
Dryad and DryadLINQ

MapReduce is great, but it lacks flexibility in the structure of
computation that can be represented. One way to visualize
MapReduce computations is as a graph structure (a DAG).

If you can pigeonhole your application into this structure, it
will run as a MapReduce job. But, not all applications
naturally fit this structure.

Dryad generalizes MapReduce to arbitrary DAGs.

Channels can be nearly anything that represents a sequence of typed items:

• temporary on-disk files
• TCP pipes
• shared memory FIFO

DAG is general, can be used for example to represent any SQL query (DAG supports the
full relational algebra)

• uniform graphs become non-uniform after optimization

Very similar scheduling, fault tolerance story as mapreduce

• vertices are stateless, deterministic computations
• no cycles means that after failure, can just re-run a vertex. (if the vertex’s inputs

are lost, then rerun upstream vertices, transitively.)

I I I I I I• • •

M M M M M M

R R R R• • •

O O O O

Example:

Cool side-effect of using Dryad: optimizations can be done on the graph structure by
Dryad, without understanding the semantics of the application itself.

DryadLINQ

Think of Dryad as middleware – most programmers don’t want to think about manually
constructing graphs. Instead, programmers will write in some higher-level language, and
have their programs compiled down into Dryad graphs. Multiple higher-level “front
ends” have been built by MSFT:

• SSIS – SQLServer workflow engine
• Perl + SQL
• DryadLINQ

LINQ is a way to integrate SQL-like relational queries into a C# program.

