prepare” request with N to a majority of acceptors

Implications
- proposer must stably store previously used local proposer #s

and proposer ID

CSE552 paxos // 04-29-13 // gribble

Phase 1, step b
Acceptor:
- if acceptor receives a “prepare” request with number N, and N is

greater than any prepare request to which it has responded:
‣ it makes a promise not to accept any more proposals < N

‣ it responds with the highest numbered proposal, if any, it has already
accepted

- otherwise, do nothing

Implications: must stably store...

- highest numbered prepare request to which it has responded

- highest numbered proposal/value that it has ever accepted

CSE552 paxos // 04-29-13 // gribble

Phase 2, step a

Proposer:
- if receives a response to step 1b from a majority of acceptors:

‣ send to a majority of acceptors an “accept” request for proposal
numbered N with value V

‣ V is the value of the highest-numbered propoal among responses,
or any value if responses reported no proposals

- else, do nothing

CSE552 paxos // 04-29-13 // gribble

Phase 2, step b

Acceptor:
- if receive an “accept” request for proposal N value V:

‣ accept the proposal, unless it has already responded to a prepare
request having number greater than N

‣ optional: inform a distinguished learner of the outcome

- else do nothing

CSE552 paxos // 04-29-13 // gribble

Common case is simple

proposer +
learnerN = 0.0

acceptor

acceptor

acceptor

(N,V)accept = { }
Nprepare = { }

(N,V)accept = { }
Nprepare = { }

(N,V)accept = { }
Nprepare = { }

CSE552 paxos // 04-29-13 // gribble

Common case is simple

proposer +
learnerN = 1.0

acceptor

acceptor

acceptor

(N,V)accept = { }
Nprepare = { }

(N,V)accept = { }
Nprepare = { }

(N,V)accept = { }
Nprepare = { }

CSE552 paxos // 04-29-13 // gribble

Common case is simple

proposer +
learnerN = 1.0

prepare (N=1.0)

prepare (N=1.0)

prepare (N=1.0)

acceptor

acceptor

acceptor

(N,V)accept = { }
Nprepare = { }

(N,V)accept = { }
Nprepare = { }

(N,V)accept = { }
Nprepare = { }

CSE552 paxos // 04-29-13 // gribble

Common case is simple

proposer +
learnerN = 1.0

acceptor

acceptor

acceptor

(N,V)accept = { }
Nprepare = 1.0

(N,V)accept = { }
Nprepare = 1.0

(N,V)accept = { }
Nprepare = 1.0

CSE552 paxos // 04-29-13 // gribble

Common case is simple

proposer +
learnerN = 1.0

acceptor

acceptor

acceptor

(N,V)accept = { }
Nprepare = 1.0

(N,V)accept = { }
Nprepare = 1.0

(N,V)accept = { }
Nprepare = 1.0

prepared (N,V = { })

prepared (N,V = { })

prepared (N,V = { })

CSE552 paxos // 04-29-13 // gribble

Common case is simple

proposer +
learnerN = 1.0

acceptor

acceptor

acceptor

(N,V)accept = { }
Nprepare = 1.0

(N,V)accept = { }
Nprepare = 1.0

(N,V)accept = { }
Nprepare = 1.0

accept (N
,V=1.0,X)

accept (N,V=1.0,X)

accept (N,V=1.0,X)

CSE552 paxos // 04-29-13 // gribble

Common case is simple

proposer +
learnerN = 1.0

acceptor

acceptor

acceptor

(N,V)accept = 1.0,X
Nprepare = 1.0

Nprepare = 1.0

Nprepare = 1.0

(N,V)accept = 1.0,X

(N,V)accept = 1.0,X

CSE552 paxos // 04-29-13 // gribble

Common case is simple

proposer +
learnerN = 1.0

acceptor

acceptor

acceptor

(N,V)accept = 1.0,X
Nprepare = 1.0

Nprepare = 1.0

Nprepare = 1.0

(N,V)accept = 1.0,X

(N,V)accept = 1.0,X

accepted (N,V = 1.0,X)

accepted (N,V = 1.0,X)

accepted (N,V = 1.0,X)

