P2P file sharing lecture

History

- Every 5-6 years, the Internet gets turned on its head
 - email: first killer app
 - ftp: next one
 - Web and CDNs: next
 - P2P file sharing: previous
 - TV through the Web: current
 - Mobility / geolocal / ???: next?
- P2P ignited by music download
- Confluence of technical trends made music download possible
 - Effective perceptual compression, hard drive capacity, edge bandwidth
 - 1996 was the tipping point [256 kb/s broadband, .mp3]
- Music industry was too slow to move
 - Fear, uncertainty, technical misunderstanding
 - File-sharing systems filled the gap
- File sharing architecture chosen to solve a number of problems
 - No commercial providers provider bandwidth scarce
 - Need to leverage peer upload bandwidth
 - Technically a rich problem area
 - Load balancing / routing
 - Replication
 - Search
 - Legal question issues
 - Centralized service is a legal target
 - Distributed harder to shut down
- Led to two separate research questions
 - what is this new media workload, and is the Internet capable of serving it?
 - what else is a peer-to-peer architecture "good for" besides stealing music?

Legalities

- Two types of infringment
 - direct you copied/sold/performed something
 - indirect or "secondary" infringement -- you sell a product or run a system that encourages direct infringement
- Direct infringement
 - not much to say about this, besides "fair use" exceptions exist
 - fair use broad guidelines and case-by-case exceptions
 - seems likely that file sharing is not fair use in USA
- Indirect infringement two main theories of it contributory and vicarious infringement
- Contributory:

- 1. There was some direct infringement
- 2. Defendant knew of should have known about it
- o 3. Defendant materially contributed to direct infringement
- Technical defense against contributory knowledge of infringing acts, and material contribution to infringing acts
 - P2P: only know in general; courts think this is enough
 - Material contribution: if not running server, is up in air
- A key defense against contributory infringement betamax
 - Defeat if show product is capable of "substantial" or "commercially significant" non-infringing uses
 - Betamax: time travel as a fair use
- Does P2P fall under betamax defense?
 - Answer: so far, yes, with caveats.
- Vicarious:
 - 1. There was some direct infringement
 - 2. Defendant had right or ability to control infringer [police]
 - 3. Defendant derived direct financial benefit from infringing acts
 - Key example:
 - swap meet operator and bootleg tape booth
 - Does P2P fit criteria for Vicarious?
 - answer: 1 and 3 clearly. 2 is the big issue
 - Interestingly, legal liability comes down to technical question of control
 - different answers for different architectures!!
- Recording and movie industry responses
 - 1. Sue toolsmith [so far, bittorrent has escaped why? No search!]
 - 2. Sue individuals [is "working"]
 - 3. Get congress to change the law
 - new theories of secondary infringment
 - anti-betamax: massive infringement
 - "could have designed it to police"
 - responsibility to implement effective technical filtering
- Judicial system
 - \circ so far, doing the right thing. quote from 9th circuit
 - o recognizes "quicksilver technological environment"
 - courts ill suited to fix flow of internet innovation
 - new technology always disruptive
 - time and market forces often bring new equilibrium
 - o "inducement" law
 - cannot encourage
 - soon filtering requirements
 - technological battlefield once again

Technical considerations

- Three main aspects need to understand
- (1) Characteristics of peers bandwidth, latency, availability, etc.
 building blocks
- (2) Workload presented by peers popularity distribution, file size, etc.
- (3) Architecture of system

Characteristics of peers – MMCN '02 paper

- Substantial heterogeneity in every aspect of peers
 - bandwidth: multi-hump CDF
 - many modems, broadband, and "rich" peers
 - most of hump is in broadband nowadays
 - estimates: several 100 million broadband hosts in Internet
 - latency: wide spectrum from any point in world
 - really three "zones"
 - same coast O(10ms)
 - opposite coast -- O(100ms)
 - different continent O(300ms)
 - if traversing an overlay to find content, need to avoid overlay links spanning continents or coasts
 - \circ activity:
 - some "heavy hitter" peers that download a lot
 - some "kernel" peers that upload a lot
 - most peers do neither
 - and most requests are from non-heavy-hitters
 - two real issues here:
 - churn in stable population [try and leave]
 - those that stay decay into steady-state only fetch the new interesting stuff
 - \circ availability:
 - heavy-tailed availability distribution
 - median time is in short # of hours
 - implications for storage system?
 - is this fundamental?
 - \circ "ethics":
 - freeloading is rampant
 - most people take more than they give if allowed
 - does this matter?
 - lying is common
 - people will misreport bandwidth toward their favor
 - enforcement how in decentralized system??
 - currency how to bootstrap, how to make non-forgeable
 - reputation cheap to falsify, especially with collusion
 - best answer seems to be pairwise fair-exchange

- major conclusions:
 - plenty of resources in peers: bandwidth, storage capacity, CPU
 - but hard to tap
 - even though goal was P2P, ends up looking a lot like client/server
 - "churn" in population leads to lots of issues for durable storage applications
 - heterogeneity in population leads to lots of optimization possibilities for routing applications

