
Verdi: A Framework for Implementing and
Formally Verifying Distributed Systems

James R. Wilcox, Doug Woos, Pavel Panchekha,

Zach Tatlock, Xi Wang, Michael D. Ernst, Thomas Anderson

VST
✓Key-value

store

✓

Distributed systems run in
unreliable environments

Many types of failure can occur

Fault-tolerance mechanisms
are challenging to

implement correctly

Challenges

Distributed systems run in
unreliable environments

Many types of failure can occur

Fault-tolerance mechanisms
are challenging to
implement correctly

Challenges

Formalize network as
operational semantics

Build semantics for
a variety of fault models

Verify fault-tolerance as
transformation between
semantics

Contributions

Client Key-value
storeI/O

✓
V
S
T✓

I/O
Client

Consensus

KV

Consensus

KV

Consensus

KV

✓

Verdi Workflow

Build, verify system
in simple semantics

Apply verified system transformer

End-to-end correctness
by composition

Find environments
in your problem domain

Formalize these environments
as operational semantics

Verify layers as
transformations between
semantics

General Approach

Formalize network as
operational semantics

Build semantics for
a variety of fault models

Verify fault-tolerance as
transformation between
semantics

Contributions

Verdi Successes

Applications
 Key-value store
 Lock service

Fault-tolerance mechanisms
 Sequence numbering
 Retransmission
 Primary-backup replication
 Consensus-based replication linearizability

Important
data

Replicated
KV store

Replicated
KV store

Replicated
KV store

Replicated for availability

Environment is unreliable

Crash
Reorder
Drop
Duplicate
Partition
...

Replicated
KV store

Replicated
KV store

Replicated
KV store

Implementations often have bugs

Decades of research; still difficult to implement correctly

Crash
Reorder
Drop
Duplicate
Partition
...

Replicated
KV store

Replicated
KV store

Replicated
KV store

Bug-free Implementations

 Several inspiring successes in formal verification
 CompCert, seL4, Jitk, Bedrock, IronClad, Frenetic, Quark

 Goal: formally verify distributed system implementations

✓

Formally Verify Distributed Implementations

Separate independent system components

Separate independent system components

Fault
tolerance

App

Verify application logic independently from fault-toleranceapplication logic fault tolerance

Formally Verify Distributed Implementations

Fault
tolerance

App

Fault
tolerance

App

Separate independent system components

Consensus

KV

Consensus

KV

Consensus

KV

Verify application logic independently from consensuskey-value store consensus

Formally Verify Distributed Implementations

1. Verify application logic

2. Verify fault tolerance
mechanism

3. Run the system!

1. Verify Application Logic

Client Key-value
storeI/O

✓
Simple model,
prove “good map”

Client Key-value
storeI/O

✓
V
S
T✓

I/O
Client

Consensus

KV

Consensus

KV

Consensus

KV

✓

2. Verify Fault Tolerance Mechanism

Simple model,
prove “good map”

Apply verified system transformer,
prove “properties preserved”

End-to-end correctness
by composition

Consensus

KV

Consensus

KV

Consensus

KV

3. Run the System!

Extract to OCaml, link unverified shim

Run on real networks

Verifying application logic

Simple One-node Model

Key-value

State: {}

Set “k” “v" Resp “k” “v”
State:

{“k”: “v”}

Trace: [Set “k” “v", Resp “k” “v”]

Hinp(�, i) = (�0, o)

(�, T) s (�
0, T ++ hi, oi)

Input

Simple One-node Model

System

State: σ
Input: ! Output: o

State: σ’

Trace: [!, o]

Simple One-node Model

Verify system against semantics by induction

Safety Property

Spec: operations have expected behavior (good map)

Set, Get

Del, Get

Verifying Fault Tolerance

 Consensus provides a  
replicated state machine

 Same inputs on each node

 Calls into original system Raft Raft

Raft

The Raft TransformerLog of operations

Original system

 When input received:
 Add to log
 Send to other nodes

 When op replicated:
 Apply to state machine
 Send output

Raft Raft

Raft

The Raft Transformer

 For KV store:
 Ops are Get, Set, Del
 State is dictionary

Raft Raft

Raft

The Raft Transformer

 Correctly transforms systems

 Preserves traces

 Linearizability

Raft Raft

Raft

Raft Correctness
V
S
T✓

 Model global state

 Model internal communication

 Model failure

Fault Model

 Machines have names

 Σ maps name to state

Fault Model: Global State

1

2 3

Σ[1]

Σ[2] Σ[3]

Fault Model: Messages
1

2 3

Σ[1]

Σ[2] Σ[3]

Vo
te?

Vote?

<1,3,”Vote?”>
<1,2,”Vote?”>

Network

Hnet(dst, ⌃[dst], src, m)=(�0, o, P 0) ⌃0=⌃[dst 7! �0]

({(src, dst, m)}] P, ⌃, T) r (P] P 0, ⌃0, T ++ hoi)
Deliver

Σ’[2] = σ’

Output: o

<2,1,”+1”>

 Message drop

 Message duplication

 Machine crash

Fault Model: Failures

1

2 3

Σ[1]

Σ[2] Σ[3]

<1,3,”Vote?”>
<1,2,”Vote?”>

Network

<1,3,”Vote?”>

Fault Model: Drop

<1,2,”hi”>

<1,3,”hi”>

({p}] P, ⌃, T)
drop

(P, ⌃, T)
Drop

Network

Toward Verifying Raft

 General theory of linearizability

 1k lines of implementation, 5k lines for linearizability

 State machine safety: 30k lines

 Most state invariants proved, some left to do

Verified System Transformers

 Functions on systems

 Transform systems between semantics

 Maintain equivalent traces

 Get correctness of transformed system for free

Verified System Transformers

App

Raft
Consensus

App

Primary
Backup

Seq # and
Retrans

Ghost
Variables

Running Verdi Programs

 Coq extraction to Ocaml

 Thin, unverified shim

 Trusted compute base: shim, Coq, Ocaml, OS

Running Verdi Programs

Performance Evaluation

 Compare with etcd, a similar open-source store

 10% performance overhead

 Mostly disk/network bound

 etcd has had linearizability bugs

Previous Approaches

 EventML [Schiper 2014]
 Verified Paxos using the NuPRL proof assistant

 MACE [Killian 2007]
 Model checking distributed systems in C++

 TLA+ [Lamport 2002]
 Specification language and logic

Formalize network as
operational semantics

Build semantics for a
variety of fault models

Verify fault-tolerance as
transformation between
semantics

Contributions

http://verdi.uwplse.org

Thanks!