CSE552 paxos // 04-29-13 // gribble

Worst case is unlikely

proposer +
learnerN = 0.0

acceptor

acceptor

acceptor

(N,V)accept = { }
Nprepare = { }

(N,V)accept = { }
Nprepare = { }

(N,V)accept = { }
Nprepare = { }

proposer +
learnerN = 0.1

CSE552 paxos // 04-29-13 // gribble

Worst case is unlikely

proposer +
learnerN = 1.0

acceptor

acceptor

acceptor

(N,V)accept = { }
Nprepare = { }

(N,V)accept = { }
Nprepare = { }

(N,V)accept = { }
Nprepare = { }

proposer +
learnerN = 0.1

CSE552 paxos // 04-29-13 // gribble

Worst case is unlikely

proposer +
learnerN = 1.0

acceptor

acceptor

acceptor

(N,V)accept = { }
Nprepare = { }

(N,V)accept = { }
Nprepare = { }

(N,V)accept = { }
Nprepare = { }

proposer +
learnerN = 0.1

prepare (N=1.0)

prepare (N=1.0)

prepare (N=1.0)

CSE552 paxos // 04-29-13 // gribble

Worst case is unlikely

proposer +
learnerN = 1.0

acceptor

acceptor

acceptor

(N,V)accept = { }
Nprepare = 1.0

(N,V)accept = { }
Nprepare = 1.0

(N,V)accept = { }
Nprepare = 1.0

proposer +
learnerN = 0.1

CSE552 paxos // 04-29-13 // gribble

Worst case is unlikely

proposer +
learnerN = 1.0

acceptor

acceptor

acceptor

(N,V)accept = { }
Nprepare = 1.0

(N,V)accept = { }
Nprepare = 1.0

(N,V)accept = { }
Nprepare = 1.0

proposer +
learnerN = 0.1

prepared (N,V = { })

prepared (N,V = { })

prepared (N,V = { })

CSE552 paxos // 04-29-13 // gribble

Worst case is unlikely

proposer +
learnerN = 1.0

acceptor

acceptor

acceptor

(N,V)accept = { }
Nprepare = 1.0

(N,V)accept = { }
Nprepare = 1.0

(N,V)accept = { }
Nprepare = 1.0

proposer +
learnerN = 1.1

prep
are

 (N
=1.1)

prepare (N=1.1)

prepare (N=1.1)

CSE552 paxos // 04-29-13 // gribble

Worst case is unlikely

proposer +
learnerN = 1.0

acceptor

acceptor

acceptor

(N,V)accept = { }
Nprepare = 1.1

(N,V)accept = { }
Nprepare = 1.1

(N,V)accept = { }
Nprepare = 1.1

proposer +
learnerN = 1.1

CSE552 paxos // 04-29-13 // gribble

Worst case is unlikely

proposer +
learnerN = 1.0

acceptor

acceptor

acceptor

(N,V)accept = { }
Nprepare = 1.1

(N,V)accept = { }
Nprepare = 1.1

(N,V)accept = { }
Nprepare = 1.1

proposer +
learnerN = 1.1

prep
are

d (N
,V = { }

)

prepared (N,V = { })

prepared (N,V = { })

CSE552 paxos // 04-29-13 // gribble

Worst case is unlikely

proposer +
learnerN = 1.0

acceptor

acceptor

acceptor

(N,V)accept = { }
Nprepare = 1.1

(N,V)accept = { }
Nprepare = 1.1

(N,V)accept = { }
Nprepare = 1.1

proposer +
learnerN = 1.1

accept (N,V=1.0,X)

accept (N,V=1.0,X)

accept (N,V=1.0,X)

