
MetaSync
File	Synchronization	Across	Multiple	
Untrusted	Storage	Services	

Seungyeop Han,	Haichen	Shen,	Taesoo Kim*,	
Arvind	Krishnamurthy,	Thomas	Anderson,	and	

David	Wetherall

University	of	Washington *Georgia	 Institute	of	Technology
1

File	sync	services	are	popular

400M of	Dropbox users	reached	in	June	2015
2

Baidu(2TB)

Many	sync	service	providers

Dropbox (2GB) Google	Drive	(15GB)

MS	OneDrive (15GB) Box.net (10GB)

3

Can	we	rely	on	any	single	service?

4

Existing	Approaches

• Encrypt	files	to	prevent	modification
– Boxcryptor

• Rewrite	file	sync	service	to	reduce	trust
– SUNDR	(Li	et	al.,	04),	DEPOT	(Mahajan et	al.,	10)

5

MetaSync:
Can	we	build	a	better file	synchronization	
system	across	multiple	existing	services?		

MetaSync

6

Higher	availability,	greater	capacity,	higher	performance
Stronger	confidentiality &	integrity

Goals

• Higher	availability
• Stronger	confidentiality	&	integrity
• Greater	capacity	and	higher	performance

• No	service-service,	client-client	
communication

• No	additional	server
• Open	source	software

7

Overview

• Motivation	&	Goals
• MetaSync Design
• Implementation
• Evaluation
• Conclusion

8

Key	Challenges

• Maintain	a	globally	consistent	view of	the	
synchronized	files	across	multiple	clients

• Using	only	the	service	providers’	unmodified
APIs without	any	centralized	server

• Even	in	the	presence	of	service	failure

9

Overview	of	the	Design

Synchronization ReplicationObject
Store

MetaSync

Backend	abstractions
Local	Storage

Dropbox Google
Drive OneDrive Remote

Services

10

1.	File	Management

Object	Store

• Similar	data	structure	with	version	control	
systems	(e.g.,	git)

• Content-based	addressing	
– File	name	=	hash	of	the	contents
– De-duplication
– Simple	integrity	checks

• Directories	form	a	hash	tree
– Independent	&	concurrent	updates

11

Object	Store

12

head =	f12…

Dir1

abc…

Dir2

4c0…

Large.bin

20e…

blob blob
blob

small1 small2

• Files	are	chunked	or	grouped	into	blobs
• The	root	hash	=	f12…	uniquely identifies	a	snapshot

Object	Store

13

old	=	f12…

Dir1

abc…

Dir2

4c0…

Large.bin

20e…

blob blob
blob

small1 small2

• Files	are	chunked	or	grouped	into	blobs
• The	root	hash	=	f12…	uniquely identifies	a	snapshot

1ae…

blob

head =	07c…

Large.bin

Overview	of	the	Design

Synchronization ReplicationObject
Store

MetaSync

Backend	abstractions
Local	Storage

Dropbox Google
Drive OneDrive Remote

Services

14

2.	Consistent	update

Updating	Global	View

Global
View

v0	ab1…

Client1 Prev

Head

Prev

Head

Client2

master

15

Previously	synchronized	point

Current	root	hash

Updating	Global	View

Global
View

v0	ab1…

Client1 Prev Head

PrevClient2

v1	c10…

master

16

Head

Updating	Global	View

Global
View

v0	ab1…

Client1 Prev

Head

PrevClient2

v1	c10…

master

17

Head

Updating	Global	View

Global
View

v0	ab1…

Client1 Prev

Head

PrevClient2

v1	c10…

master

18

Head

Updating	Global	View

Global
View

v0	ab1…

Client1 Prev

Prev HeadClient2

v1	c10…

v2	7b3…

master

19

Head

v2	f13…

Updating	Global	View

Global
View

v0	ab1…

Client1 Prev

Prev

Head

Client2

v1	c10… v2	7b3…

master

20

Head

v2	f13…

Updating	Global	View

Global
View

v0	ab1…

Client1 Prev

Prev

Head

Client2

v1	c10… v2	7b3…

master

21

Head

v3	a31…

Consistent	Update	of	Global	View

• Need	to	handle	concurrent	updates,	
unavailable	services	based	on	existing	APIs

MetaSync

Dropbox

MetaSync

Google
Drive OneDrive

root=	f12… root=	b05…

22

Paxos

• Multi-round	non-blocking	consensus	
algorithm
– Safe	regardless	of	failures
– Progress	if	majority	is	alive

Proposer Acceptor
23

Metasync:	Simulate	Paxos
• Use	an	append-only	 list to	log	Paxos messages
– Client	sends	normal	Paxos messages
– Upon	arrival	of	message,	service	appends	it	into	a	list
– Client	can	fetch	a	list	of	the	ordered	messages

• Each	service	provider	has	APIs	to	build	append-
only	list
– Google	Drive,	OneDrive,	Box:	Comments	on	a	file
– Dropbox:	Revision	list	of	a	file
– Baidu:	Files	in	a	directory

24

Metasync:	Passive	Paxos (pPaxos)

• Backend	services	work	as	passive	acceptor
• Acceptor	decisions	are	delegated	to	clients

Clients Passive Storage	Services

S2

S1

S3

25

P1

P2

propose(3)

Metasync:	Passive	Paxos (pPaxos)

• Backend	services	work	as	passive	acceptor
• Acceptor	decisions	are	delegated	to	clients

Clients Passive Storage	Services

S2

S1

S3

26

P1

P2

propose(2)