Characteristics of workload: SOSP '2003

- popularity: Zipf-like, but with flattened head
 - Zipf: universal property of most human consumption
 - heavy-tails usually a function of reinforcement
 - Popular get half requests, unpopular get other half
 - or something like that 80/20 rule?
 - head of curve is "easy"
 - widely replicated, easy to find, plenty of local copies, plenty of swarm opportunity
 - tail of curve is "hard"
 - not widely replicated, have to look long and hard to find, will transfer from far away over network, hard to build a swarm
 - Zipf is normally a static notion
 - for P2P, evolution of popularity over time matters just as much
 - typical popularity over time curve
 - height of popularity in youth
 - timescale of days or weeks, depending on format

- major job of peer-to-peer system widely disseminate the rising stars.
- unlike web cache, no strong notion of steady-state warm cache constant churn of bringing new stars in and kicking old has-beens out
- Popularity observed is modulated by caching
 - P2P: fetch-at-mostonce because objects are expensive and immutable
 - Leads to significantly flattened head
 - reduced opportunity for caching?

- object size:
 - media: 4MB songs, 1GB movies
 - 4MB: about 1 second to download at full bore broadband, ~10 seconds at UL == DL
 - 1GB: about 5 minutes at full bore download, and ~1 hour at UL
 == DL
 - interesting inflection point: last byte latency < playback time. Allows for streaming media delivery. We're finally there; catalyzed services like Hulu and Netflix VoD.
 - big technical question:
 - should media be stored at home (TiVo + bittorrent)
 - or in the network/ISP (Hulu / VoD)
- degree of replication and "object availability"
 - function of architecture
 - broadly speaking, popular are everywhere, unpopular nowhere
 - Zipf says both parts of distribution matter, though models like Netflix may be changing this
 - high degree of locality because of popular replication
 - in UW trace of kazaa, most bytes (85%) could have been served locally if we had a campus proxy cache

Overall

- pretty different than Web system
 - Zipf vs. Zipf-like
 - o Large media objects vs. small text/graphics --- bulk/batch vs. interactive
 - Popularity over time shift

Architecture

Compare on two axis:

- 1. Search architecture
- 2. Transport architecture
- Napster
 - o centralized directory for search
 - o peer-to-peer single-connection download
 - limitations?
 - centralized directory as scaling bottleneck --- nope!
 - single-connection download as transport bottleneck yup!
 - no "locality-awareness" in selecting peer/servers backbone pressure
 - no caching architecture why?
- Gnutella [unstructured]

0

- overlay with broadcast for search
 - hugely inefficient and non-scalable
 - popular stuff is findable
 - unpopular is not
 - evolved over time to have metadata caches
- essentially single-connection download
 - evolved over time to "swarm"
- Fasttrack / Kazaa [semistructured]
 - two-level hierarchy supernodes and nodes
 - search: search peer neighborhood on supernode first
 - if miss, gnutella amongst supernodes
 - in principle supernode level could be bottleneck, but worked up to millions of nodes
 - find popular fast, unpopular is harder
 - transport: simple swarm
 - MD5 hashes to identify same file at multiple providers
 - user could select "group" of files and download in parallel from each
 - file would be "chunked" into 1-2MB chunks
 - data naturally flows from faster provider
 - no locality awareness
 - backbone pressure
 - no caching
 - organizational pressure
 - no explicit replication
 - unpopular hard to find

Bittorrent: [no structure to finding content -- model is more like multicast]

- No search you need to name the torrent stream o name tracker
- Tracker maintains list of all peers currently in stream
 - each peer can ask for list of random 50
 - \circ contacts up to ~10 in that list and starts asking for blocks
- notion of a "root seed"

•

- just a peer that provider puts up that has all the blocks
- "tit-for-tat" protocol
 - peer: only upload to somebody who is uploading to you
 - and from time to time give a freebie
 - purports to solve the freeloading problem
 - ensures download rate is tied to upload rate
 - but degree of freedom in:
 - which peers to "unchoke" and upload to
 - how to split upload rate
 - bittryant: greedy choices lead to better local performance. Not yet clear what global impact is.
- questions:

0

- what is the best download performance you should expect from a p2p system?
 - can argue that UL == DL is one natural equilibrium
 - getting more than that means
 - (a) many people are uploading but not download; or
 - (b) any excess you get is stealing from somebody else; or
 - both.
- o does performance get better as more people join the system?
 - no still get UL == DL, except for a few transients
 - how should root seed be provisioned?
 - some choices:
 - (a) push as much as possible; wasteful
 - (b) constantly push max UL; only helps high bandwidth
 - notion of leverage
 - (c) hope there is enough benevolence out there that just need to maintain at least one copy of each block
 - seems to work in practice light fuse and run

Long term questions

- can edge bandwidth handle it?
 - o currently architected for download, not upload
 - \circ risk of saturation
 - o 10-15 year innovation cycle on edge; some countries ahead of us
- if legal issues go away, does P2P still make sense?
 - Web \rightarrow CDN: pushing content closer to edge
 - not clear it needs to be pushed to other side of edge
 - more of an economic / market force question
- longer term: time-shifting devices changing the nature of media consumption
 - \circ $\;$ right now is the most traumatic time for content production
 - o broadcast: conflates efficient delivery with scheduled consumption
 - Internet: can it have efficient delivery?
 - not clear yet; designed as point-to-point system
 - maybe good [necessary?] for unpopular part of tail
 - o In world of unscheduled consumption, what is right architecture?
 - where are bytes stored? [home? everywhere else?]
 - where are they consumed?