CSE552 paxos // 04-29-13 // gribble

Worst case is unlikely

proposer +
learnerN = 1.0

acceptor

acceptor

acceptor

(N,V)accept = { }
Nprepare = 1.1

(N,V)accept = { }
Nprepare = 1.1

(N,V)accept = { }
Nprepare = 1.1

proposer +
learnerN = 1.1

reject (Nprepare=1.1)

reject (Nprepare=1.1)

reject (Nprepare=1.1)

CSE552 paxos // 04-29-13 // gribble

Worst case is unlikely

proposer +
learnerN = 2.0

acceptor

acceptor

acceptor

(N,V)accept = { }
Nprepare = 1.1

(N,V)accept = { }
Nprepare = 1.1

(N,V)accept = { }
Nprepare = 1.1

proposer +
learnerN = 1.1

CSE552 paxos // 04-29-13 // gribble

Worst case is unlikely

proposer +
learnerN = 2.0

acceptor

acceptor

acceptor

(N,V)accept = { }
Nprepare = 1.1

(N,V)accept = { }
Nprepare = 1.1

(N,V)accept = { }
Nprepare = 1.1

proposer +
learnerN = 1.1

prepare (N=2.0)

prepare (N=2.0)

prepare (N=2.0)

CSE552 paxos // 04-29-13 // gribble

Worst case is unlikely

proposer +
learnerN = 2.0

acceptor

acceptor

acceptor

(N,V)accept = { }
Nprepare = 2.0

(N,V)accept = { }
Nprepare = 2.0

(N,V)accept = { }
Nprepare = 2.0

proposer +
learnerN = 1.1

CSE552 paxos // 04-29-13 // gribble

Worst case is unlikely

proposer +
learnerN = 2.0

acceptor

acceptor

acceptor

(N,V)accept = { }
Nprepare = 2.0

(N,V)accept = { }
Nprepare = 2.0

(N,V)accept = { }
Nprepare = 2.0

proposer +
learnerN = 1.1

prepared (N,V = { })

prepared (N,V = { })

prepared (N,V = { })

CSE552 paxos // 04-29-13 // gribble

Worst case is unlikely

proposer +
learnerN = 2.0

acceptor

acceptor

acceptor

(N,V)accept = { }
Nprepare = 2.0

(N,V)accept = { }
Nprepare = 2.0

(N,V)accept = { }
Nprepare = 2.0

proposer +
learnerN = 1.1

acc
ept (N

,V=1.1,Y)

accept (N,V=1.1,Y)

accept (N,V=1.1,Y)

CSE552 paxos // 04-29-13 // gribble

Worst case is unlikely

proposer +
learnerN = 2.0

acceptor

acceptor

acceptor

(N,V)accept = { }
Nprepare = 2.0

(N,V)accept = { }
Nprepare = 2.0

(N,V)accept = { }
Nprepare = 2.0

proposer +
learnerN = 1.1

reje
ct (

Nprep
are

=2.0)

reject (Nprepare=2.0)

reject (Nprepare=2.0)

CSE552 paxos // 04-29-13 // gribble

Worst case is unlikely

proposer +
learnerN = 2.0

acceptor

acceptor

acceptor

(N,V)accept = { }
Nprepare = 2.0

(N,V)accept = { }
Nprepare = 2.0

(N,V)accept = { }
Nprepare = 2.0

proposer +
learnerN = 2.1

prep
are

 (N
=2.1)

prepare (N=2.1)

prepare (N=2.1)

CSE552 paxos // 04-29-13 // gribble

Worst case is unlikely

proposer +
learnerN = 2.0

acceptor

acceptor

acceptor

(N,V)accept = { }
Nprepare = 2.1

(N,V)accept = { }
Nprepare = 2.1

(N,V)accept = { }
Nprepare = 2.1

proposer +
learnerN = 2.1

CSE552 paxos // 04-29-13 // gribble

Worst case is unlikely

proposer +
learnerN = 2.0

acceptor

acceptor

acceptor

(N,V)accept = { }
Nprepare = 2.1

(N,V)accept = { }
Nprepare = 2.1

(N,V)accept = { }
Nprepare = 2.1

proposer +
learnerN = 2.1

prep
are

d (N
,V = { }

)

prepared (N,V = { })

prepared (N,V = { })

