
Dynamo

Context

Dynamo observes that the storage layer sets a bound on the reliability and scalability of a scalable
system. Therefore, they try hard to provide the usual properties:

• scalability: incremental; add a node at a time

• symmetry: no “special roles” – all features exist in each node. Simplifies management?
An extension of this is decentralization: no centralized control. Avoids outages caused
by failure of the centralized control nodes.

• availability: reads and writes must succeed even if nodes have failed. Leads dynamo to

pick a relaxed eventual consistency model, implying conflict resolution is needed.

• SLAs: focus in 99.9th percentile of latency (1 in a 1000). They don’t describe any
particular technique to lower this tail latency, however; they just measure it.

Design

Data partitioning

• consistent hashing
o circular ID space

§ map both the key (hash) and the node (random ID) to it
§ key is stored on first node that is a successor

o virtual nodes
§ each physical node is stored as many virtual nodes
§ lets you adapt to node heterogeneity (# virtual nodes ∝ capacity)
§ if many virtual nodes, then on failure, load spread out evenly across ring

• advantages
o automatically adapts data partitioning as node membership changes, with

minimal “reshuffling” of data during repartitioning
o random node and key assignment gives an approximation to load balance

• disadvantage
o uneven distribution of key storage is a natural consequence of random node

names; leads to uneven query load
o key management can be expensive when nodes transiently fail

§ as must transfer state on failure, then transfer back on recovery
• need a routing algorithm

o given a key, how do you know which node is responsible?
o Dynamo: O(1) routing by having all nodes know about all nodes; flat, complete

routing table

Replication

• each data item is replicated at N hosts (usually N=3)
• “preference list”: the set of nodes that is responsible for storing a

particular key
o the node the key is assigned to, followed by its N-1

physically distinct successors

• when new replica is created (e.g., in response to permanent failure), or when doing
pairwise anti-entropy, data transfer is coordinated using “merkle tree”

o hash tree
o lets you quickly “zoom in” on parts of the data that differ, and minimize the data

that has to be transferred to check for inconsistencies

Data versioning

• dynamo provides “eventual consistency” – updates propagate asynchronously, i.e., a put()
call will return to its caller before the update is applied at all the replicas

o implies get() operations may return an object that does not have the latest updates
o also implies that concurrent put()’s to the same key can result in replica

divergence – why?
o also implies that failures can result in replica divergence – why? (nodes

partitioned off won’t get update; update propagates only within the partition)
• idea: each modification creates a new, immutable version of the data

o multiple versions can be present at the same time
o most of the time, the system will be able to determine which version is

authoritative (“syntactic reconciliation”)
o sometimes, the client needs to step in to reconcile multiple branches (“semantic

reconciliation”)
• idea: name versions using vector clocks to capture causality

o clock stores list of (coordination server, version at that server) pairs
o can examine clocks to understand causal history; helpful for clients during

semantic reconciliation
o issue: need to store vector clocks, and those clocks may grow in size if many

servers act as coordination server for a key. truncate this list over time.

How get() and put() work

• Dynamo uses a (sloppy) quorum based consistency protocol
o R: minimum number of nodes that must participate in a read
o W: minimum number of nodes that must participate in a write
o if R+W > N, you get a quorum, and per-key sequential consistency

§ dynamo typically operates with N=3, R=2, W=2
§ but, applications can override to choose their own settings

• reads and writes go to the first N healthy nodes in the preference list, skipping those that

are down or inaccessible
o for a put(), the coordinator (the first node in the list) generates a vector

timestamp, writes the new version locally, then sends the new version to the N
highest-ranked reachable nodes. If at least W-1 respond, the write is successful.

o for a get(), coordinator requests all versions of the key from the N highest-ranked
reachable nodes, waits for R responses, and returns gathered results to the client.

§ implies client may get multiple causally distinct versions of the data, in
which case its up to the client to reconcile.

§ nice side-effect: since R < N, waiting for first R helps deals with
stragglers!

Evaluation

Latency as a function of time:

• writes 2x slower than reads – why? (disk
access)

• 99.9th percentile 10x of average – why? is
this good? how do they achieve it?

o “99th percentile affected by factors
such as variability in request load,
object sizes, and locality patterns”
-- bursts in load, large objects, cold
objects

• note that latency ∝ load. why?

Write latency can be reduced by using “buffered write” –
write into an in-memory buffer, slowly drain that buffer
to disk.

• sacrifices durability under some failure modes for
performance in the common case

• what do you think of relying on “store in multiple
nodes’ memory” as a durability guarantee?

Divergent version frequency

• 99.94% of requests saw one version
• 0.00057% saw two versions
• 0.00047% saw three versions
• 0.00009% saw four versions

• “experience shows that the increase in number of divergent versions is contributed not by

failures but due to the increase in the number of concurrent writers.”
o concurrent write sharing is rare, so divergence is rare
o “triggered by busy robots – sensitive nature of the story” J

