
Bigtable

• Google’s first answer to the question: “how do you store semi-structured data at scale?”
o scale in capacity

§ e.g., webtable
• 100,000,000,000 pages * 10 versions per page * 20 KB / version
• 20 PB of data (200 million gigabytes)

§ e.g., google maps
• 100TB of satellite image data

o scale in throughput
§ hundreds of millions of users
§ tens of thousands to millions of queries per second

o low latency
§ a few dozen milliseconds of total budget inside Google
§ probably have to involve several dozen internal services per request
§ can afford only a few milliseconds / lookup on average

Data model

• Data model is richer than a
filesystem but poorer than full-
fledged database

• Table indexed by
o row key . column key .

timestamp
o lets you do fast lookup

on a key
o lets you do multiversion

storage of items
• Rows ordered lexicographically,

so scans are in order
o lets you use a bigtable to

do a sort
• Simple access model: column family is unit of access control

Programming interface

Imperative, language-specific APIs vs. declarative SQL-like language

Bottom-up description of Bigtable’s design

Tablet

• a row range
• is the unit of distribution and load balancing
• reads of short row ranges are efficient, as stay within a single tablet usually

SSTable

• a file format used to store bigtable data durably
• persistent, ordered, immutable key:value map

o lookup, iterate operations
• stored as a series of 64KB blocks, with a block index at the end

o index is loaded into memory when SSTable is opened
o lookup in a single seek; find block in memory index, seek to block on disk

Tablet server

• manages 10-1000 tablets
o handles read/write requests to tablets that it is assigned
o splits tablets when they get too big

• durable state is stored in GFS (a scalable file system)
o GFS gives you atomic append and fast sequential reads/writes

• writes:
o updates committed to a commit log that

stores REDO records (i.e., WAL)
o recently committed writes are cached

in memory in a memtable
o older writes are stored in a series of

SStables
• reads:

o executed on a merged view of the
SSTables and the memtable

§ both are lexicographically
stored, so merge is efficient

• Compactions

o When memtable reaches a threshold size, a minor compaction happens
§ memtable is frozen and written to GFS as an SStable
§ new Memtable is created, and tablet log “redo point” is updated – i.e.,

tablet log is pruned
§ goals: reduce memory footprint, reduce amount of tablet log read during

recovery
o Periodically, do a merging compaction

§ read multiple SStables and memtable, write out a single new SStable
o Once in a while, do a major compaction

§ merging compaction that produces a single SStable
§ lets you suppress deleted data, that previously lived in old SStables

(tombstone is needed)

High-level structure

§ three major components to bigtable
o a “client library” that is linked into each client

§ soft-state: caches (key range) -> (table server location) mappings
o a single “master” server

§ assigns tablets to tablet servers
§ detects addition/deletion of tablet servers
§ balances load across tablet servers
§ garbage collects GFS files
§ handles schema changes (e.g., addition of column families, tables)

o many tablet servers
§ handles read/write requests to its tablets
§ splits tablets when they get too big (> ~200MB)

o a chubby cell
§ ensures there is a single master
§ stores bootstrap location of bigtable data
§ discovery and death finalization of tablet servers
§ store bigtable schema and access control information

§ (key) to (tablet) to (tablet server)

mapping
o chubby file stores the location of

the root tablet
o root tablet stores the location of

all METADATA tablets
o METADATA tablet stores the

location of a set of user tablets
o tablet locations served out of

memory

o client library caches tablet locations
§ moves up the hierarchy if it misses in cache or cache entry is stale
§ empty cache: three round-trips

• one to chubby, one to root tablet, one to other METADATA
table

§ prefetching done here – why?

Tablet assignment

• Chubby is used to track tablet servers
o when a tablet server is started, it creates and acquires a lock on a uniquely named

file in Chubby’s “servers” directory (membership management!)
§ master monitors this directory to discover new tablet servers
§ if a tablet server loses its exclusive lock, tablet server stops serving, and

attempts to regain the lock
§ master grabs lock and removes file to cause tablet server to kill itself

permanently; master reassigns tablets in this case
• Chubby is used to track the master

o when a new master is started, it:

§ grabs the unique master lock in chubby (leader election!)
§ scans the servers directory to find live servers
§ communicates with the live servers to learn what tablets they are serving
§ scans METADATA table to learn set of tablets that exist
§ assigns unassigned tablets to tablet servers

o Q: why not store tablet à tablet server assignments durably in chubby?
§ no need; tablet servers already store the truth of what tablets they serve,

and small enough number of them that a full scan is cheap, given how
infrequently the master restarts

Optimizations

• tablet-server-side write-through cache
o scan cache: high-level key/value cache blockcache: GFS block cache
o why no data cache in client library?

• SSTable per “locality group” – a set of column families

o excludes from reads unrelated columns

• SSTables can be compressed
o 10-1 reduction in space

§ and thus improvement in logical disk bandwidth
o decompression presumably done on server-side? no network bandwidth benefits!

• bloom filter

o explain what a bloom filter is
o in-memory bloom filter filters out most lookups for non-existent rows/columns

Performance – 1000 byte read/write benchmark

Go over ordering of lines

Scans: batch multiple
reads into a single RPC
(read-sequential reads
one-per-RPC)

Random writes and
sequential writes are
roughly the same, since
both result in appends to
a log

Random reads is the
worst, since each request
involves a 64KB SStable
block read from GFS to a tablet server