CSE552 paxos // 04-29-13 // gribble

Worst case is unlikely

proposer +
learnerN = 2.0

acceptor

acceptor

acceptor

(N,V)accept = { }
Nprepare = 2.1

(N,V)accept = { }
Nprepare = 2.1

(N,V)accept = { }
Nprepare = 2.1

proposer +
learnerN = 2.1

accept (N,V=2.0,X)

accept (N,V=2.0,X)

accept (N,V=2.0,X)

CSE552 paxos // 04-29-13 // gribble

Worst case is unlikely

proposer +
learnerN = 2.0

acceptor

acceptor

acceptor

(N,V)accept = { }
Nprepare = 2.1

(N,V)accept = { }
Nprepare = 2.1

(N,V)accept = { }
Nprepare = 2.1

proposer +
learnerN = 2.1

reject (Nprepare=2.1)

reject (Nprepare=2.1)

reject (Nprepare=2.1)

CSE552 paxos // 04-29-13 // gribble

Worst case is unlikely

proposer +
learnerN = 2.0

acceptor

acceptor

acceptor

(N,V)accept = { }
Nprepare = 2.1

(N,V)accept = { }
Nprepare = 2.1

(N,V)accept = { }
Nprepare = 2.1

proposer +
learnerN = 2.1

AND SO ON...

CSE552 paxos // 04-29-13 // gribble

Fun paxos games

Assume there are 5 agents, and three leaders L1/L2/L3
- leaders don’t know if a value is yet chosen

Leader L1 issues prepare in round 3.L1, and gets back:
- (2.L2, X), -, -, (2.L2, X), (2.L2, X)

‣ what is the correct next step?

CSE552 paxos // 04-29-13 // gribble

Fun paxos games

Leader L1 issues prepare in round 3.L1, and gets back:
- (2.L2, X), -, -, -, (2.L2, X)

‣ what is the correct next step?

CSE552 paxos // 04-29-13 // gribble

Fun paxos games

Leader L1 issues prepare in round 3.L1, and gets back:
- (2.L2, X), -, (2.L3, Y), -, (2.L2, X)

‣ what is the correct next step?

CSE552 paxos // 04-29-13 // gribble

Fun paxos games

Leader L1 issues prepare in round 3.L1, and gets back:
- { }, { }, (2.L3, Y), { }, { }

‣ what is the correct next step?

CSE552 paxos // 04-29-13 // gribble

Outline

Synod
- how it works

- why it works

Replicated state machine protocol
- how it works

- optimizations

CSE552 paxos // 04-29-13 // gribble

Deriving paxos

Context
- assume an asynchronous system

‣ messages can be dropped, reordered, delayed, but not corrupted

‣ agents can take arbitrarily long to respond to messages

- assume fail-stop failures only
‣ agents function correctly, or not at all

CSE552 paxos // 04-29-13 // gribble

What Paxos promises

Paxos will:
- guarantee “safety” under all circumstances

‣ including many simultaneous leaders, high rate of failure/recovery

- terminate under some circumstances
‣ if a single leader runs by itself in a round for a long enough time

period that it can talk to a majority of agents twice

CSE552 paxos // 04-29-13 // gribble

Safety

“Safety” = consistency + validity
- only a single value is chosen

‣ an agent never learns that a value is chosen unless it has been

- only a value that has been proposed may be chosen

CSE552 paxos // 04-29-13 // gribble

Let’s start deriving

Imagine a single leader exists, does phase 1a, sends out
accepts in 2a, then dies.
- if a majority of agents hear 1a and 2a, the proposal must be

chosen according to our termination criteria

- HENCE, an agent must accept the first proposal it hears

CSE552 paxos // 04-29-13 // gribble

Only a single value is chosen

Assume in round M that value V is chosen
- then, every higher-numbered proposal that is chosen must

have value V
‣ but, a proposer can’t predict if its proposal will be chosen

- HENCE, if a proposal M with value V has been chosen, every
higher-numbered proposal must have value V