Metasync:	Passive	Paxos (pPaxos)

• Backend	services	work	as	passive	acceptor
• Acceptor	decisions	are	delegated	to	clients

Clients Passive Storage	Services

S2

S1

S3

27

P1

P2

fetch(S1)

fetch(S2)

fetch(S3)

Metasync:	Passive	Paxos (pPaxos)

• Backend	services	work	as	passive	acceptor
• Acceptor	decisions	are	delegated	to	clients

Clients Passive Storage	Services

S2

S1

S3

28

P1

P2

accept(3,	v1)

fetch

DiskPaxos

29

Disk	1 Disk	2 Disk	3

P1 P2 P3

Propose

DiskPaxos

30

Disk	1 Disk	2 Disk	3

P1 P2 P3

Fetch

Paxos vs.	Disk	Paxos vs.	pPaxos

• Disk	Paxos:	maintains	a	block	per	client	

Proposer

Acceptor

computation

Propose Accept

Paxos

Proposer

Acceptor

disk	blocks

Propose Check

Disk	Paxos

…

Proposer

Acceptor

append-only

Propose Check

pPaxos

Gafni &	Lamport ’02

Requires	acceptor	API
O(clients	x	acceptors)O(acceptors) O(acceptors)

31

require
#	msgs

Overview	of	the	Design

Synchronization ReplicationObject
Store

MetaSync

Backend	abstractions
Local	Storage

Dropbox Google
Drive OneDrive Remote

Services

32

3.	Replicate	objects

Stable	Deterministic	Mapping

• MetaSync replicates	objects	R	times	across	S	
storage	providers	(R<S)

• Requirements
– Share	minimal	information	among	services/clients
– Support	variation	in	storage	size
–Minimize	realignment	upon	configuration	changes

• Deterministic	mapping

– E.g.,	map(7a1…)	=	Dropbox,	Google

33

Deterministic	Mapping	Example

• Service	=	{A(1),	B(2),	C(2),	D(1)}
• N	=	{A1,	B1,	B2,	C1,	C2,	D1}	(normalized)
• Map(i)	=	Sorted(N,	key=	md5(i,	serviceID,	vID))

Capacity

map[0]	=	[A1,	C2,	D1,	B1,	B2,	C1]	=	[A,	C]
map[1]	=	[B2,	B1,	C1,	C2,	A1,	D1]	=	[B,	C]
…
map[19]	=	[C2,	B1,	D1,	A1,	B2,	C1]	=	[C,	B]

H	=	20

R	=	2

bc1…	mod	20	=	1	=>	Replicate	onto	B	and	C	

34

Deterministic	Mapping	Example

• When	C	is	removed
map[0]	=	[A1,	C2,	D1,	B1,	B2,	C1]	=	[A,	C]
map[1]	=	[B2,	B1,	C1,	C2,	A1,	D1]	=	[B,	C]
…
map[19]	=	[C2,	B1,	D1,	A1,	B2,	C1]	=	[C,	B]

H	=	20

R	=	2

map[0]	=	[A1,	D1,	B1,	B2]	=	[A,	D]
map[1]	=	[B2,	B1,	A1,	D1]	=	[B,	A]
…
map[19]	=	[B1,	D1,	A1,	B2]	=	[B,D]

H	=	20

The	sorted	order	is		maintained
=>	Minimize	realignments	 35

Implementation

• Prototyped	with	Python
– ~8k	lines	of	code

• Currently	supports	5	backend	services
– Dropbox,	Google	Drive,	OneDrive,	Box.net,	Baidu

• Two	front-end	clients
– Command	line	client	
– Sync	daemon

36

Evaluation

• How	is	the	end-to-end	performance?

• What’s	the	performance	characteristics	of	
pPaxos?

• How	quickly	does	MetaSync reconfigure	
mappings?

37

Evaluation

• How	is	the	end-to-end	performance?

• What’s	the	performance	characteristics	of	
pPaxos?

• How	quickly	does	MetaSync reconfigure	
mappings?

38

End-to-End	Performance

Dropbox Google MetaSync
Linux	Kernel
920 directories	
15k	files,	166MB

2h	45m > 3hrs 12m	18s

Pictures
50 files,	193MB

415s 143s 112s

Synchronize	the	target	between	two	computers

39

Performance	gains	are	from:
• Parallel	upload/download	with	multiple	providers
• Combined	small	files	into	a	blob

(S	=	4,	R	=	2)

Latency	of	pPaxos

Latency	is	not	degraded	with	increasing	concurrent	proposers	
or	adding	slow	backend	storage	service

40

0

5

10

15

20

25

30

35

1 2 3 4 5

La
te
nc
y	
(s
)

#	of	Proposers

Google

Dropbox

OneDrive

Box

Baidu

Latency	of	pPaxos

Latency	is	not	degraded	with	increasing	concurrent	proposers	
or	adding	slow	backend	storage	service

41

0

5

10

15

20

25

30

35

1 2 3 4 5

La
te
nc
y	
(s
)

#	of	Proposers

Google

Dropbox

OneDrive

Box

Baidu

All

Conclusion

• MetaSync provides	a	secure,	reliable,	and	
performant files	sync	service	on	top	of	
popular	cloud	providers
– To	achieve	a	consistent	update,	we	devise	a	new	
client-based	Paxos

– To	minimize	redistribution,	we	present	a	stable	
deterministic	mapping

• Source	code	is	available:
– http://uwnetworkslab.github.io/metasync/

42

