
P2P DHT lecture

History

• MIT folks invented consistent hashing
o a way to partition keys across nodes, and minimize repartition costs when

add/remove nodes
o used as a way of partitioning content across CDN or Web cache nodes
o simple design

§ hash all URLs onto unit circle
§ hash all servers onto unit circle
§ all URLs that preceed server are mapped onto it

o tree implementation does it
§ insert server hashes into binary tree
§ lookup URL hash in tree to find successor

• P2P file-sharing happened
o inspired people to look for decentralized layers for systems

§ why?
• notion that large-scale systems are fundamentally how

we’re going to build things
• notion that decentralization is good for a bunch of reasons:

fault tolerance, privacy/anonymity, scalability
• notion that centralized systems create lock-in similar to

proprietary OSs, and that the only way to foster academic
or approachable innovation for this class of system is to
allow decentralized, p2p systems to do it

• if so, need some abstractions and building blocks to
simplify / build on top of

• storage and routing seem to be important
o hash table quickly settled on as on potentially interesting layer

§ why?
• is essentially an indirection scheme

o provides rendezvous inside network
• and it provides associative /content-based lookup

o abstracts location away from value
o scalable storage independent of location

§ storage: insertion, lookup
§ anycast:

• insert(group_name, node1) insert(group_name, node2)
….;

• to do anycast, pick_one(lookup(group_name))
§ a pub-sub subscribe list
§ mobile IP

• virtual name in DHT, physical name is lookup
• a lot like a TLB

o research “land rush” to build scalable, consistent distributed hash tables

• Chord, Pastry, CAN
o Chord: distributed version of consistent hashing
o Pastry: distributed plaxton tree – also ring based
o CAN: geometric routing
o interestingly, all seem to have similar properties and problems

§ Properties:
• log(n) routing table storage for N participants
• log(n) hops to route to destination
• significant fraction of nodes need to fail to disrupt

reachability
• concurrent distributed joins possible

o “eventual convergence” as nodes come and go
o no strong consistency bounds [ugh]

§ Problems:
• path inflation – “relative delay penalty” to IP route

o locality awareness as key
§ flexibility in choosing neighbors and routes

as solution to getting there
• need to defend against malicious nodes

o sybil attacks:
§ blockades: take away ability to choose

virtual node ID
o node harvesting
o data harvesting
o misrouting: need to recover
o returning false values: “detect” at higher level,

solve with redundancy
• load balancing

o # of routes that flow through node
§ spread requests across node IDs, assume

right thing happens
o # of keys that reside on node

§ lots of keys, virtual servers, caching, etc.
• “scruffiness” in consistency/coherence semantics born

from churn
o can’t promise much; especially if caching or

replication turned on
§ no cache consistency semantics defined
§ apps usually require non-mutable data as

result, or no caching
• easy to handle popular part of popularity curve, hard to

handle tail
o caching and natural replication in particular

o major challenge: what apps can you build using this layer?
§ this papers – storage systems
§ other papers – the other ideas. backup, multicast/anycast video,

file sharing, disappearing data.

o Personally, I think the question is backwards
§ what apps are best built on this layer, as opposed to some other

abstraction or technique?
o popular P2P systems using DHTs

§ Kademlia, Overnet, eDonkey
o idea seems to be cooling off now…though if you squint, the data center

storage papers have elements of DHTs.

Chord overview

• ring
o node IDs – hashed into ring
o key – kashed into ring
o successor(key) stores the key

• linked list around Chord for correctness
o insertion – split linked list
o removal – patch linked list

§ challenge: dealing with silent failures
• R successors maintained to recover
• stabilization algorithm; periodically ask neighbors who

their neighbors are, exchange, converge
• finger pointers – tunnel through ring space

o log(N) fingers
o ith entry contains identity of first node that succeeds node n by at least

2^(i) on ring
§ what it looks like
§ why “first node”? can have better flexibility than that; can be

anywhere in the interval [2^i, 2^i+1).
§ this is tremendous freedom – allows to make highly locality aware

o populate finger table by querying existing node and stealing the plum
entries from it

§ as nodes come/go: if finger table entry stale, re-acquire from other
node. if joined, need to insert into other nodes’ finger tables –
must find them. deterministic in practice.

• routing
o worst case average N/2 using successor list
o finger tables, assuming correct, log(n)
o algorithm:

§ fetch routing table from current node
• pick next hop from routing table
• set as current node

§ pick next hop

• q: what are you trying to optimize?
o hop count?
o network latency?
o something else?

• smallest # of chord hops: max such that node is a
predecessor

• might have terrible RDP
• CFS: proposes compromise between chord distance and

network distance
• node authentication

o nodeid = hash(IP + virtual node #)
o is remotely verifiable
o prevents attacker from controlling nodeid

• load balancing
o virtual servers lets you pick # of nodes per physical server
o is this enough?

§ massive heterogeneity possible in participants – bandwidth, disk
capacity, CPU

§ moderate variation possible in key assignment – normal
distribution, implying each with k +- sqrt(k) keys.

§ significant variation possible in key load
§ significant variation possible in value size
§ virtual server idea to smooth out imbalances – mostly to deal with

heterogeneity in participants and keyspace issues.

Applications

• CFS
o idea: disk and DHT have the same interface

§ can in principle map file system directly onto DHT
§ CFS == SFSRO mapped onto DHT rather than disk blocks

o issue with this?
§ reliability different – network/node failures vs. block failures

• need replication to make OK
• replication expensive under high churn

§ trust very different – malicious nodes out there, disk probably not
• name blocks by hash of their content; self-verifying

§ latency very different –
• 5-6 hops * 20-50ms/hop == 100-200ms/fetch
• caching very important to achieve good performance
• same problem as all P2P systems – only helps with head of

popularity curve [“natural replication”]
§ bandwidth very different – 40MB/s disk vs. what??

• no real notion of “sequential bandwidth” like a disk has

• blocksize increase is only way to improve – 8KB for
CFS(!?)

§ administrative boundaries different
• hard for you to control quality of storage of your files

o best you can do is manually replicate [insert same
file with multiple names]

• how do you do debugging in this kind of system? who is
allowed to “fix” system if it breaks?

o why do decentralized storage in the first place?
§ thought experiment: “because we can”
§ CFS as backup system
§ popular content distribution mechanism

• think of CFS kind of having Akamai-like functions built in