CSE552 paxos // 04-29-13 // gribble

Implications

During phase 1, a proposer must find out what proposals
might have been chosen already
- and if it is conceivable that a proposal has been chosen, it

must select the same value for its future proposals

During phase 1, a proposer must prevent “temporally
concurrent” proposals from previous rounds from being
chosen
- otherwise it might not learn about them

CSE552 paxos // 04-29-13 // gribble

So...
During phase 1
- acceptors must:

‣ (a) report back on values they have accepted

‣ (b) promise not to accept values from lower-numbered proposals

- proposer must:
‣ assume the highest-numbered, accepted proposal might have been

chosen, and adopt it for its next proposal in phase 2

Together, can use induction to prove safety

CSE552 paxos // 04-29-13 // gribble

Why majority?

If a proposal is chosen, a majority of agents accepted the
value
- any two majority sets share at least one agent

- during interrogation in phase 1, if you hear back from a
majority of agents, at least one will be in that “chosen” set

CSE552 paxos // 04-29-13 // gribble

Outline

Synod
- how it works

- why it works

Replicated state machine protocol
- how it works

- optimizations

CSE552 paxos // 04-29-13 // gribble

Model

proposer +
learner +
acceptor

proposer +
learner +
acceptor

proposer +
learner +
acceptor

paxos group

client

client

client

request
 response

CSE552 paxos // 04-29-13 // gribble

Model
proposer +
learner +
acceptor

proposer +
learner +
acceptor

proposer +
learner +
acceptor

XYWD

XYWD

XYWD

client

CSE552 paxos // 04-29-13 // gribble

Implementation

One paxos agent is elected to be the “leader”
- we’ll talk about how in a bit

All clients funnel their requests through the leader
- the leader orders the requests

- for each request, the leader runs a paxos synod instance
‣ the Jth instance of paxos synod determines the Jth command in the

sequence passed to the replicas

CSE552 paxos // 04-29-13 // gribble

Implementation

proposer +
learner +
acceptor

proposer +
learner +
acceptor

proposer +
learner +
acceptor

paxos group

client

client

client

request
 response

leader

synod

CSE552 paxos // 04-29-13 // gribble

Newly elected leader

Since L is a learner in all instances of consensus, it
should already know most of the commands that have
been chosen. For example, it might know commands
1-10, 13, and 15.
- it executes phase 1 of 11, 12, and 14, and of all instances 16

and larger
‣ maybe it learns 14 and 16 are constrained, and 11, 12, and all

commands after 16 are unconstrained

‣ L executes phase 2 of 14 and 16, choosing commands for them

CSE552 paxos // 04-29-13 // gribble

Stop-gap

Now, all replicas can execute 1-10, but not 13-16,
because 11 and 12 haven’t yet been chosen
- L can either:

‣ (a) take the next two commands issued to be 11 and 12

‣ (b) immediately propose a special “no-op” command for 11 and 12

- L then runs phase 2 of consensus for 11 and 12
‣ once consensus achieved, all replicas execute all commands

through 16

CSE552 paxos // 04-29-13 // gribble

Multipaxos

Now, the leader has executed phase 1 for all open slots
- it can just proceed to phase 2 for those slots

- “short-circuit” the two-phase protocol in the common case

CSE552 paxos // 04-29-13 // gribble

On leader failure...

Any of the surviving agents can self-promote to leader
- do so by running phase 1

- paxos synod takes care of multiple concurrent self-
promotions

- if you get your value chosen, you’re the new leader, otherwise,
step back

CSE552 paxos // 04-29-13 // gribble

Membership changes

We need to distinguish between:
- temporary failure plus eventual recovery

- permanent failure leading to membership change

Membership change requires consensus
- use Paxos to agree on membership change proposals

